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Isotope effect in dissociative electron attachment to HCN
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We performed nuclear dynamics calculations on HCN and DCN to study the isotope effect in dissociative
electron attachment. Our previous calculations at 333 K led to a ratio σ (CN−/HCN)/σ (CN−/DCN) of about 13, which is
significantly higher than recent experimental findings. This discrepancy is attributed to the neglect of correlation
and polarization effects in the scattering calculation performed. We carried out a relaxed–self-consistent field
calculation to determine the variation of the resonance parameters under these effects. We observe a shift in the
positions of the shape resonance as well as a narrowing of the autoionization widths resulting in an isotope ratio
of 3.2 at T = 333 K; in closer agreement with the measured value.
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I. INTRODUCTION

Recently, May et al. conducted a time-of-flight ion spec-
trometry experiment to measure the isotope effect in disso-
ciative electron attachment (DEA) to HCN [1]. The authors
measured a σ (CN−/HCN)/σ (CN−/DCN) ratio of 2.76 at 333 K
below 3 eV in electron energy. Previous theoretical work on
DEA to HCN shows a value of 13 for this ratio [2]. It has been
speculated that this discrepancy is due to the significant sen-
sitivity of the wave-packet flux to the computed values of the
autoionization widths. In order to test this hypothesis, we have
carried out a more accurate electron-scattering calculation
that includes the polarization and correlation effects. We then
performed a new 3D wave-packet propagation run using the
improved complex adiabatic potential energy surface (APES)
in the A′ symmetry. In this article, we first give a brief overview
of the relaxed–self-consistent field (SCF) approach used in
this study and discuss the results of the electron-scattering
calculation. Second, we describe the results of the nuclear
dynamics calculation and compare the DEA cross section of
HCN and DCN to experimental findings.

II. BACKGROUND

Here we review the method employed to solve for the
dissociation dynamics of the triatomic system. We have
represented the internal degrees of freedom using the Jacobi
coordinates Q = (r,R,θ ) as shown in Fig. 1.

The nuclear dynamics of the metastable negative ion state
is expressed within the local potential approximation [3] to
give the nuclear wave equation:[

Etot − T̂Q − Eel(Q) − εres(Q) + i
2
�(Q)

]
ξnuc(Q)

=
(

�(Q)

2π

)1/2

χν(Q), (1)

where Etot is the total energy of the {electron, molecule}
system, Eel represents the ground electronic state of the
neutral, εres is the resonance energy, and � is the autoionization
width within the local complex potential model [3]. The latter
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three functions are expressed as a function of Q to form
the 3D anion complex potential energy surfaces. In Eq. (1),
ξnuc represents the nuclear wave function and χν the initial
vibrational state of the neutral target.

Here, the kinetic energy operator T̂Q is given for a total
momentum operator J = 0 and is expressed in the Jacobi
coordinates as

T̂Q = − 1

2µr

∂2
r − 1

2µR

∂2
R − 1

2

(
1

µrr2
+ 1

µRR2

)

× 1

sinθ
∂θ (sinθ ∂θ ), (2)

where µr and µR specify the reduced masses associated with
the r and R coordinates (note that atomic units h̄ = m = 1 are
used).

We further use the time-dependent formulation of this wave
equation as established by McCurdy and Turner [4] to compute
the DEA wave function 
nuc(Q,t). The working equation of
motion is therefore given by{[

T̂Q + Eel(Q) + εres(Q) − i
2�(Q)

]

nuc(Q,t) = i∂t
nuc(Q,t);


nuc(Q,0) = (
�(Q)
2π

)1/2
χν(Q)

(3)

We use the computational technique based on multiconfigu-
ration time-dependant Hartree (MCTDH) formalism discussed
in detail in Ref. [5]. In this approach, the nuclear wave function
for the negative ion is expressed in the Jacobi coordinates as:


nuc(r,R,θ,t) =
Nr∑
i=1

NR∑
j=1

Nθ∑
k=1

Aijk(t)ρi(r,t)�j (R,t)k(θ,t)

(4)

Each single-particle function appearing in Eq. (4) is in
turn expanded in terms of a function basis set chosen to
correspond to that of a discrete variable representation (DVR)
for computational efficiency. Here, Nr , NR , and Nθ are all set
to the value 8 and the single-particle functions associated with
the variables R, r , and θ are expressed in terms of sine-DVR
(99 grid points), harmonic oscillator-DVR (27 grid points),
and Legendre-DVR (121 grid points) respectively.
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FIG. 1. Molecule in Jacobi coordinates.

III. COMPLEX APES

Our previous scattering calculation in Ref. [2] was con-
ducted at the static exchange level. In this case, the expression
of the trial electronic wave function is given by [6]

φ+
λ (r; q) =

∑
λ′

A[ϕλ′(�r1,�r2,...,�rn; q)Fλλ′
(�rn+1; kλ)], (5)

where the sum runs over the energetically open n-electron
target states, r = (�r1,�r2,...,�rn+1) is the (n + 1)-electronic
coordinates vector,A is the antisymmetrizing operator, and the
label λ groups all the quantum numbers needed to represent
the physical state of the {electron, molecule} system, i.e.,
the internal state of the target and the energy and orbital
angular momentum of the scattered electron. The function
ϕλ(�r1,�r2,...,�rn; q) in Eq. (5) is the target n-electron ground
state with the nuclei clamped at q and Fλλ′

(�rn+1; kλ) is the
one-electron scattering wave function as a function of the
electron’s position �rn+1 and momentum kλ. This level of
approximation does not take into account polarization and
correlation effects of the {electron, molecule}. In the current
work, the scattering wave function used in given by

φ+
λ (r; q) =

∑
λ′

A[ϕλ′(�r1,�r2,...,�rn; q)Fλλ′
(�rn+1; kλ)]

+
∑

µ

dλ
µµ(r), (6)

where the additional expansion involves an orthonormal set
{µ}µ of antisymmetric, square-integrable (n + 1)-electron
functions and represents the polarization and correlation
effects not contained in the first summation.
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FIG. 2. (Color online) Eigenphase sums as a function of electron
collision energy with variations in R with r = 2.1 a.u. and θ = 1◦.
The resonance parameters for (overlapping) resonances are shown for
the quasiequilibrium geometry R = 3.2 a.u. SE = Static exchange;
RSCF = relaxed-SCF.
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FIG. 3. (Color online) Eigenphase sums as a function of electron
collision energy with variations in R with r = 2.1 a.u. and θ = 10◦.
The resonance parameters for (overlapping) resonances are shown
for the quasiequilibrium geometry R = 3.2 a.u.

In this relaxed-SCF calculation, we have used a basis
set of 66 functions allowing symmetry-preserving excitations
from occupied HCN orbitals into virtual orbitals resulting in
9405 configurations in the A′ symmetry. Figure 2 shows the
eigenphase sums obtained for various molecular geometries
and compares the fitted resonance parameters to previous
static exchange calculation of Ref. [2]. As expected, inclusion
of the correlation and polarization term in Eq. (6) leads to
a shift of the resonance positions to lower energies and to
a narrowing of the autoionization widths. For instance, at
quasiequilibrium geometry (1◦ bend), we observe a decrease
of the lower resonance energy by about 0.04 a.u. (i.e., around
36.3% decrease) and a reduction of its width of about 0.01 a.u.
(i.e., around 18.8% decrease). A similar trend is observed for
a 10◦ bend as shown in Fig. 3.

Figure 4 depicts the shape of the lowest resonant potential
energy surface constructed based on this calculation as a
function of the internal degrees of freedom of HCN. In Fig. 5,

FIG. 4. (Color online) 3D plots of the ground electronic state of
the HCN target (S0) and of the lowest resonant APES [real part (V1)]
of HCN−∗. Surfaces are shown as a function of the Jacobi coordinates
R and θ where the latter is shown within the interval [−30◦,10◦]. The
plot shows the crossing of the resonant anion and neutral states and
the potential barrier observed in the resonant surface. The cut at 10◦

depicts the surface profiles along the dissociative coordinate R.
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FIG. 5. (Color online) 3D plots of the imaginary part � of lowest
resonant APES of HCN−∗. The surface is shown as a function of
the Jacobi coordinates R and θ where the latter is shown within the
interval [−30◦,10◦].
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FIG. 6. (Color online) Absolute DEA cross section for initial
HCN vibrational states νi = 0, 1, 2, and 3 and the population-weighted
sum at 333 K. Comparison with DEA cross section in Ref. [1] is shown
in the solid orange plot.
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FIG. 7. (Color online) Absolute DEA cross section for initial
DCN vibrational states νi = 0, 1, 2, and 3 and the population-weighted
sum at 333 K. Comparison with DEA cross section in Ref. [1] is shown
in the solid orange plot.

TABLE I. Comparative summary of DEA cross-section charac-
teristics for HCN.

Experiment [1] Previous Present
work [2] work

Peak max. position (eV) 1.85 3.01 1.94
Peak height (pm2) 942 2790 865.6
FWHM (eV) 0.84 1.6 0.77

the correspondent imaginary part of the complex potential
surface � is plotted as a function of the coordinates R

and θ . Qualitatively, these surfaces bear a great topological
resemblance to the ones obtained in our previous work.
However, the changes in the values of the resonance parameters
cause a variation in the relative neutral-anion surface position
(and, hence, the position and shape of the curve crossing seam)
as well as the width and height of the potential barrier that
characterizes this A′ APES.

IV. DEA CROSS SECTION

In the framework of the local complex potential model [3]
used to describe nuclear motion, the propagating wave packet
undergoes the effect of the �(q) function both through the
initial condition (or the driving term of the wave equation) and
the complex potential expressed in the Hamiltonian operator.
The nuclear motion is computed using the multiconfigura-
tion time-dependent Hartree approach using the Heidelberg
package [5] to compute the propagation of each of the four
low-lying bending vibrational states for HCN. The excited
states used are obtained by applying successively an angular
raising operator on the ground vibrational mode.

This set of individual vibrational modes cross sections were
combined using a weight given by a Boltzmann distribution at
333 K to calculate the total contribution to the DEA cross
section. The resulting partial DEA cross sections and the
population-weighted sums are shown in Fig. 6 and Fig. 7,
respectively, for HCN and DCN. In these figures, further
compare the present results to the experimental values of May
et al. [1].

The theoretical plots are in good agreement with the
experiment in terms of DEA peak positions, heights, and
widths. The calculated DEA cross sections are centered
approximately around 1.94 eV with a maximum value of
865.6 pm2 for HCN and 283.1 pm2 for DCN. Furthermore,
the FWHM of the calculated cross sections are evaluated at
0.77 eV and 0.68 eV for HCN and DCN, respectively. This
calculation results in a value of the σ (CN−/HCN)/σ (CN−/DCN)

ratio at 1.94 eV of approximately 3.05 in close agreement with

TABLE II. Comparative summary of DEA cross-section charac-
teristics for DCN.

Experiment [1] Previous Present
work [2] work

Peak max. position (eV) 1.91 3.18 1.94
Peak height (pm2) 339 215 283.1
FWHM (eV) 0.88 1.9 0.68
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FIG. 8. (Color online) Cross sections for final CN− vibrational
states ν0, ν1, ν2, and ν3 for HCN.

the experimental 2.76 value. These values are summarized in
Table I and Table II, respectively, for HCN and HCN.

However, we note that this calculation only shows a
modest agreement with experiment in terms of the DEA peak
onsets and the secondary shoulder feature in May et al.’s
measurements. The authors attributed this feature to the
contribution of the ground and excited vibrational states of
the dissociated CN− fragment. We carried out a projection of
the asymptotic state of the resonant anion onto the vibrational
states ν0, ν1, ν2, and ν3 of the CN− fragment. Figures 8 and
9 show a plot of the cross section associated with each of
the fragment vibrational states in the case of HCN and DCN
respectively. The peak height ratios are found to be 1, 0.3,
0.09, and 0.017 (1, 0.2, 0.05, and 4 × 103) for HCN (DCN)
for the CN− vibrational states ν0, ν1, ν2, and ν3 respectively.

V. CONCLUSION

A relaxed-SCF calculation is necessary to obtain a more
accurate treatment of dynamics of HCN and DCN. The
inclusion of the polarization and correlation effects provides
a better description of the interaction between the incident
electron and the neutral target and, thus, leads to a better agree-
ment with experimental results. This is consistent with the
assumption that the DEA cross section is significantly sensitive
to the resonance parameters. This improved calculation further
results in a good agreement for the σ (CN−/HCN)/σ (CN−/DCN)

ratio, which indicates that the relaxed-SCF calculation yields
a more accurate topology of the complex potential used in the
nuclear wave equation for HCN and DCN.
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FIG. 9. (Color online) Cross sections for final CN− vibrational
states ν0, ν1, ν2, and ν3 for DCN.

Examination of the experimental cross section in Ref. [1]
shows a double peak structure where the lowest and smallest
of the peaks lies at about 0.2 eV below the main peak for
both HCN and DCN. The authors attribute this feature to
possible contribution from the excited vibrational states of
CN−. This feature is not present in our current calculation
where only a single peak structure consistent with the main
experimental peak is observed. The double-peak structure may
be the result of a coupling to a higher resonant state where
nonadiabatic coupling terms introduce interference effects in
the propagating wave packet as seen in cases elsewhere [7].
In fact, as detailed in Ref. [2], the two complex adiabatic
surfaces of HCN intersect at the crossing point of 2� and 2�

resonant states in linear geometry. The present computation,
however, neglects the vibronic interaction between these
states, which may explain the absence of the minor peak
observed experimentally. The inclusion of coupling between
the resonant states entails a computationally complicated
diabatization procedure to determine the nonadiabatic matrix
elements and the solution of a system of two coupled wave
equations of the tridimensional HCN and DCN systems.
This calculation goes beyond the scope of the present
study.

ACKNOWLEDGMENTS

We acknowledge support from the National Science
Foundation under Grant No. PHY-08-55092 and the US
DOE Office of Basic Energy Science, Division of Chemical
Science.

[1] O. May, D. Kubala, and M. Allan, Phys. Rev. A 82, 010701
(2010).

[2] S. T. Chourou and A. E. Orel, Phys. Rev. A 80, 032709
(2009).

[3] A. U. Hazi, T. N. Rescigno, and M. Kurilla, Phys. Rev. A 23,
1089 (1981).

[4] C. W. McCurdy and J. L. Turner, J. Chem. Phys. 78, 11
(1983).

[5] G. A. Worth, M. H. Beck, A. Jackle, and H.-D. Meyer, MCTDH

package, ver. 8.4 (2007); see [http://www.pci.uni-heidelberg.de/
tc/usr/mctdh/].

[6] T. N. Rescigno, C. W. McCurdy, A. E. Orel, and B. H. Lengsfield
III, in Proceedings of the Workshop on Comparative Study of
Current Methodologies in Electron-Molecule Scattering(1993).

[7] J. B. Roos, M. Larsson, and A. Larson and A. E. Orel, Phys.
Rev. A 80, 012501 (2009).

032709-4

http://dx.doi.org/10.1103/PhysRevA.82.010701
http://dx.doi.org/10.1103/PhysRevA.82.010701
http://dx.doi.org/10.1103/PhysRevA.80.032709
http://dx.doi.org/10.1103/PhysRevA.80.032709
http://dx.doi.org/10.1103/PhysRevA.23.1089
http://dx.doi.org/10.1103/PhysRevA.23.1089
http://dx.doi.org/10.1063/1.444677
http://dx.doi.org/10.1063/1.444677
http://www.pci.uni-heidelberg.de/tc/usr/mctdh/
http://www.pci.uni-heidelberg.de/tc/usr/mctdh/
http://dx.doi.org/10.1103/PhysRevA.80.012501
http://dx.doi.org/10.1103/PhysRevA.80.012501

