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Cold three-body collisions in hydrogen–hydrogen–alkali-metal atomic systems
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We have studied hydrogen-hydrogen-alkali three-body systems in the adiabatic hyperspherical representation.
For the spin-stretched case, there exists a single XH molecular state when X is one of the bosonic alkali atoms:
7Li, 23Na, 39K, 87Rb, or 133Cs. As a result, the only recombination process is the one that leads to formation of
XH molecules, H + H + X → XH + H, and such molecules will be stable against vibrational relaxation. We
have calculated the collision rates for recombination and collision-induced dissociation as well as the elastic
cross sections for H + XH collisions up to a temperature of 0.5 K, including the partial wave contributions from
J � = 0+ to 5−. We have also found that there is just one three-body bound state for such systems for J� = 0+

and no bound states for higher angular momenta.
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I. INTRODUCTION

In the last decade, studies of three-body collisional pro-
cesses have attracted tremendous attention due to their great
relevance for the rapidly growing field of cold and ultracold
atomic gases [1]. In such systems, three-body recombination
and elastic and inelastic atom-molecule collisions are of
particular interest.

Three-body recombination is a scattering process where
three free particles collide, with two of them binding to form a
molecular state, converting the binding energy into the relative
kinetic energy of the atom and molecule produced. Three-body
recombination, therefore, is important generically as it can
shed light on binding in nuclear and chemical reactions. In
ultracold atomic gas experiments, three-body recombination
can lead to huge losses near a Feshbach resonance [2–4] and
has been studied extensively to understand the lifetime and the
stability of the gas samples [5–10].

Elastic atom-molecule collisions are crucial for determining
the dynamics of ultracold atom-molecule mixtures at the mean-
field level, and inelastic atom-molecule collisions have a big
impact on the lifetime of Feshbach molecules in such systems
[11–13]. Furthermore, in the regime of large two-body s-wave
scattering length a, achieved near a Feshbach resonance, three-
body collisional processes show universal scaling behavior
with a as a result of Efimov physics [6–8,14–16]. These
universal aspects have been observed experimentally in recent
years [17–23] and confirm our understanding of three-body
universal properties [16].

Ultracold three-body collisions, however, are only uni-
versal when the dynamics are predominantly determined by
the long-range behavior of the atom-atom scattering wave
function. When a system behaves universally, the complicated
atom-atom interaction can thus be replaced with a much
simpler model designed to reproduce the long-range wave
function. It is in this context that the adiabatic hyperspherical
representation has been applied to the calculation of three-body
recombination. While it has proven very useful for getting
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deeper insights into this process, calculating recombination
for chemically important species using realistic interactions
requires substantial further technical development, but does
not pose fundamental difficulties.

Nevertheless, there are a few realistic systems that are
sufficiently simple that recombination calculations are possible
with the tools already available. For instance, recombination
of helium atoms, for which there is a single 4He2 ro-vibrational
bound state, has been studied within the adiabatic hyper-
spherical representation [24,25]. Parker et al. have studied
the Ne + Ne + H system, calculating the J� = 0+ partial
wave contribution to recombination and collision-induced
dissociation rates [26]. The studies done by Suno et al. for three
helium atoms [24,25] and for He + He + alkali systems [27]
have included higher partial wave contributions in order to
calculate the total recombination rate up to temperatures of at
least 10 mK. These results are relevant to the buffer gas cooling
technique used in cold and ultracold experiments [28,29],
where three-body recombination can lead to dramatic losses.

In this paper, we study three-body processes involving two
hydrogen atoms and one alkali atom. Knowledge of these pro-
cesses could benefit future ultracold atomic-gas experiments.
The diatomic molecules produced by three-body recombina-
tion, for instance, are heteronuclear and thus have a permanent
dipole moment. Such molecules have recently been the
focus of much attention [30–34]. Moreover, our results for
the light-alkali-atom systems at higher temperatures approach
the regime relevant to the evolution of interstellar gases [35].

If all atoms are spin-stretched, these systems are amenable
to calculation since the H + H interaction has no bound state
and X + H has only a single s-wave bound state for all the
alkali species X considered here [36–39]: 7Li, 23Na, 39K,
87Rb, and 133Cs. In thermal alkali-hydrogen mixtures, the
recombination rate K3 for the process H + H + X → XH + H
is related to the density of the alkali atoms by

dnX

dt
= −K3n

2
HnX, (1)

where nH and nX are the densities of the H atoms and
alkali atoms, respectively. Note that there is a 2! reduction
in the rate if the hydrogen atoms are in a condensate [40].
The three-body calculations are thus simplified by having
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only one recombination channel, but the presence of sharp
avoided crossings in the three-body potentials makes the
calculations a challenge in the adiabatic representation. These
sharp crossings are between different families of adiabatic
potentials corresponding to H + H and X + H.

We will use atomic units throughout unless specified
otherwise. It is also convenient to convert energies to tem-
perature units by dividing by Boltzmann’s constant kB (i.e.,
3.17 × 10−6 a.u. = 1 K).

II. METHOD

After separating the center-of-mass motion, the relative
motion of the three particles can be represented by the
mass-scaled Jacobi vectors ρ12 and ρ1,23 [41]:

ρ12 = (r1 − r2)/d, (2)

ρ12,3 = d

(
r3 − r1 + r2

2

)
, (3)

where r1, r2, and r3 are the laboratory-frame position vectors
of the two hydrogen atoms with mass mH and the alkali atom
with mass mX, respectively. In the above equations, the mass
scaling factor d is given by

d2 = mX

µ

2mH

2mH + mX

. (4)

The three-body reduced mass is defined as follows to preserve
the phase-space volume element [41]:

µ =
√

m2
HmX

2mH + mX

. (5)

In the adiabatic hyperspherical representation the hyper-
radius R, R2 = ρ2

12 + ρ2
12,3, is the only coordinate with the

dimensions of length and represents the overall size of
the three-body system. The remaining degrees of freedom, the
hyperangles, are represented collectively by �. We use body-
frame Delves’ coordinates [42] such that � ≡ (φ,θ,α,β,γ ),
with

φ = tan−1

(
ρ12,3

ρ12

)
, 0 � φ � π/2, (6)

and θ the angle between the vectors ρ12 and ρ1,23 such that 0 �
θ � π . The remaining hyperangles are the three Euler angles
α, β, and γ describing the rotation of the plane containing the
three particles. As a result, the interparticle distances rij are
determined in terms of the internal coordinates (R, θ , φ) only:

r12 = Rd cos φ, (7)

r23 = R

(
d2

4
cos2 φ + 1

d2
sin2 φ + 1

2
sin 2φ cos θ

)1/2

, (8)

r31 = R

(
d2

4
cos2 φ + 1

d2
sin2 φ − 1

2
sin 2φ cos θ

)1/2

. (9)

This definition of the hyperangles facilitates the symmetriza-
tion of the wave function under exchange of the two H atoms.

After rescaling the three-body wave function 
 as ψ =
R5/2
, the three-body Schrödinger equation takes the form[

− 1

2µ

∂2

∂R2
+ 2

2µR2
+ V (R,�)

]
ψ = Eψ, (10)

where V (R,�) includes all the interactions and 2 is the
hyperangular momentum operator, defined by taking ρ12 to
be the quantization axis for the body-fixed frame [42] and
expressed as

2 = T0 + T1 + T2 − 1/4, (11)

with

T0 = ∂2

∂φ2
− 4

sin2 2φ

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
, (12)

T1 = 4

sin2 2φ

1

sin2 θ
J 2

z − 1

cos2 φ

(
2J 2

z − J 2
)
, (13)

T2 = 1

cos2 φ

(
2iJy

∂

∂θ
+ 2 cot θJxJz

)
. (14)

The components J ≡ (Jx,Jy,Jz) are the total orbital angular
momentum operator projected on the body-frame axes.

Since we assume the atoms to be spin-stretched (i.e., in
the total spin state with the largest-magnitude spin projection),
the relevant Born-Oppenheimer potential surface is the lowest-
quartet surface. We approximate this surface as a pairwise sum
of 3�u two-body potentials:

V (R,�) = vHH(r12) + vXH(r23) + vXH(r31). (15)

The two-body potentials vHH(r) and vXH(r) are shown in
Fig. 1. At small distances, these potentials are determined
from ab initio calculations [36,38,39] while their long-range
behavior is determined by the usual dispersion potentials
[37,38]. Without including the fine and hyperfine interactions,
these two-body potentials are expected to be quite accurate.
For instance, the ab initio data for vHH are claimed to have
eight digits of accuracy [36], and vXH are claimed to have an
absolute accuracy ranging from 10−6–10−7 a.u. depending on
the species [38]. The dispersion potentials are believed to have
an error of a few percent [37,38].
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FIG. 1. (Color online) The 3�u potentials for H + H and X + H.
Among all these combinations, only X + H systems have a single,
weakly bound molecular state.
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Note that, for three atoms, a nonadditive three-body term
should be included in V (R,�). This three-body term depends
on the spatial configuration of the three atoms and can be
significant for certain configurations. The only fully quantum
mechanical recombination calculation for a realistic system
that has so far included the three-body term found its effect to
be negligible [25]. But that work treated He, and He is not very
polarizable compared to H or the other alkalis. The impact of
the three-body term for the present systems is thus expected to
be correspondingly larger. Unfortunately, neither the full
three-body surface nor the three-body term is available for the
quartet state of H + H + X. The importance of the three-body
term for the systems we are investigating, though, can be
estimated qualitatively by looking at the available three-body
terms for the quartet surface of identical alkali atoms [43,44],
as they have similar electronic structure. The three-body term
is most significant when all the atoms are close together. For
Li, the three-body potential can make the minimum of the
total potential about four times deeper than the pair-wise-sum
potential [44]. For heavier alkali atoms, the three-body term
can change the potential minimum by a factor of 1.2–1.5
[43]. When the atoms are far apart, a three-body dispersion
interaction should also be included. The contribution of this
interaction, however, is much smaller. For Li, the three-body
dispersion interaction is a few percent of the pair-wise sum
potential, and even smaller for heavier alkali atoms [44].
We thus expect that our results will change dramatically
when the three-body interactions are included. We know, for
instance, that the numerical value of the rate can change
over a broad range for model problems [45]. However, our
calculation for H + H + X systems can give a sense of the
order of magnitude for the three-body observables and serve
as a starting point for the study of three-body interactions
in such three-body systems. We further note that including a
three-body term or a full three-body surface to improve the
accuracy of our numerical results poses no particular problem
for our approach [45].

In order to solve Eq. (10), we first expand the three-body
wave function as

ψ =
∞∑

ν=0

FνE(R)�ν(R; �), (16)

where �ν(R; �) are the channel functions obtained as the
solutions of the adiabatic equation

[
2

2µR2
+ V (R,�)

]
�ν = Uν(R)�ν. (17)

We solve this equation as a function of R, and its eigenvalues
are the adiabatic potentials Uν(R). Therefore, upon substi-
tution of ψ , Eq. (10) reduces to a set of coupled ordinary
differential equations:

[
− 1

2µ

d2

dR2
+ Uν(R)

]
FνE(R) − 1

2µ

∑
ν ′

[
Pνν ′ (R)

d

dR

+ d

dR
Pνν ′ (R) + Qνν ′ (R)

]
Fν ′E(R) = EFνE(R), (18)

with nonadiabatic couplings Pνν ′ and Qνν ′ given by

Pνν ′ (R) = 〈〈�ν | d

dR
|�ν ′ 〉〉, (19)

Qνν ′ (R) = −
〈〈

d�ν

dR

∣∣∣∣d�ν ′

dR

〉〉
. (20)

Here, the double brackets denote integration over only the
hyperangular degrees of freedom.

In our calculations, the biggest computational burden comes
from solving the five-dimensional adiabatic equation (17). To
facilitate its solution, we separate out the external degrees
of freedom (α, β, γ ) and simultaneously obtain eigenstates
of total orbital angular momentum and parity by further
expanding the adiabatic wave functions �ν on the basis of
symmetrized Wigner D functions [42]:

�ν(R; �) =
J∑

K=0

uνK (R; θ,φ)D̃J�
KM (α,β,γ ), (21)

where � denotes the total parity of the system and K and M

denote the projection of the total orbital angular momentum
on the body-fixed and space-fixed z axes, respectively. Since
molecules XH have only a single s-wave state, recombination
only happens for the parity-favored case [i.e., when � =
(−1)J ].

Although we are solving for the motion of the nuclei,
we must require that the total wave function, including
the electronic degrees of freedom, is antisymmetric under
exchange of the two protons. For the electronic symmetry we
are considering, exchanging protons introduces a sign change
in the electronic wave function. Thus, the nuclear part of the
wave function must be symmetric under proton exchange.

Since we neglect hyperfine interactions, we can couple the
two protons’ spin to give a total spin I = 0,1 and consider their
contribution to recombination independently. For I = 1, the
spin wave function is symmetric under exchange, requiring the
spatial wave function to also be symmetric. Such spatial sym-
metry leads to nonvanishing K3 at ultracold temperatures [46].
For I = 0, however, the spin wave function is antisymmetric
under exchange of the two protons, and the spatial wave
function is therefore also antisymmetric. For this symmetry,
K3 vanishes in the zero-temperature limit [46]. In the present
work, we calculate K3 for I = 1, which is the dominant
recombination process for ultracold temperatures. For more
general cases where the I = 1 state is not preferentially
prepared, our results give only a partial contribution to K3

for temperatures beyond the ultracold regime.
We built the exchange symmetry of the two protons into

the boundary conditions of the body-frame components uνK .
Permuting the two protons only affects the hyperangles �:

P12D̃
J�
KM = �(−1)KD̃J�

KM, (22)

P12θ = π − θ. (23)

For even parity, the permutation requirements can be equiva-
lently expressed as uνK being symmetric about θ = π/2 for
even K and antisymmetric for odd K . For odd parity, uνK

should be antisymmetric for even K and symmetric for odd
K . Imposing these boundary conditions, we need only solve
Eq. (17) in the range 0 � θ � π/2.
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Asymptotically (i.e., as R → ∞), the adiabatic potentials
with the diagonal couplings included are determined by the
energies of the break-up components. For the atom-molecule
channel, the potentials behave like

W0(R) = U0(R) − 1

2µ
Q0,0 → EXH + l(l + 1)

2µR2
, (24)

where the partial angular momentum l is the relative orbital
angular momentum between the atom and the molecule. Since
all of the XH systems have only an s-wave bound state, l = J .
For the three-body break-up channels, the potentials behave
like

Wν(R) → λ(λ + 4) + 15/4

2µR2
. (25)

The values of λ are nonnegative integers determined by J�

and the identical particle symmetry [46].
Accurate numerical calculations of the three-body

observables depend largely on the accuracy of the adiabatic
potentials and channel functions [Eqs. (17) and (21)] and,
ultimately, on the nonadiabatic couplings [Eqs. (19) and (20)].
By expanding the body-frame components uνK (R; θ,φ) on
a two-dimensional, direct-product B-spline basis [47], we
obtain accurate potentials and couplings up to R ≈ 2000 a.u.
Beyond this distance, we extrapolate the potentials using the
known asymptotic expansions [48]. Typically, a (θ , φ) mesh
of 60 × 250 gives eigenvalues converged to at least eight
digits. We have found that, due to the sharp avoided crossings
occurring at small R, a hyperradial grid of about 3000 points
is necessary to accurately resolve most of the abrupt changes
in the nonadiabatic couplings. Many sharper crossings remain,
though, that must be traced individually.

III. THREE-BODY SCATTERING OBSERVABLES

It is well known [16] that when the scattering length
a greatly exceeds the characteristic range of the two-body
interaction, three-body scattering observables are dramatically
affected. For the systems we consider here, the long-range
part of the two-body interaction is the van der Waals potential
−C6/r6

ij . Therefore, they are characterized by the van der
Waals length lvdW = (2µijC6)1/4 [16], where µij is the two-
body reduced mass. In Table I, we list the bound-state energies,
the scattering lengths, and the van der Waals lengths for all
of the two-body potentials we used. Notice that none of the
scattering lengths are substantially larger than the van der
Waals lengths and thus the condition for universal behavior
(|a| � lvdW) is not fulfilled. As a result, we do not expect to
observe universal physics for these systems.

After obtaining the potentials and couplings, we solve the
hyperradial equation (18) using finite elements as described in
Ref. [49]. For recombination processes, the total recombina-
tion rate K3 is the sum over all the partial wave contributions
KJ�

3 [24,25]:

K3 =
∑
J,�

KJ�
3 = 2!

∑
J,�

∑
i

32(2J + 1)π2

µk4

∣∣SJ�
f ←i

∣∣2
, (26)

where k = √
2µE and SJ�

f ←i is the scattering matrix element
from the initial three-body continuum channel to the final

TABLE I. The two-body bound state energy EXH, scattering
length a, and van der Waals length lvdW for the H + H and X + H
interactions.

EXH (a.u.) a (a.u.) lvdW (a.u.)

H + H 1.557 10.45
Li + H −1.268 × 10−7 63.71 21.50
Na + H −3.376 × 10−7 43.26 22.58
K + H −7.360 × 10−7 34.72 25.12
Rb + H −2.446 × 10−7 50.24 25.92
Cs + H −1.784 × 10−7 56.85 27.18

atom-molecule channel. From the asymptotic form of the
three-body entrance channel, the threshold behavior of KJ�

3
is determined by the smallest λ for that symmetry [46] such
that:

KJ�
3 ∝ EλJ�

min . (27)

In our calculations, we have included the lowest six
partial-waves J�, implying that λJ�

min = 0,1,2,3,4, and 5,
respectively.

Collision-induced dissociation H + XH → X + H + H is
the time-reversed process of three-body recombination. The
dissociation rate D3 is defined as [24]

D3 =
∑
J,�

DJ�
3 =

∑
J,�

∑
f

(2J + 1)π2

µ12,3k12,3

∣∣SJ�
f ←i

∣∣2
, (28)

where k12,3 = √
2µ12,3(E − EXH) and µ12,3 = mH(mH +

mX)/(2mH + mX) is the reduced mass between the H atom
and the XH molecule.

Note that the channels that the indices i and f refer to
are reversed from those in K3. Since the S-matrix is unitary,
D3 can be readily calculated once the S-matrix elements for
K3 are known. Near the three-body breakup threshold where
collision-induced dissociation becomes energetically possible,
DJ�

3 behaves like [46]

DJ�
3 ∝ EλJ�

min+2. (29)

For atom-molecule collisions, the elastic cross section is
[25]

σ2 =
∑
J,�

σ J�
2 =

∑
J,�

(2J + 1)π

k2
12,3

∣∣SJ�
0←0 − 1

∣∣2
. (30)

The threshold behavior of σJ�
2 , in contrast to recombination,

is determined solely by J and follows the standard Wigner
threshold law,

σJ�
2 ∼ (E − EXH)2J . (31)

The calculation of scattering solutions to Eq. (18) are
complicated by the sharp avoided crossings in the adiabatic
potentials: we typically use 5 × 104 hyperradial elements
distributed as Ri ∝ i3 from R = 10 a.u. to R ≈ 2000 a.u. In the
asymptotic region (R > 2000 a.u.), the density of elements is
fixed to eight elements per shortest de Broglie wavelength. To
calculate the scattering observables, we match the numerical
solutions to the asymptotic analytical solutions at R = 105 a.u.
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for recombination, and at R = 5 × 103 a.u. for atom-molecule
collisions. The convergence of the scattering observables with
respect to the number of adiabatic channels is also dramatically
affected by the sharp avoided crossings. Even the threshold
behavior for KJ�

3 and σJ�
2 requires a fairly large number of

adiabatic channels for convergence, which we take to be from
12 to 25 for all the calculations. The resulting K3 and σ2 are
converged to at least two digits for all partial waves, and the
three-body bound-state energies are converged to three digits.

In our calculations, we have included J� = 0+, 1−, 2+,
3−, 4+, and 5− for the convergence of the total rates and cross
sections at high energies. The overall convergence of the total
total rates and cross sections are converged to two digits for
E < 200 mK and one digit for 200 mK < E < 500 mK.

IV. RESULTS

A. Three-body recombination rates

Since the adiabatic hyperspherical potentials Uν(R) are
important in understanding the underlying three-body physics
involved in the scattering processes, we first discuss their
behavior. We see that the avoided crossings become sharper as
we go to heavier alkali atoms. As an illustration, in Fig. 2 we
show the lowest six adiabatic potentials Uν(R) with J� = 0+
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FIG. 2. (Color online) The adiabatic three-body potentials for
(a) H + H + Li, and (b) H + H + Cs. The insets show the avoided
crossings within the energy range we have considered for the rates
and cross sections.
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FIG. 3. (Color online) The nonadiabatic couplings for H + H +
Cs with J � = 0+. Note that Q1,2 has been multiplied by 5000 to have
a magnitude similar to P1,2. The index ν for the adiabatic potentials
starts from 0.

for H + H + Li and H + H + Cs. The potentials for higher
partial waves behave similarly but become more repulsive as
J increases.

To demonstrate the effects of sharp avoided crossings on
the adiabatic potentials on the nonadiabatic couplings, we
show a key crossing in the insets of Fig. 2. Figure 3 shows
the corresponding couplings Pνν ′ and Qνν ′ for H + H + Cs
with J� = 0+. It can be seen that, when a sharp avoided
crossing occurs between two potential curves, the Pνν ′ and
Qνν ′ coupling those curves show sharp spikes at that R. These
couplings must be carefully traced out with a dense hyperradial
grid in order to obtain an accurate solution of Eq. (18).

In our calculations, the convergence of K3 depends criti-
cally on the behavior of the adiabatic potentials. We have found
that, except for H + H + Li, all the systems have sharp avoided
crossings below 1 Kelvin. To calculate K3 for energies above
the crossings like the one shown in the inset of Fig. 2(b), both
of the potentials involved in the crossing need to be included
to avoid spurious resonances.

The three-body recombination rates for different alkali
species X are shown in Figs. 4(a)–4(f). The corresponding
data are available in electronic form [50]. Generally, the
three-body recombination rates are dominated by the J� = 0+
contribution at ultracold energies, and by the J� = 1− and 2+
contributions near the highest energies we have calculated. It
can be seen that the total three-body recombination rates for
H + H + Na, H + H + Rb, and H + H + Cs behave similarly
and that the rates for H + H + Li and H + H + K recombina-
tion behave differently. In particular, the J� = 0+ partial rates
for H + H + K recombination are much smaller than the rates
for other systems near the zero-energy threshold. The total
rates for H + H + K recombination are then dominated by the
J� = 1− partial wave contribution for a large energy range
from about 0.5 mK to 50 mK. Interestingly, we have observed
that the threshold values of the recombination rates for
different X are ordered by the magnitude of their nonadiabatic
couplings P01 and Q01 at large hyperradii R > 200 a.u. for 0+.
This suggests that, for the present cases, 0+ recombination is
dominated by inelastic transitions from the lowest continuum
channel to the atom-molecule channel at large distances.
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FIG. 4. (Color online) The total three-body recombination rate K3 and the partial rates KJ�
3 for H + H + X → H + XH, where X is

(a) Li, (b) Na, (c) K, (d) Rb, and (e) Cs. The thermally averaged total recombination rates are shown in (f).

In thermal gases, it is crucial to consider the thermal
distribution of the collisional energies when calculating a
collision rate. Assuming a Boltzmann distribution, we have
performed a thermal average of the energy-dependent rates.
The thermally averaged recombination rate 〈K3〉 are given
by [51]

〈K3〉 = 1

2(kBT )3

∫ ∞

0
K3E

2e−E/(kBT ) dE. (32)

The results are shown in Fig. 4(f). To perform the thermal
average, we extrapolate K3 from the lowest energy we have
calculated to zero energy using the known threshold behavior.
Since we could not similarly extrapolate to infinite energy for
the integral in Eq. (32), the integral was limited to the energies

we could calculate. Consequently, the thermally averaged rates
are converged to more than one digit only for temperatures
below 100 mK. It can be seen that the energy dependence
of the rates is largely preserved. Furthermore, the thermally
averaged rates for these systems lie close to each other when
the temperature is beyond 10 mK. In Table II, we list the
values of K3 for the processes H + H + X → XH + H in the
zero-energy limit for reference.

B. Collision-induced dissociation rates

Using the simple relation between K3 and D3, we have also
calculated D3 for the same range of E. In Fig. 5, we show the
thermally averaged collision-induced dissociation rate 〈D3〉 as
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TABLE II. The zero-energy limit of the three-body recombination
rates K3.

K3 (cm6/s)

H + H + Li 1.3 × 10−29

H + H + Na 6.1 × 10−31

H + H + K 2.3 × 10−32

H + H + Rb 9.7 × 10−31

H + H + Cs 2.5 × 10−30

a function of the temperature of the XH + H mixture, where
〈D3〉 is given by [49]

〈D3〉 = 2√
π

1

(kBT )3/2

∫ ∞

0
D3E

1/2e−E/(kBT ) dE. (33)

The energy E in the integrand is relative to the XH + H
threshold. That is, it is the XH + H scattering energy, and
this must be taken into account when evaluating D3(E). It
is interesting to note that, although dissociation is allowed
only when the collision energy exceeds the molecular binding
energy, Fig. 5 shows that in a thermal gas dissociation can
occur for temperatures well below the dissociation threshold.
In fact, because we know the threshold behavior from Eq. (29)
to be D3 ∝ (E − EXH)2 for E � EXH (and zero below EXH),
we can explicitly calculate 〈D3〉 below threshold:

〈D3〉 ∝ 2
√

x(15x − 2) e−1/x

+√
π [4 + 3x(5x − 4)erfc(1/

√
x)], (34)

with x = kBT/EXH. By contrast, 〈K3〉 and 〈σ2〉 have the same
threshold behavior as the energy-dependent quantities (with
E replaced by kBT ). This formula for 〈D3〉 is likely valid
only for temperatures below EXH since the tail of the thermal
distribution starts sampling energies outside the threshold
regime for higher temperatures, making our assumption for
the behavior of D3 invalid.

D
3
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FIG. 5. (Color online) The thermally averaged total collision-
induced dissociation rate 〈D3〉 for H + XH → X + H + H. For all
species, the rates are shown up to 100 mK beyond the three-body
break-up threshold, which is indicated by the vertical dashed line.
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FIG. 6. (Color online) The total atom-molecule elastic cross
section σ2 and the partial cross sections σJ�

2 for H + KH → H + KH.

C. Atom-molecule elastic cross sections

As a representative example, we plot the total and partial
cross sections for elastic collisions between H and KH in
Fig. 6. The J� = 0+ partial wave contribution dominates for
collisional energies below 100 mK, beyond which the J� =
1− contribution becomes dominant. The J� = 1− contribution
has a pronounced minimum near 20 mK, but this feature has
only a negligible effect on the total cross section. The partial
atom-molecule elastic cross sections for the other alkali species
are not shown, as their energy dependence is qualitatively the
same as shown for H + KH. Instead, we show in Fig. 7 the
thermally averaged cross sections for all the alkali species.
The thermally averaged cross section can be derived from the
thermally averaged elastic scattering rate and is given by [49]

〈σ2〉 = 1

(kBT )2

∫ ∞

0
σ2Ee−E/(kBT ) dE. (35)

The total elastic cross sections for all alkali species are
converged to two digits for all energies. All these data are
available in electronic form [50].

In Table III, we list the values of the elastic cross section
extrapolated to zero temperature as well as the corresponding
values for the atom-molecule scattering length aH+XH for all
the alkali species. Both quantities increase with the respective
values of the two-body scattering lengths (see Table I) or,
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c m
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H+LiH

H+NaH

H+KH

H+RbH
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FIG. 7. (Color online) The thermally averaged total atom-
molecule elastic cross section 〈σ2〉 for H + XH → H + XH.
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TABLE III. The atom-molecule zero temperature elastic cross
section and scattering length between H and XH.

σ2 (cm2) 4πa2 (cm2) aH+XH (a.u.)

H + LiH 2.2 × 10−12 1.4 × 10−12 80
H + NaH 8.2 × 10−13 6.6 × 10−13 48
H + KH 4.6 × 10−13 4.2 × 10−13 36
H + RbH 1.3 × 10−12 8.9 × 10−13 60
H + CsH 1.6 × 10−12 1.1 × 10−12 68

equivalently, the size of the molecular state. In fact, we can get
an order-of-magnitude estimate for the elastic cross section
by simply using σ2 ≈ 4πa2. These estimated values are also
shown in Table III. The rough agreement implies that, for
our simple pair-wise-sum potential, the zero-energy elastic
cross section is mainly determined by the size of the XH
molecule. By extension, the atom-molecule scattering length
can be approximated by the X + H scattering length at the
same level of approximation.

D. Three-body bound-state energies

To complete our study of these systems, we calculate
the three-body bound states. The three-body energy spectra
for the H + H + alkali systems are very simple due to their
weakly-interacting nature. In our calculations, we have found
only one triatomic vibrational bound state for J� = 0+ for all
the systems. No bound levels are found for higher angular
momenta. The three-body binding energies, relative to the
atom-molecule break-up threshold, are listed in Table IV.

To get a sense of the sizes of the triatomic molecules, we
have also calculated the expectation values of the interatomic
distances 〈rXH〉 and 〈rHH〉, given by

〈rAH〉 =
∑
ν,ν ′

∫ ∞

0
Fν(R)Fν ′(R)〈〈�ν |rAH|�ν ′ 〉〉 dR, (36)

where A represents X or H. From these bond lengths, we
can also calculate the bond angle at the X atom and find
them to be consistently around 100◦ for all species. All of
this geometrical information is included in Table IV. From the
small binding energies and large bond lengths, it is clear that
these are very floppy states, as is expected for van der Waal’s
molecules. We expect, though, that the inclusion of three-body
terms in the interaction potential will tend to bind these states
more strongly, reducing the bond lengths correspondingly. The
three-body term may further tend to increase the bond angle
toward a linear configuration. The three-body term might even
be sufficient to bind additional states, at least for some species.

TABLE IV. The 0+ triatomic bound-state energies, expectation
values of interatomic distances, and bond angles.

EXH2 (a.u.) 〈rXH〉 (a.u.) 〈rHH〉 (a.u.) Bond Angle

LiH2 9.02 × 10−8 43 65 98◦

NaH2 2.58 × 10−7 30 46 100◦

KH2 6.24 × 10−7 25 37 95◦

RbH2 1.95 × 10−7 34 52 100◦

CsH2 1.43 × 10−7 38 59 102◦
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FIG. 8. (Color online) The J � = 0+ hyperradial channel function
F0(R) for the triatomic bound states.

Finally, we have verified numerically that the triatomic
binding energies are indeed predominantly determined by
the lowest adiabatic channel ν = 0. Specifically, the channel
probability

∫ |Fν(R)|2dR for ν = 0 is beyond 99% for all the
systems. The channel functions F0(R) are shown in Fig. 8.
It is interesting to note that, except for KH2, all the triatomic
states have a large hyperradial extent, reaching values up to
a few hundred atomic units, consistent with the bond lengths
listed in Table IV.

V. SUMMARY

In this paper, we have studied three-body scattering and the
bound state spectra for two hydrogen atoms and one alkali atom
using a fully quantum mechanical approach. Solving the three-
body Schrödinger equation in the adiabatic hyperspherical
representation, we have calculated the three-body
recombination rates and atom-molecule elastic cross sections
for all the alkali species for temperatures up to 0.5 Kelvin. The
biggest uncertainty in our calculations by far is the interaction
potential. Nevertheless, we expect that our results give a correct
order-of-magnitude estimate of the three-body scattering
observables. For three-body recombination, the lowest three
partial waves dominate the total recombination rates in the
energy range we have calculated. For the elastic atom-molecule
collisions, the cross sections are dominated by a single-partial
wave contribution for the energy range in our calculations,
which is J� = 0+ at lower energies and J� = 1− at higher
energies. The bound-state spectra are very simple, with only
one ro-vibrational three-body state for each of the alkali
species.

Finally, the difficulty of sharply avoided crossings we
met at small hyperradius raises an alert for doing adiabatic
calculations for realistic systems. The complicated short-range
three-body dynamics can give rise to rapidly varying behavior
in the adiabatic potentials and the nonadiabatic couplings,
which makes the adiabatic calculations much harder and less
reliable. For such cases, a diabatic representation of some sort
will become necessary, especially for small distances [52,53].
Besides this technical improvement, the calculations can be
made more realistic through the inclusion of full three-body
potential surfaces should they become available. Explicitly
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accounting for fine and hyperfine interactions would further
improve the results.
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and A. Derevianko for sharing their alkali-hydride potentials
and data. This work was supported in part by the National
Science Foundation and in part by the Air Force Office of
Scientific Research. Y. W. and J.P.D. also acknowledge the
support from the National Science Foundation under Grant
No. PHY0970114.

[1] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod.
Phys. 82, 1225 (2010).

[2] C. A. Stan, M. W. Zwierlein, C. H. Schunck, S. M. F. Raupach,
and W. Ketterle, Phys. Rev. Lett. 93, 143001 (2004).

[3] S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and
D. S. Jin, Phys. Rev. Lett. 93, 183201 (2004).

[4] T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm,
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