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Formation and collisional quenching of the long-lived 2s state of muonic hydrogen
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Ab initio study of the density-dependent population and lifetime of the long-lived (µp)2s and the yield of
(µp)1s atoms with kinetic energy 0.9 keV have been performed. The direct Coulomb 2s → 1s de-excitation
is proved to be the dominant quenching mechanism of the 2s state at kinetic energy below 2p threshold and
explain the lifetime of the metastable 2s state and high-energy 0.9 keV component of (µp)1S observed at low
densities. The cross sections of the elastic, Stark, and Coulomb de-excitation processes have been calculated
in the close-coupling approach taking into account both the closed channels and vacuum polarization shifts of
the ns states. The cross sections are used as the input data in the detailed study of the atomic cascade kinetics.
The theoretical predictions are compared with the known experimental data at low densities. The 47% yield of
the 0.9 keV (µp)1s atoms is predicted for liquid-hydrogen density.
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I. INTRODUCTION

Exotic hydrogenlike atoms are formed in highly excited
states after slowing down and Coulomb capture of heavy
negative particles (µ−, π−, etc.) in hydrogen media. The
further evolution of their initial distributions in quantum
numbers and kinetic energy are defined by the radiative
transitions and collisional-induced processes during the so-
called atomic cascade. The experimental data, such as the
yields of the x ray and the products of the weak or strong
interaction of the exotic particle in the low angular-momentum
states with hydrogen isotopes, are mainly related to the last
stage of the atomic cascade.

A number of experiments in which the energy distributions
of µ−p, µ−d, and π−p atoms were measured using various
time-of-flight methods [1–5] showed that the kinetic energy
of the exotic atoms changes during the cascade. In particular,
the existence of high-energy components has been established
in pionic hydrogen in the neutron time-of-flight experiment
[3] and in muonic hydrogen in diffusion experiments [4,5].
These experiments as well as the precision spectroscopic
experiments [6–8] require a more sophisticated approach to
a proper description of the atomic cascade taking into account
the evolution of their distributions on both the quantum
numbers and kinetic energy. In particular, the theoretical
kinetic energy distributions of the np states at the instant of
the radiative np → 1s transitions must be taken into account
for the reliable description of the Doppler broadening of the
K lines obtained from experiments (see [8] and references
therein). Thus a good understanding of the kinetics of atomic
cascade in hydrogenlike exotic atoms is very important both
for the planning and interpretation of experiments (e.g., see
for a review [9]).

Muonic hydrogen, (µ−p), being analogous to an ordinary
hydrogen atom, is of special interest among the exotic atoms
due to its simplest structure and provides the opportunity for
the investigation of a number of problems, such as the exotic
atom physics, quantum electrodynamics, weak interaction,
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and atomic scattering processes. In particular, the study of
(µ−p) atom in the 2s state plays a particular role due to the
(2s1/2-2p1/2) Lamb shift, EL = 202.0 meV [10], and has no
analog in hadronic (pionic, kaonic, etc.) atoms in which strong
interaction leads to nuclear absorption or annihilation from this
state.

Recently, the first measurement of the EL was performed
in the precision µp Lamb shift experiment and the root-mean-
square charge radius of the proton was found with a relative
accuracy better than 10−3 [11]. The precision knowledge
of the proton radius has fundamental meaning for both the
baryon structure and the bound-state QED. The success of
this experiment crucially depended upon the population ε

long
2s

and lifetime τ
long
2s of the metastable or long-lived fractions of

the 2s state at kinetic energy below EL. The existence of this
fraction was experimentally proved [12,13] by discovering
a high-energy component of (µp)1s with kinetic energy ∼
0.9 keV in the analysis of the time-of-flight spectra (at low gas
pressures pH2 = 16 and 64 hPa). The origin of this component
was attributed to the nonradiative quenching of the long-lived
2s state due to the formation of the muonic molecule in
a resonance (µp)2s + H2 collision and subsequent Coulomb
de-excitation of the (ppµ)+ complex—the so-called side
path model [14–16]. However, a theoretical estimation of the
nonradiative quenching rate, λ

quench
2s , in the framework of this

model [16] gives λ
quench
2s ∼ 5 × 1010 s−1 at liquid-hydrogen

atom density [(LHD) NLHD = 4.25 × 1022 atoms/cm3] that
is about an order of magnitude less than the value λ

quench
2s =

4.4+2.1
−1.8 × 1011 s−1 deduced from the experimental data [13].
It is worthwhile noting that no manifestations of the above

resonance mechanism were found in experiments (e.g., see
[3,7,8]). In particular, in the experimental work [8] no evidence
of the molecular formation [15,16] was found at the 1% level
for 3p-1s line broadening in the muonic atom except the
Coulomb de-excitation process.

In the paper [17] we suggested that the observed collisional
quenching of the metastable 2s state and high-energy (µp)1s

component can be explained by the direct Coulomb de-
excitation (CD) process,

(µ−p)2s + H → (µ−p)1s(0.9 keV) + H(1.0 keV). (1)
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However, the problem of the (µp)2s metastability has not been
the subject of the paper [17].

The main motivation for the present paper was to confirm
our previous suggestion [17] that the direct CD 2s → 1s is
the dominant mechanism of the collisional quenching of the
(µ−p)2s at kinetic energy below the 2s-2p threshold. In the
present study this suggestion is confirmed by the ab initio
fully quantum-mechanical calculations of the cross sections
for the elastic scattering, Stark transitions and CD within the
close-coupling approach (CCA) taking into account the closed
channels and the ns-np energy shifts of the muonic hydrogen
levels.

According to our knowledge, the cross sections for the CD
process (1) and elastic 2s → 2s scattering at the subthreshold
region were not calculated until now. The values of these cross
sections enable one to explain the experimental quenching rate
of the long-lived 2s state quantitatively. The calculated cross
sections of the above-mentioned processes have been used
in the detailed calculations of the atomic cascade kinetics.
The population and lifetime of the metastable 2s state, as
well as the yield εhot

1s of the hot (0.9 keV) component of the
(µ−p)1s over a wide range of the relative density ϕ = N/NLHD

from 10−9 up to 1 are predicted. The preliminary results
based on our theoretical cross sections obtained in the middle
of 2008 are published in [18]. As compared with [18], the
more elaborate calculations of the elastic 2s → 2s scattering
and CD 2s → 1s cross sections below 2p threshold have
been performed focusing on the convergence of the cross
sections with increasing the number of the basis states, thus the
reliability of our theoretical predictions has been significantly
improved in the present study.

The paper is organized as follows. The brief outline of the
close-coupling approach is described in Sec. II. The calculated
cross sections and the rates of the elastic scattering, Stark
transitions, and Coulomb de-excitation of the muonic atom
in the state with n = 2 are presented in Sec. III. The cascade
model and the definition of the initial n, l, and E distributions
are described in Sec. IV. The results of the cascade calculations
for the energy distributions of muonic hydrogen in 1s and
2s states at low densities, density dependence of the arrival
2s population, population and lifetime of the metastable 2s

fraction, and also the yield of the hot (µ−p)1s are presented
in Sec. V. The main results of the paper are summarized in
Sec. VI.

Atomic units [h̄ = e = memb/(me + mb) = 1] are used
throughout the paper unless otherwise stated.

II. CLOSE-COUPLING APPROACH

In the present paper we use the close-coupling approach
(CCA), in which the scattering processes,

(µ−p)nl + H → (µ−p)n′l′ + H, (2)

such as elastic scattering (n′ = n, l′ = l), Stark transitions
(n′ = n, l′ �= l), and CD (n′ < n) are described in a unified
manner. This approach was applied earlier by the authors for
the quantum-mechanical treatment of elastic scattering, Stark
transitions and CD in the collisions of excited exotic (muonic,
pionic, and antiprotonic hydrogen) atoms with hydrogen ones

�ρ
�R

µ−
e−

�r

FIG. 1. The Jacobi coordinates used for the system (µ−a + be−).
R is a vector from the center of mass of (µ−a) to the center of mass
of (be−) (a and b are nuclei of muonic and ordinary atoms—in the
present case, protons).

[17,19–22] and the hydrogen molecules [23]. Here, we briefly
remind the main assumptions and outline of the CCA.

The nonrelativistic Hamiltonian for the four-body system
(a + µ− + b + e−), after separating the center-of-mass mo-
tion, can be written in Jacobi coordinates (R,ρ,r) (see Fig. 1)
as

H = − 1

2M
�R + hµ(ρ) + he(r) + V (r,ρ,R), (3)

where M is the reduced mass of the system, and hµ and he

are the Hamiltonian of the free muonic and ordinary hydrogen
atoms. The electrostatic interaction between the subsystems
V (r,ρ,R) is the sum of four two-body Coulomb interactions:

V (r,ρ,R) = Vab + Vµb + Vae + Vµe,

Vab = 1

rab

= |R + νρ − νer|−1,

Vµb = − 1

rµb

= −|R − ξρ − νer|−1, (4)

Vµe = 1

rµe

= |R − ξρ + ξer|−1,

Vae = − 1

rae

= −|R + νρ + ξer|−1,

where ν, ξ , νe, and ξe are defined as follows: ν =
mµ/(mµ + ma), ξ = ma/(mµ + ma), νe = me/(me + mb),
ξe = mb/(me + mb) (ma,mb,mµ, and me are the masses of
hydrogen isotopes, muon, and electron, respectively).

Since the muonic atom is neutral and in the low-lying states
much smaller than the target molecule, the distortion of the
target electron structure during collision can be neglected.
Moreover, the (µ−p)nl − H2 collisions can be approximately
treated as the (µ−p)nl − H scattering. These assumptions
are supported, in particular, by a good agreement of the
experimental data [3] and our theoretical results [24] for
the kinetic energy distribution of π−p atoms at the instant
of nuclear absorption. The effect of the electron density
difference near proton in the hydrogen molecule as compared
with that in hydrogen atom was estimated by using the one-
electron function obtained in the framework of the improved
Heitler-London method [25]. Our calculations show that the
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main effect is a weak suppression of the elastic and Stark cross
sections above the 2p threshold. Furthermore, since Lamb
shifts of the ns states are about two order of magnitude more
than both the fine and hyperfine splittings, the muonic atom
states are described by the nonrelativistic hydrogenlike wave
functions with the energies of ns states shifted with respect to
the degenerate (nl; l �= 0) states. In addition, in the present
consideration we use the “frozen” electron approximation
assuming that the hydrogen atom remains in the ground state
during the collision. CCA can be extended in a straightforward
manner to include also the target electron excitations.

Thus, the basis states are constructed from the hydrogenlike
wave functions of electron |1s〉, muon |n l〉, and the eigenfunc-
tions |Lλ〉 of the angular momentum for the relative motion:

|1s,nl,L : JM〉 ≡ 1√
4π

R1s(r)Rnl(ρ)YJM
lL (ρ̂,R̂), (5)

where

YJM
lL (ρ̂,R̂) ≡ il+L

∑
mλ

〈lmLλ|JM〉Ylm(ρ̂)YLλ(R̂). (6)

Here, the orbital angular momentum l of the muonic atom is
coupled with the orbital momentum L of the relative motion
to give the total angular momentum J = l + L.

The total wave function of the system in the state with the
total energy E, definite quantum numbers of the total angular
momentum (J M), and parity π = (−1)l+L is expanded in
terms of the basis states |1s,nl,L : JM〉 as follows:

	EJMπ (r,ρ,R) = R−1
∑
nlL

GEJπ
nlL (R)|1s,nl,L : JM〉. (7)

The expansion (7) leads to the close-coupling second-order
differential equations for the radial functions of the relative
motion GEJπ

nlL (R):(
d2

dR2
+ k2

nl − L(L + 1)

R2

)
GEJπ

nlL (R)

= 2M
∑
n′l′L′

WJπ
nlL,n′l′L(R) GEJπ

n′l′L′(R), (8)

where k2
nl = 2M(Ec.m. − �εnl,n1l1 ) specifies the channel wave

number. In the present study we use the basis sets in which both
the open (k2

nl > 0) and closed (k2
nl < 0, Im knl > 0) channels

have been included. Ec.m. is the relative motion energy in
the entrance (n1l1) channel and �εnl,n1l1 is the threshold of
the current (nl) channel referring to the entrance channel
threshold:

�εnl,n1l1 = εnl − εn1l1 .

Here, εnl is the bound-state energy of the muonic atom with
Lamb shift1 εLamb

n taken into account:

εnl = −0.5µ/n2 − δl0ε
Lamb
n ,

where µ = mµma/(mµ + ma) is the reduced mass of the
muonic atom.

1We use the value εLamb
2 = 0.202 eV [10] for n = 2 and approxi-

mated values εLamb
n = εLamb

2 (2/n)3 for n > 2.

Finally, WJ
nlL,n′l′L′ are the matrix elements of the interaction

potential (4) over the basis states:

WJπ
n′l′L′,nlL(R)

= 〈1s,n′l′,L′ : JM|V (r,ρ,R)|1s,nl,L :JM〉. (9)

These matrix elements are obtained by averaging the potential
(4) over the electron wave function |1s〉 and subsequently
applying the addition theorem for the spherical Bessel func-
tions. The integration over (ρ,R̂) with the muon hydrogenlike
functions reduces the matrix element (9) to the multiple finite
sum (for details see [21]).

The total number of coupled equations in the system (8)
is defined by the set of the principal quantum numbers n of
the states included in the calculation. For every n the number
of the coupled channels Nn is equal to n(n + 1)/2 if parity
π = (−1)l+L coincides with (−1)J , and n(n − 1)/2 otherwise.
The basis sets including all the µ−p states with n = 1 − nmax

were used in our calculations, so the total number of coupled
Eqs. (8) is equal to N = ∑nmax

n=1 Nn.
The radial functions GEJπ

nlL (R) should be regular every-
where and behave as ∼RL+1 at R → 0. At asymptotic
distances (R → ∞) one can use the usual standing-wave
boundary conditions involving the real symmetrical K matrix.
K matrix is related to T matrix by the equation T =
2iK(1 − iK)−1.

In order to find the K and thereby T matrix one does not
need to know the wave functions GEJπ

nlL (R) themselves. It is
possible to define the K matrix using only the ratios of these
functions at the two nearest points R and R + h:

D(R) = G(R)G−1(R + h),

where h is the integration step. The main advantage of such an
approach is that the propagation matrix D is limited even for
the closed channels, where functions G(R) can exponentially
increase. So, it is possible to treat both open and closed
channels in a unified manner. In all our calculations of the cross
sections we used such a propagation matrix method (PMM)
the details of which are given in Appendix.

The partial-wave on-shell amplitude for the transition
nlm → n′l′m′ is defined by the T matrix:

f n′l′m′
nlm (E,k̂nl,R̂) = 2πi√

knlkn′l′

∑
LL′Mλλ′

iL
′−L〈lmLλ|JM〉

× 〈l′m′L′λ′|JM〉Y ∗
Lλ(k̂nl)YL′λ′(R̂)T J

nlL→n′l′L′(E). (10)

The partial-wave differential and integral cross sections of the
processes (2) for the transitions nl → n′l′, averaged over an
initial and summed over the final sublevels, are given by

dσJ
nl→n′l′ (E)

d
= kn′l′

knl

1

2l + 1

∑
m,m′

∣∣f n′l′m′
nlm (E,k̂nl,R̂)

∣∣2
, (11)

and

σJ
nl→n′l′(E) = π

k2
nl

2J + 1

2l + 1

∑
LL′

∣∣T J
nlL→n′l′L′(E)

∣∣2
. (12)

The total integral cross section is the sum of the partial ones:

σnl→n′l′(E) =
∑

J

σ J
nl→n′l′(E). (13)
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III. RESULTS OF THE CALCULATIONS WITHIN CC
APPROACH. EFFECT OF CLOSED CHANNELS.

The CCA calculations of the differential and integral cross
sections of the processes (2) have been performed for the states
with n = 2 − 8 at the energy range from Ec.m. = 0.0001 eV
up to the maximal possible energies originating from Coulomb
de-excitation. Summation over the partial waves in Eq. (13)
has been done up to the value Jmax until an accuracy better
than 0.1% was reached at all energies.

According to our study, the closed-channel effects are more
pronounced for the processes in the lower states (n = 2 − 5)
at very low collision energies, especially near and below ns-
np thresholds. Here we present some of our results for the
2l → 2l′ (elastic and Stark scattering) and CD 2s,2p → 1s

transitions where the effects of the closed channels are the
most significant and extremely important for the problem of
collisional quenching of the metastable 2s state.

A. Convergence of the close-coupling calculations
with extending basis

The key point in the present work is the calculations of
the elastic and CD cross sections for (µ−p)2s + H collisions
at low-energy range Ec.m. = (0.0001 − 0.202) eV [i.e., below
the (2s-2p) threshold]. Just these cross sections determine the
collisional quenching of the metastable fraction of the muonic
2s state. They are very sensitive to the short-range behavior
of the interaction and therefore to the dimension of the basis
used in the calculations. On the other hand, as our present
calculations show, only the three lowest partial waves with
J = 0,1,2 contribute to the above-mentioned cross sections at
kinetic energies below (2s-2p) threshold. This enables us to
study the convergence of results with the extension of the basis
set in more detail.

Figure 2 shows the calculated total CD cross section σ2s→1s

as a function of the laboratory kinetic energy Elab.
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FIG. 2. (Color online) Coulomb de-excitation 2s → 1s cross
sections versus laboratory kinetic energy calculated with different
basis sets including all the (µ−p) states up to n = nmax: nmax =
15 (thin solid line), nmax = 20 (dashed line), nmax = 25 (dashed-
dotted line), nmax = 30 (double-dot-dashed line). The results of the
extrapolation to nmax → ∞ are shown by a thick solid line.
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FIG. 3. (Color online) The partial-wave CD cross sections σJ=2
2s→1s

calculated with the nmax = 20 basis set (circles) and its approximation
by Eq. (14) (solid line). The dashed line shows the result of
extrapolation of this cross section to nmax → ∞.

The calculations have been performed in CCA using the
different basis sets including all the (µ−p) states with the
values of the principal quantum number n from 1 up to
nmax = 15, 20, 25, 30. As it is seen from Fig. 2, the energy
behavior of the cross section changes in a regular manner
with the extension of the basis set. The only resonance
structure at the subthreshold region appears in the D wave.
This resonance manifests also in the elastic 2s-2s and 1s-1s

cross sections. With increasing nmax it becomes narrower and
moves toward the 2s threshold. The presence of this resonance
appreciably increases the cross sections and thereby affects
the lifetime of the metastable fraction. It is therefore important
to determine whether this resonance survives with a further
unlimited extension of the basis. To clarify this, the calculated
partial-wave cross sections at the subthreshold region for
J = 0,1,2 (for each of the above-mentioned basis sets) were
approximated by the analytic functions with three to four
parameters which were fitted using the least-squares method.
Furthermore, assuming that the obtained parameters are the
analytical functions of nmax, we extrapolated their values to
the limit nmax → ∞ by means of Pade approximants. The
cross sections obtained by this extrapolation correspond to the
calculation taking into account all the infinite discrete spectrum
of the muonic atom.2

For example, the partial-wave CD cross section for J = 2
calculated with the nmax = 20 basis set (circles) and its
analytical approximation (solid line) are shown in Fig. 3 as a
function of the laboratory energy. For analytical approximation
we applied the four-parameter formula which describes both
the resonance (in Breit-Wigner form) and correct threshold
behavior of the CD cross section (σJ

CD ∼ EJ−1/2; here L = J ):

σJ=2
2s→1s = 20π (2mElab)3/2

√
1 + bElab

(γ )2

(Elab − E0)2 + (�)2
(14)

2The effect of the continuous spectrum of the muonic atom is
not considered in the present study. According to our preliminary
estimation the continuum contribution does not exceed 10%.
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(m = mµ + ma is the mass of muonic atom). Two of these four
parameters, namely E0 and �, correspond to the position of the
resonance and its width, respectively. The extrapolated cross
section σJ=2

2s→1s calculated by the formula (14) with extrapolated
values of the parameters,

E0 = 4.5 meV, � = 0.095 meV,

is shown in Fig. 3 by the dashed line. The similar procedure
(but with the other formulas) was used for the nmax → ∞
extrapolation of the J = 2 elastic cross section and also both
elastic and CD cross sections with J = 0 and 1. Here, we give
also the used formulas for the analytical approximation of the
partial CD cross sections:

J = 1,

σJ=1
2s→1s = 3π

√
2mElab

b0

1 + b1(2mElab)3/2
, (15)

and J = 0,

σJ=0
2s→1s = π√

2mElab

a0(1 + a1
√

2mElab)

1 + a22mElab
. (16)

The total CD 2s → 1s cross section at the subthreshold region
obtained as a result of such extrapolations for the partial CD
cross sections is shown in Fig. 2 by a thick solid line.

B. Collision rates for (µ− p)n=2 + H processes

Here, we present the results of the calculations for the
(µ−p)n=2 + H collision rates,

λnl→n′l′(Elab) = NLHD ϕσnl→n′l′(Elab)

√
2Elab

m
,

where ϕ = N/NLHD is the relative density of the target.
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FIG. 4. (Color online) Collisional rates for the elastic 2s → 2s

(solid lines) and CD 2s → 1s (dashed lines) processes versus
laboratory kinetic energy at LHD. The thin lines correspond to the
calculations of the cross sections with the basis including only the
(µ−p) states with nmax = 2; the results obtained with the extended
basis sets and subsequent extrapolation to nmax → ∞ are shown by
thick lines (see text). For comparison the dashed-dotted line shows the
2s → 1s rate (multiplied by 104) calculated below the 2p threshold
without the closed channels at all. The vertical line shows the value
of the 2p threshold (Ethr = 0.435 eV in the laboratory system). The
radiative 2p-1s rate is shown with a horizontal line.
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FIG. 5. (Color online) Collisional rates for the elastic 2p → 2p

(solid line), Stark (2s → 2p (dashed line), 2p → 2s (dashed-dotted
line), and CD 2p → 1s (dotted line) processes. The energy is referred
to as the 2s threshold. The horizontal line is the radiative 2p-1s rate.

Figures 4 and 5 show the collisional rates at LHD as a
function of the laboratory kinetic energy. The corresponding
cross sections have been calculated with the different basis
sets: the minimal basis (nmax = 2), the extended basis (nmax →
∞), as discussed above, and (for comparison) the basis without
the closed channels at all (see dashed-dotted line in Fig. 4). As
is seen from Fig. 4, the proper description of the collisional
processes is impossible in the subspace of the open channels.
The inclusion of the nearest weakly closed 2p state into basis
leads to the tremendous increase of both the elastic 2s → 2s

and CD 2s → 1s rates (about 103 and 106 times, respectively).
The inclusion of the 2p state into the basis allows one partially
to take into account the “long-range dipole polarization”
of the muonic atom, which gives the main contribution to
both the elastic and CD cross sections and to ensure their
correct threshold behavior (there is no discontinuity at the 2p

threshold; see Fig. 4).
According to the present study, the minimal basis set

including the open 1s, 2s states and the nearest weakly closed
2p state is also not sufficient (see Fig. 4) for the proper
description of the elastic and CD cross sections below the 2p

threshold. A more reliable description in this energy region
can be reached with the extended basis set including strongly
closed channels with n � 3. Such an extension of the basis
allows one more entirely to take into account the polarization
of the muonic hydrogen.

At energies above the 2p threshold the contribution of
the higher partial waves to the elastic cross section becomes
more essential and the details of the short-range interaction at
R < 0.5 a.u. (the closed channel effects) are less important.
The corresponding rates of the elastic 2s → 2s scattering
calculated in the basis with nmax = 2 and in the extended
basis (nmax = 10) are in very good agreement at kinetic energy
above ∼2 eV. In contrast, the CD process is accompanied by a
large energy release (e.g., about 2 keV in 2s → 1s transition)
and occurs at substantially smaller distances, so the details
of the short-range interaction play an important role also
above the 2p threshold. In addition, the number of partial
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waves involved in the CD process is always essentially less
than in the elastic and Stark scattering—the large centrifugal
barrier (for higher partial waves) prevents the exotic atom from
reaching the interaction range relevant for the CD process.
Thus, the closed-channel effect is practically negligible for the
elastic and Stark scattering above the 2p threshold and is less
pronounced for the CD process than at the subthreshold region
(see Fig. 4).

Since the ratios between the rates of collisional processes
are independent from the target density, the useful observations
can be derived from the results presented in Figs. 4 and 5
without the atomic cascade calculations. The CD 2p → 1s

is strongly suppressed in comparison with the other cascade
processes and can be neglected in kinetics calculations. In
contrast, the rate of the 2s → 1s CD at kinetic energy below
a few tens meV becomes less suppressed as compared with
the rate of the elastic 2s → 2s scattering; therefore, the CD
2s → 1s process can quench the metastable 2s state. It is also
clear that the formation of the metastable 2s state cannot lead
to the fast CD 2s → 1s transition before the muonic hydrogen
is thermalized. Finally, the comparison of the CD 2s → 1s

rate with the rate of muon decay allows us to conclude that
the lifetime of the metastable 2s state at densities less than
∼10−6 is mainly defined by the muon lifetime while at higher
densities the situation is quite different and the detailed kinetics
calculations are needed.

IV. CASCADE MODEL

A. Outline of cascade model

The exotic atom formation is followed by a number of
successive radiative and collisional de-excitation processes,
forming the so-called atomic cascade, until the exotic atom
arrives at the ground state or the weak decay of the exotic
particle occurs. In the case of hadronic atoms, the cascade
can be also terminated by strong absorption or annihilation
processes. The first theoretical study of the atomic cascade
was performed about 50 years ago by Leon and Bethe [26]. In
this and subsequent papers [27,28], the rates of the collisional
processes were calculated in the semiclassical approximation
for a fixed value of kinetic energy about 1 eV and used for
the simulation of the atomic cascade with employing different
free parameters (e.g., the scaling factors for the rates of Stark
transitions, CD, and the Auger process, and also the value of
kinetic energy of the exotic atom).

In the present paper we use the so-called extended stan-
dard cascade model (ESCM) which includes all the known
processes (radiative, Auger and Stark transitions, elastic
scattering, and Coulomb deexcitation) and takes into account
the evolution of the kinetic energy during the cascade. The
ESCM originally developed by Markushin [29] was later
essentially improved (see [30] and references therein) and
recently in the paper [24]. The improvements were mainly
achieved due to the new theoretical results [19,20,22,31] for
the cross sections of the collisional processes.

The cascade in the exotic atoms in [30] is divided into
classical (n > 7) and quantum-mechanical (n � 7) domains.
In the classical domain the results of the classical-trajectory
Monte Carlo calculations for the collisions of highly excited

exotic atoms with molecular hydrogen were used to obtain
the rates of the elastic scattering, Stark mixing, and CD
processes. In the quantum-mechanical domain, the authors of
[30] used the new results for the elastic and Stark cross sections
calculated (for n =2–5) in the close-coupling approach [31]
at energies above np thresholds and the parametrization of the
semiclassical results [32] for the CD cross sections, assuming
that their angular distributions are isotropic. The cross sections
of the external Auger were calculated [31] in the semiclassical
approximation and used through the whole cascade.

In the present version ESCM as well as in our recent paper
[24] the description of the classical domain are similar to [30]
but the boundary of the classical domain is defined by the
condition n > 8. In the quantum-mechanical domain (n � 8),
the differential and integral cross sections for the elastic
scattering, Stark, and CD transitions nl → n′l′ calculated
simultaneously within the present version of the CCA with
the extended basis set including the closed channels have
been used. Thus, the new cascade code does not employ any
fitting parameters and additional assumptions concerning the
collisional cross sections. The new collisional rates, especially
for the CD process, lead to a significant improvement of the
results of our cascade studies compared with the previous ones
and allow us more reliably to describe the evolution of kinetic
energy during the cascade (see [8,24]).

The thermal motion of the target is also taken into account
in the present cascade calculations. To describe the thermal
motion of the target the Maxwell distribution was used:

W (Et,E0) = 3

√
3Et

2πE3
0

exp

(−3Et

2E0

)
. (17)

Here Et is the energy of the target atom and E0
∼= 0.0135 eV is

the parameter corresponding to the mean kinetic energy of the
hydrogen atom at the temperature of the target (T = 300 K)
in diffusion experiments [12].

B. Initial (n,l,E) distributions

For the realistic study of atomic cascade it is necessary
to establish both the initial states from which the processes
occur and the initial kinetic energy of the exotic atom. These
initial conditions for the cascade calculations are defined by the
distributions of exotic atoms in the quantum numbers (n,l) and
laboratory kinetic energy Elab at the instant of their formation.
The knowledge of these distributions is especially important
for the description of the cascade at low target densities.

As a rule, in the previous cascade calculations the simplest
picture of the exotic atom formation is used: the initial
principal quantum number is fixed at n = n0 ≈ √

µ ( ∼14 for
the muonic hydrogen atom), and the statistical l distribution
F (l0) = (2l0 + 1)/n2

0 is assumed.
More elaborate studies [33–36] of the exotic atom forma-

tion taking into account the molecular structure of the target
result in the initial n distribution with the sharp peak at lower
values of the principal quantum number (for muonic hydrogen
at n0

∼= 11) and nonstatistical l distribution.
In the limit of the lowest relative densities ϕ � 10−7 the

atomic cascade is mainly determined by the muon lifetime
and the rates of radiative transitions; therefore, the information
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about the initial E and (n,l) distributions is conserved up
to the end of the cascade and can be obtained from the
relative K-line yields (Yi, i = α,β, etc.) and the kinetic energy
distribution of muonic atoms in the 1s state. We assume
that those distributions are factorized and can be considered
independently.

Since the relative Kα-line yield is experimentally deter-
mined with more precision than the yields of the higher lines
and at low target densities mainly depends on the population
of the circular l sublevels, we use this knowledge to study
the initial n and l distributions. In addition, at low density
the relative K yields weakly depend on the kinetic energy
distribution at the moment of the radiative transition. In the
present paper we choose the Gaussian n distribution,

Fn = Nn exp[−αn(n − n0)2], (18)

centered at n0 = 11 with αn = 0.5, and the modified statistical
l distribution,

Fl = Nl (2l + 1) exp[−αl(2l + 1)], (19)

where Nn and Nl are normalization constants.
The calculated relative Kα-line yield is shown in Fig. 6

in comparison with the experimental data [37–39]. The
theoretical results illustrate the effect of the initial l distribution
at the fixed n distribution (18). It is seen that the statistical l

distribution (αl = 0, dashed line) results in contradiction with
the experimental data at densities ϕ � 10−5, systematically
increasing the relative yield of Kα line in comparison with
the experimental data. These differences (most pronounced
at densities below 10−6) cannot be explained by the possible
uncertainties in the rates of the collisional processes and are
due to the initial nonstatistical l distribution. Indeed, at the
lowest densities the cascade is purely radiative and in case of
the statistical initial l distribution the relative Kα yield must be
practically equal to 1 due to the selection rules in the radiative
transitions (the radiative transitions with �l = li − lf = 1
have the most probability). As is seen from Fig. 6, at density
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FIG. 6. (Color online) The density dependence of the relative
Kα-line yield in muonic hydrogen for different variants of the initial
l distribution: statistical (dashed line) and modified statistical (solid
line for αl = 0.08 and dashed-dotted line for αl = 0.2) distribution.
The experimental data are from [37] (asterisks), [38] (diamonds),
and [39] (open circles).

ϕ � 10−7 the relative Kα-line yield ∼ 85%, therefore, about
15% of the radiative transitions (np → 1s) come from the
states of the muonic atom with n � 3, leading also to the
population of muonic hydrogen in the 2s state.

It is worthwhile noting that the experimental data [37] could
be described assuming the statistical l distribution but for this
the initial values of the principal quantum number must satisfy
the unrealistic condition ni � 8. Contrary to this, the modified
statistical distribution with the value αl = 0.08 (solid line)
leads as a whole to an excellent agreement between theory and
experimental data [37]. At densities higher than ∼10−3 the
collisional transitions and mainly Stark mixing become more
efficient and the initial l distribution is practically forgotten
during the cascade.

The kinetic energy distribution of exotic atoms changes
during the cascade and is a more refined probe for the
theoretical description of the cascade processes. The present
knowledge about the initial kinetic energy distribution is less
defined and in the most cascade calculations the fixed values
T0 ≈ (0.5–1) eV or the Maxwell distribution with T0 = 0.5 eV
[30] are used.

At the lowest densities, as is mentioned above, the initial E

distribution is conserved up to the end of the cascade. Hence,
the needed information can be obtained from the diffusion
experiments. The energy distributions of (µ−p)1s have been
deduced in diffusion experiments [2,4,5,12] by analyzing the
measured time-of-flight spectra data taking into account the
scattering processes of (µ−p)1s on hydrogen molecules and
the surface of the target cylinder. In cascade calculations these
processes are not considered and the energy distribution of
muonic atoms in the 1s state is calculated at the instant of their
formation. To exclude, as it is possible, the uncertainties of the
rescattering processes (theoretical and experimental) in the
analysis of the experimental data we suggest that at the lowest
densities these factors can be neglected. It is also important
that at the lowest target density the effect of the collisional
processes during the cascade can be also neglected.

In the present paper the following two-exponential E

distribution (in percent) was used,

I = 100
(

1 − a0 exp

(
− E

E1

)
− (1 − a0) exp

(
− E

E2

))
,

(20)

to describe the integrated energy distribution of muonic
hydrogen atoms on arrival at the 1s state. The values of the
parameters were obtained by fitting the experimental data [12]
at the density corresponding to experimental pressure pH2 =
0.0625 hPa: E1 = 0.469 eV, E2 = 4.822 eV, and a0 = 0.805.3

The fitted energy distribution (20) was used as an initial
one in the cascade model and compared with the result of
the cascade calculation. As it is seen from Fig. 7, both
distributions are practically indistinguishable, proving the
validity of our assumption that at very low density the initial
energy distribution is conserved up to the end of the cascade.

3It is possible that the strong difference of the values of E1 and
E2 is an evidence of two different mechanisms of the exotic atom
formation.
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FIG. 7. (Color online) The calculated (dashed line) and fitted
experimental (solid line) integrated energy distributions I (Elab) (in
percent) of the (µ−p)1s at target pressure pH2 = 0.0625 hPa and
temperature T = 300 K. The experimental data are from [12].

The maximal differences are less than 1% in the energy
range of ∼(1–2) eV. The calculated mean kinetic energy,
Ē = 1.25 eV, is in perfect agreement with the experimental
value 1.3 ± 0.8 eV [12].

V. RESULTS OF CASCADE CALCULATIONS

The cascade calculations have been done in the wide density
range ϕ = 10−9 − 1. To obtain good statistics in the cascade
calculations the destinies of the 107 muonic atoms have been
simulated at every value of the density. The initial (n,l,E)
distributions defined above were applied in the present cascade
calculations at all densities.

A. Energy distributions of muonic hydrogen
in 1s and 2s states at low densities

The energy distribution of muonic hydrogen atoms at the
instant of their arrival in the 2s state determines their further
destiny which also depends on collisional processes in the 2s

state and target density. In the previous papers [12,30] the
assumption that the energy distributions of muonic atoms in
the 2s and 1s states are almost identical was used to estimate
the 2s state population at kinetic energies below 2p threshold.
This assumption is valid only at very low target densities ϕ �
(10−7–10−8) when the cascade is practically purely radiative
and the energy of muonic atom is conserved during the cascade
(see Fig. 7).

In fact, there is an essential difference in the population of
the 1s and 2s states, since unlike the 2s state the 1s state is
mainly populated from the 2p state (the relative yield of Kα is
more than ∼50% at all densities, as it is seen from Fig. 6). Thus
the energy distribution of (µ−p)1s is strongly correlated with
the energy distribution of (µ−p)2p at the instant of radiative
2p → 1s transition.

In Fig. 8 we present the corresponding integrated kinetic
energy distributions of muonic hydrogen on arrival in the 1s

and 2s states calculated at two values of the target densities ϕ =
7.35 × 10−8 and ϕ = 7.53 × 10−5 which correspond (at room
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FIG. 8. (Color online) The calculated integrated kinetic energy
distributions of the muonic atom on arrival in the 1s (solid lines) and
2s (dashed lines) states versus laboratory kinetic energy at the gas
pressures pH2 = 0.0625 hPa (thick lines) and 64 hPa (thin lines) and
T = 300 K. The calculated kinetic energy distribution of the (µ−p)2p

at the instant of the radiative 2p → 1s transition at pH2 = 64 hPa is
shown by a thin dashed-dotted line.

temperature T = 300 K) to the pressures pH2 = 0.0625 hPa
and 64 hPa, respectively. As it is seen from Fig. 8, the energy
distributions of the 1s and 2s states are rather similar at the
density ϕ = 7.35 × 10−8 practically reproducing the initial
energy distribution (see also Fig. 7). At higher density these
distributions reveal the noticeable distinctions which can be
explained by the next reasons.

First, the radiative 2p → 1s transition contributes in the
population of the 1s state by about 70% (see Fig. 6) while the
radiative transitions from the higher np levels (n � 3) which
are also populating the 2s state give less than 30%. As it is
seen from Fig. 8, the energy distribution of the 2p state before
radiative 2p → 1s transition (thin dashed-dotted line) is less
energetic than both the 1s and 2s states due to deceleration
in the elastic scattering of the above lying circular and near
circular states. It results in “cooling” the 1s state in the energy
range Elab � 10 eV.

Secondly, with increasing density, the contribution of CD
becomes more prominent, resulting in a more energetic final
E distribution. In particular, Fig. 9 illustrates the effect of the
CD at the final stage of the cascade: In the energy distributions
of the 1s state and 2s state one can explicitly see the distinct
contributions of the individual Coulomb transitions: 6 → 5,
5 → 4, 6 → 4, and weaker (at this density) from 5 → 3.

It is important to note that the high-energy (∼0.9 keV)
component in the energy distribution of the 1s state (see Fig. 9)
is about 2% and may be originated only from the 2s → 1s CD
below 2p threshold, since above 2p threshold the rate of the
Stark 2s → 2p transition about three orders of the magnitude
more than the rates of the CD 2s,2p → 1s (see Figs. 4 and 5).

B. Arrival population of 2s state

The arrival population of the 2s state εtot
2s is defined as

the fraction of all formed exotic atoms that during the de-
excitation cascade reaches the 2s state independently whether
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FIG. 9. The calculated integrated kinetic energy distributions of
the muonic atom on arrival in the 1s (solid line) and 2s (dashed
line) states versus laboratory kinetic energy at pH2 = 64 hPa and
T = 300 K.

the kinetic energy of the muonic atom is below or above
2p threshold. The atomic cascade at low target densities
is mainly dominated by the radiative de-excitation resulting
in correlation between the relative yields of K lines and
arrival population εtot

2s . The so-called radiative mode of the
2s arrival population εrad

2s is approximately defined [e.g., see
[37]) by combining the relative yields Yi of K lines and
the calculated ratios of the radiative transition probabilities
G(np → 2s)/G(np → 1s) for n = 3 and n �4, respectively]:
εrad

2s = 0.134Yβ + 0.144Y>β (the numerical coefficients are the
branching ratios of the radiative transition probabilities). This
relation can be rewritten in a more convenient form,

εrad
2s = 0.134(1 − Yα) + 0.01Y>β, (21)

since here the first term gives the main contribution to the
value of εrad

2s and besides the relative yield Yα is more exactly
deduced from the experimental data than both Yβ and Y>β .

The density dependence of the arrival population εtot
2s

calculated in the present version of the atomic cascade is
shown in Fig. 10 in comparison with the population εrad

2s

calculated according to formula (21) with the relative yields
Yi obtained also in the present cascade calculations. At target
densities below 2 × 10−4, the calculated arrival population
εtot

2s is in perfect agreement with the estimation based on
formula (21) and in good agreement with the experimental
data obtained from the measured x-ray yields [37]. The arrival
population εtot

2s is about 2% in the density range 10−9–10−7

and increases steadily to 6.3% with increasing density to
2 × 10−4. This behavior is in accordance with the obvious
assumption that at low density the 2s state is populated by the
radiative transitions from the np states with n � 3 and may
be quantitatively explained by the density dependence of the
relative Kα-line yield. At density below 10−7, the cascade is
purely radiative; therefore, the yields of K lines and 2s arrival
population are determined by the initial conditions and do not
have any dependence on density. With the density increasing
above 10−7, the Stark transitions result in the enlargement of
the np populations at n � 3, from which radiative np → 2s
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FIG. 10. (Color online) The density dependence of the calculated
total arrival population εtot

2s of the 2s state (solid line) in comparison
with the values of the εrad

2s calculated according to formula (21)
(dashed line). The triangles correspond to the cascade calculation
from [30]. The experimental data (solid circles) are from [37].

transitions populate the 2s state (see Fig. 6 of the present paper
and Figs. 1 and 2 in [24]).

At densities above 2 × 10−4, the density dependencies
of the εtot

2s and εrad
2s are quite different. The population εrad

2s

reaches its maximum value 7% at density ∼2 × 10−3 and
rapidly decreases to 0.5% in liquid hydrogen. This behavior, in
general features, corresponds to the density dependence of the
relative yields of the K lines and reveals the fact that radiative
de-excitation is not a unique process populating the 2s state.
Indeed, in contrast to the εrad

2s , the 2s arrival population εtot
2s

rapidly grows with density increasing and reaches about 77%
at liquid-hydrogen density (ϕ = 1) exceeding the statistical
weight of the 2s state more than three times. This behavior
has a simple explanation: at density above 2 × 10−4, the role
of the Stark mixing gradually grows also for the n = 2 state
of the muonic atom with density increasing until at ϕ ∼ 10−2

the rate of the Stark 2p → 2s transition is compared with the
rate of the radiative 2p → 1s transition and becomes about
two orders of magnitude more at liquid-hydrogen density
(ϕ = 1) (see Fig. 5). Thus, at density above 10−2 the 2s state
is mainly populated due to the always open Stark 2p → 2s

transition.
In the density range ∼10−5–10−3, the density dependence

of the εtot
2s calculated in the present paper is in good agreement

with the results, obtained earlier in the paper [30]. However,
there are essential differences at densities both below and
above this range. The arrival population of the 2s state,
calculated in the paper [30] changes from 0.8% at density 10−8

to 25% in liquid hydrogen, in contrast to our results (from 2%
to 77%) in the same density range. It is possible that the origin
of the discrepancy at the lowest density is simply explained by
using the statistical l distribution in [30]. At the same time, it
is difficult to explain the significant disagreement at higher
densities. Moreover, according to [30], at liquid-hydrogen
density the calculated arrival 2s population is significantly less
(∼2.5 times) than the population of the metastable 2s state.
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C. Metastable 2s fraction: population, lifetime, and yield
of high-energy component of (µ− p)1s

The further destiny of the initially formed muonic hydrogen
in the 2s state depends on its kinetic energy distribution. The
fraction with kinetic energy above 2p threshold changes in the
collisions due to deceleration in the elastic 2s-2s scattering and
2s → 2p Stark transition (above the 2p threshold) followed
by the fast radiative 2p → 1s transition. As a result only part
of all the created (µ−p)2s survives at the kinetic energy below
2p threshold.

The population ε
long
2s of the metastable (or long-lived) 2s

state is defined as the fraction of all created (µ−p)2s with
kinetic energies below the 2p threshold. This fraction is the
metastable fraction of the 2s state as the Stark 2s → 2p

transition is energetically forbidden and the rate of the two-
photon transition to the 1s state is negligibly small as compared
with the rate of muon decay, λµ = 4.55 × 105 s−1. The delayed
Kα line induced during the collisions [40–42] can also occur
but has never been observed [43,44].

The density dependence of the population ε
long
2s calculated in

the present version of the atomic cascade is shown in Fig. 11 for
the two variants of the initial l distribution: statistical (αl = 0)
and modified statistical (αl = 0.08) distribution. In general
features the density dependencies of the ε

long
2s calculated

for these variants are similar. At densities below 10−4, the
metastable fraction calculated with the statistical l distribution
is less than the one obtained with the modified statistical l

distribution and changes from 0.6% to 2.3% while density
increases from 10−8 to 10−4, respectively. According to our
study, the metastable fraction calculated with the modified
statistical l distribution (αl = 0.08) is about 1% below 10−7

and slowly increases in the density range (10−7–10−4) to 2.4%.
It is worthwhile noting that density dependence of the ε

long
2s

calculated in the present study with the statistical l distribution
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FIG. 11. (Color online) Ab initio cascade calculation of the
population ε

long
2s (solid lines) and the yield εhot

1s (dashed lines) of
the (µp)1s(0.9 keV) (thick lines for αl = 0.08 and thin lines for
αl = 0). The asterisks correspond to the cascade calculations of
the ε

long
2s in [30]. The experimental values of ε

long
2S are from indirect

determination [12] (black triangles), and direct determination [13]
(open circles).

is similar to the one obtained earlier in [30] only at densities
below 10−4.

Above 10−4, the calculated metastable fraction does not
depend on the initial l distribution due to more efficient Stark
mixing in the states with n > 3 (the same picture was observed
in the relative Kα-line yield in Fig. 6). At densities above
10−2, the ε

long
2s grows faster reaching 47% in liquid hydrogen.4

This behavior and growth of the metastable fraction at density
above 10−2 is a consequence of the dominant role of the
elastic scattering (2p → 2p, 2s → 2s) and Stark (2p → 2s)
transition over the radiative 2p → 1s transition (as in the
density dependence of the εtot

2s discussed above).
As seen from Fig. 11, at densities below 10−4, the

calculations with the modified l distribution predict a higher
population ε

long
2s as compared with the direct [13] (open

circles) and indirect [12] (solid triangles) determinations of
the population derived from the experimental data analysis
(for details, see [12,13]). The observed difference at the lowest
density (ϕ = 7.35 × 10−8) can be simply explained by the
underestimation in [12,30] of the εtot

2s value at this density.
Using the value of εtot

2s
∼= 2% at this density (see Fig. 10)

one can correct the experimental value of ε
long
2s and obtain

ε
long
2s

∼= 1.2% which is in perfect agreement with our result.
According to our analysis there are no reasons leading to the
decreasing of the ε

long
2s while density is increasing. Hence, the

general tendency of the ε
long
2s increasing with density must also

be revealed in the experimental data at higher densities.
After the formation of (µ−p)2s atoms at energy below

the 2p threshold their kinetic energy distribution F2s(E; ϕ)
changes because of elastic 2s → 2s scattering until muon
decay or Coulomb 2s → 1s de-excitation occurs. In the last
process (1) the transition energy (1.898 keV) is shared between
the (µ−p)1s and a proton from the hydrogen molecule. The
yield of the (µ−p)1s with kinetic energy about 0.9 keV is
defined by the integral,

εhot
1s (ϕ) =

∫ Ethr

0
F2s(E; ϕ)

λCD
2s (E; ϕ)

λµ + λCD
2s (E; ϕ)

dE, (22)

where λCD
2s (E; ϕ) is the rate of the Coulomb 2s → 1s de-

excitation and the energy distribution F2s(E; ϕ) satisfies the
next condition:∫ Ethr

0
F2s(E; ϕ)dE = ε

long
2s (ϕ). (23)

The yield εhot
1s can be also deduced from the kinetic energy

distribution of (µp)1s as the fraction of all (µp)1s formed with
kinetic energy about 0.9 keV. Considering in (22) the limits
λµ � λ̄CD

2s (ϕ) and λµ  λ̄CD
2s (ϕ) we, respectively, obtain

εhot
1s (ϕ) ≈ λ̄CD

2s (ϕ)/λµ, (24)

and

εhot
1s (ϕ) ≈ ε

long
2s (ϕ), (25)

4Our calculations do not confirm the greater increasing of the
population up to 65% at LHD predicted in [30].
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where

λ̄CD
2s (ϕ) =

∫ Ethr

0
F2s(E; ϕ)λCD

2s (E; ϕ) dE (26)

is the mean rate of the 2s → 1s CD at given density. According
to our estimations (see Fig. 3), the condition λµ � λ̄CD

2s (ϕ) is
valid at density �10−6 while the other condition λµ  λ̄CD

2s (ϕ)
is fulfilled at density above ∼10−4. At low density the mean
rate λ̄CD

2s (ϕ) has a nonlinear dependence on density until at ϕ ≈
10−5 the mean rate of the elastic 2s → 2s scattering (below
the 2p threshold) becomes much more than the muon decay
rate. Above this density, the energy distribution F2s(E; ϕ) is
almost independent of density and λ̄CD

2s (ϕ) is proportional to
ϕ.

In the intermediate range the yield εhot
1s (ϕ) can be evaluated

applying in Eq. (22) the mean value theorem for integral:

εhot
1s (ϕ) ≈ ε

long
2s (ϕ)

λCD
2s (E∗; ϕ)

λµ + λCD
2s (E∗; ϕ)

. (27)

However, this formula gives rather a rough estimation of the
εhot

1s (ϕ) since the λCD
2s (E; ϕ) changes about three orders of the

magnitude (see Fig. 3) in the integration range. Comparing
Eqs. (25) and (27), one can conclude that the approximation
(27) has a sense at the condition λCD

2s (E∗; ϕ) � λµ. Note that
εhot

1s (ϕ) and λCD
2s (E∗; ϕ) are correlated with each other in accord

with (27) and cannot be used as free fit parameters (see [13]).
Moreover, since

λCD
2s (E∗; ϕ) �= λ̄CD

2s (ϕ),

then the 2s quench time,

τ
quench
2s = 1/λ̄CD

2s (ϕ) �= 1/λCD
2s (E∗; ϕ).

It is possible that these remarks can explain the observed
discrepancies in Fig. 11 between the calculated and the
so-called direct determination in Ref. [13] values of the ε

long
2s .

The general features discussed above of the εhot
1s (ϕ) are

confirmed by the detailed cascade calculations in the wide
density range from 10−8 up to 1. The calculated yield of the
hot (0.9 keV) fraction of (µp)1s , εhot

1s (ϕ), is shown in Fig. 11.
According to our study, this fraction is formed due to the direct
CD process (1).

At densities below 10−4 the yield εhot
1s reveals a quite

different density dependence as compared with the one of
the ε

long
2s , since its value essentially depends on the kinetic

energy distribution of (µp)2s below the 2p threshold and
the competition between muon decay and CD rates. In the
density range (10−8–10−6) the yield of the hot fraction in
accordance with Eq. (24) is less than ∼0.07% and grows
rapidly up to ∼2% while density is increasing up to ∼ 10−4.
Such density dependence of the εhot

1s is in perfect agreement
with the experimental data [12,13], in which the pronounced
peak in time-of-flight (µp)1s spectra measured at pressure
pH2 = 64 hPa was observed. According to [12,13] this peak
was less pronounced at lower pressure pH2 = 16 hPa and
practically disappears at pH2 = 4 hPa. Above 10−3, the values
of the εhot

1s and ε
long
2s are practically equal to each other in accord

with (25) as it is demonstrated in Fig. 10.
Such a behavior can be explained by the growth of the

thermal fraction in the kinetic energy distribution of the
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FIG. 12. The density dependence of the lifetime τ
long
2s calculated

with the extended basis set with nmax → ∞ (solid line) is shown in
comparison with the one in which only the closed 2p state is added
to the basis (dashed line). The experimental values from [13].

(µp)2s atoms due to elastic 2s → 2s scattering below the 2p

threshold. At very low densities (below 10−7) this fraction
in the kinetic energy distribution of the (µp)2s is negligibly
small and the yield of the hot (µp)1s is practically equal to
zero. At higher densities (above ∼10−6) it sharply increases
with density and at density above ∼10−3 all (µp)2s atoms
(below the 2p threshold) are quenched by the direct 2s → 1s

CD. According to our study, we also predict the yield of the
0.9 keV (µp)1s atoms and the possible yield of the protons
with kinetic energy ∼1 keV about ∼47% in liquid hydrogen.

The density dependence of the lifetime of the metastable
fraction,

τ
long
2s (ϕ) = 1

λµ + λ̄CD
2s (ϕ)

,

calculated with the extended basis set with nmax → ∞ (solid
line) and with the basis including only the closed 2p state
(dashed line) is shown in Fig. 12. At densities below 10−7,
the lifetime of the metastable 2s state is mainly determined
by the muon lifetime. At the density range (10−7–10−5) we
observe the competition between the muon decay and the
nonradiative quenching of the metastable 2s state due to the
direct CD 2s → 1s. Above (10−5–10−4) the quenching of the
long-lived 2s state is entirely determined by the CD process.
The perfect agreement of the calculations (with the extended
basis set) with the experimental data [13] may be considered as
the confirmation of the dominant role CD in the nonradiative
quenching of the metastable 2s state. The calculated value
λ̄CD

2s (LHD) = 4.38 × 1011 s−1 is in excellent agreement with
the experimental value λ

quench
2s = 4.4+2.1

−1.8 × 1011 s−1 [13].

VI. CONCLUSION

The differential and total cross sections of the (µp)nl +
H → (µp)n′l′ + H scattering processes—elastic, Stark, and
Coulomb de-excitation—have been calculated for the initial
values of the principal quantum numbers n = 2–8 and kinetic
energies needed in the detailed study of atomic cascade
kinetics. The calculations of the cross sections have been
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performed in a fully quantum mechanical framework using
the close-coupling approach including the closed channels.
To integrate the system of CCA equations including closed
channels, we have developed a new propagation matrix method
which does not include the calculation of the wave functions
themselves (exponentially growing in closed channels) but
uses only the ratio of their values at neighboring points. The
energy Lamb shifts between ns and np states have been
explicitly taken into account in the scattering problem. The
convergence of the cross sections to the extension of the
basis set have been studied, so the threshold behavior of
the cross sections is treated correctly and the corresponding
cross sections of the elastic scattering, Stark transitions and
Coulomb de-excitation are calculated reliably both above and
below ns-np thresholds. In particular, the cross sections of the
elastic scattering (2s-2s) and Coulomb de-excitation (2s-1s)
which are very important for the problem of metastable 2s

state in muonic hydrogen have been calculated below the 2p

threshold.
The atomic cascade kinetics has been investigated within

the new version of the extended standard cascade model taking
into account both the new results for collisional processes and
the initial distributions in the quantum numbers (n, l) and
the kinetic energy. In the wide density range (ϕ = 10−9 − 1)
a number of the different characteristics of the atomic
cascade have been calculated: the relative Kα-line yield,
the arrival population εtot

2s , the population of the metastable
fraction ε

long
2s , the yield εhot

1s of the (µ−p)1s (0.9 keV),
and the lifetime τ

long
2s . The calculations of the kinetic en-

ergy distributions of muonic hydrogen on arrival in the 1s

and 2s states are also presented at different densities. The
results of the present cascade calculations can be summarized
as follows.

The calculated relative Kα-line yield is in excellent agree-
ment with the data [37–39]. The Kα-line yield measured in
[37] can be reproduced if the modified statistical l distribution
is applied at the beginning of the cascade. The calculated
kinetic energy distributions of muonic hydrogen on arrival in
the 1s and 2s states reveal their noticeable distinctions which is
mainly explained by the contribution of the radiative transition
2p → 1s on the formation of the 1s state.

Ab initio cascade calculations of the 2s arrival population
and the population of the metastable fraction ε

long
2s allowed

us to obtain their density dependence more realistically than
earlier in [30]. It is shown that at density above 10−3 the
2s state is mainly formed due to Stark transition 2p → 2s.
The calculated 2s arrival population is in perfect agreement
with the experimental data obtained from x-ray yields [37]
and changes from 2% up to 77% at the density range ϕ =
10−8 − 1. According to our present study, the ε

long
2s increases

from 1% up to 47% while density changes from 10−8 up to
LHD. The obtained results for ε

long
2s with the modified initial l

distribution are in fair agreement with the ones derived from
the experimental data analysis [12,13] at low densities. The
possible reasons for these distinctions are discussed.

Ab initio quantitative description of the yield (µ−p)1s

(0.9 keV) and the lifetime τ
long
2s are obtained. At densities

below 10−4, the density dependence of the (µ−p)1s(0.9 keV)
is in very good agreement with the observations deduced from

the experimental data [12,13]. It is shown that the CD process
results in the quench of all metastable fraction at densities
above 10−3. The results of the present consideration allow us
to confirm our previous suggestion that the direct Coulomb
de-excitation is the dominant quenching mechanism of the
long-lived 2s fraction leading to the formation of (µ−p)1s

(0.9 keV) and perfect agreement of the calculated and
experimental values of its lifetime. It will be very interesting to
obtain the experimental confirmation of our predictions on the
density dependence of the yield of the hot component (µp)1s

with kinetic energy ∼0.9 keV or the yield of the protons with
kinetic energy about 1 keV.

We conclude that the present study demonstrates the overall
reliability of the theoretical description of collisional processes
and good understanding of muonic hydrogen cascade kinetics.
The obtained results serve a good foundation for applying the
current theory of the cascade processes to the study of hadronic
hydrogen atoms.
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APPENDIX

The system equations for the coupling-channel method is
a system of N -coupled second-order differential equations
without the first derivatives. This system has N linearly
independent solutions 	

(i)
j (R) (i is the number of the solution,

j is the channel index) which are regular at R = 0. Let us write
this system in matrix form ({	(R)}ij = 	

(i)
j (R)):

	 ′′(R) = V (R)	(R), (A1)

where

{V (R)}ij ≡ 2m
[
Wij (R) + δij

(
W

cf

i (R) − (E − εi)
)]

,

Wij (R) are the elements of the potential matrix, and W
cf

i (R)
is the centrifugal term. The standard way of solving such a
problem is the following: one finds N independent solutions of
the system (A1) which are regular at R = 0 and then matches
them at sufficiently large R = R0 with the asymptotic solutions
corresponding to the scattering problem. From this matching
procedure one obtains S or K matrix.

The difficulties due to the exponential growth of inde-
pendent solutions can appear in the numerical solution of
coupled-channel Eqs. (A1). In particular, the exponentially
increasing functions arise in closed channels and in channels
corresponding to the unstable states of the subsystem with
finite width, in problems with complex interactions and also in
the case when the off-diagonal elements of matrix V are much
more than its diagonal elements.

However, the determination of the S or K matrix requires
only logarithmic derivatives of wave functions at the point of
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matching or the ratio of the functions in the two neighboring
points. Such quantities are limited and may be calculated
even in case of exponentially growing functions without any
numerical problems.

Such an object is a matrix U constructed from the N linearly
independent solutions regular at zero and their first derivatives:

U (R) = 	(R)[	 ′(R)]−1. (A2)

The matrix U satisfies the nonlinear differential equation of
the first order:

U ′ = 1 + UV U. (A3)

The solution of this equation with the boundary condition at
zero U (0) = 0 is a suitable object to determine the K matrix
by its matching with known asymptotic solution at R = R0.
It is obvious that the matrix U (R) is symmetric in the case of
symmetric potential W and bounded except for a finite number
of points where the matrix of independent solutions 	(R) has
no inverse. Note that in the case of a one-channel problem
the asymptotic solution at R → ∞ is U (R) = p−1 tan(pR +
Lπ/2 + δ) where p is the wave number and δ is the scattering
phase shift.

In the numerical realization of this approach it is convenient
to use the discrete analog of matrix U—the matrix D(R) =
	(R)[	(R + h)]−1—which can be called a propagation ma-
trix [45]. Here h is the constant integration step. The two-point
numerical scheme for the calculation of D is easily deduced
from any three-point scheme for solving the initial equations
of second order. The most widely used Numerov scheme has
a form:

	̃(R + h) = 	̃(R − h) + 2	̃(R) + Ṽ (R)	̃(R), (A4)

where

Ṽ = V h2[1 − V h2/12]−1,

and

	̃(R) = 	(R) − h2/12	 ′′(R)

is the so-called Numerov representation for 	(R). Mul-
tiplying Eq. (A4) right by [	̃(R)]−1 one gets the
two-point iteration scheme for the propagation matrix
D̃(R) = 	̃(R)[	̃(R + h)]−1 constructed from the Numerov
solutions:

D̃(R) = {2 − D̃(R − h) + Ṽ (R)}−1. (A5)

Regularity at the origin for 	(R) [and hence for 	̃(R)] implies
the initial condition D̃(0) = 0 for iterations (A5), propagation
matrix D̃ being symmetric at every step.

Now we obtain the matching conditions for matrix U =
	[	 ′]−1 in the presence of the closed or nonstationary
channels. If all channels are open one has the usual boundary
conditions at the matching point R0:

U (R0) = �(R0)[�′(R0)]−1, (A6)

where �(R) is the matrix of the asymptotic physical solutions
expressed in terms of the K matrix:

�(R) = j (R) − y(R) K. (A7)

Here j (R) and y(R) are the diagonal matrices consisting of
Ricatti-Bessel functions,

{j (R)}ij = δij jLi
(piR),

{y(R)}ij = δij yLi
(piR),

Li is the orbital angular momentum, and pi = √
2m(E − εi)/h̄

is the wave number of channel i.
If any of the channels are closed [(E − εi) < 0] or non-

stationary [Im(E − εi) > 0] ones (for brevity we call all such
channels closed ones) then the matching algorithm must be
changed. The wave numbers pi in such closed channels take
imaginary or complex values. Let us divide all N channels
into the set of open channels α with dimension M and the set
of closed channels β with dimension N − M . Unlike the case
of open channels (A6), the matrices �(R) and �′(R) have no
inverse, so we write the matching condition at R = R0 in the
form,

U (R0)�′(R0) = �(R0). (A8)

Since the physical wave function of a closed channel decreases
exponentially at R → ∞, there are no solutions corresponding
to incident wave in the closed channels. Therefore, the matrix
of asymptotic solutions � (and similarly �′) is divided into
four sub-matrices, two of which (corresponding to the incident
wave in the closed channel) can be set equal to zero:

�(R) =
(

�α(R) 0
�β(R) 0

)
. (A9)

Here the (M × M) matrix �α(R) is the matrix of asymptotic
solutions in the space of open channels, which has the standard
form (A7). The rectangular ((N − M) × M) matrix �β(R)
contains a combination of damped asymptotic solutions:

�β(R) = h(−)(R)C, (A10)

where h(−)(R) is the diagonal ((N − M) × (N − M)) matrix
composed of damped Ricatti-Hankel functions {h(−)(R)}ij =
δijh

(−)
Li

(piR), and C is the rectangular ((N − M) × M) ma-
trix corresponding to the transitions from open channels to
nonstationary or closed ones.

In accordance with the division of channels into α and β

sets, the matrix of linearly independent solutions U at R = R0

is also divided into four submatrices:

U (R0) =
(

Uαα Uαβ

Uβα Uββ

)
. (A11)

Now Eq. (A8) can be written as a system of two matrix
equations:

Uαα�′
α + Uαβ�′

β = �α,
(A12)

Uβα�′
α + Uββ�′

β = �β.

From these two matrix equations one can determine the
unknown matrices K and C. The matrix C has no physical
meaning, therefore we exclude it by means of the second
equation in (A12). The form of �β in Eq. (A10) implies the
following relation:

�β = h(−)[(h(−))′]−1�′
β,
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so

�′
β = [h(−)[(h(−))′]−1 − Uββ]−1Uβα�′

α. (A13)

Substituting Eq. (A13) into the first equation in (A12) one
finally obtains the matching condition:

Uαα�′
α + Uαβ[h(−)[(h(−))′]−1 − Uββ]−1Uβα�′

α = �α, (A14)

which can be written in the form,

Ûαα�′
α = �α, or Ûαα = �α[�′

α]−1, (A15)

where

Ûαα = Uαα + Uαβ[h(−)[(h(−))′]−1 − Uββ]−1Uβα︸ ︷︷ ︸
�Uαα

. (A16)

Thus, the form of matching condition in the presence of the
closed and nonstationary channel remains the same as in the
case of open channels [cf. (A6) and (A15)], but the matrix of
the solutions in the space of the open channels Uαα is modified
by adding the term �Uαα , which provides the damping of
physical solutions in the closed (nonstationary) channels.

For the propagation matrix D (or D̃ for Numerov scheme)
one can obtain the matching condition similar to (A15)–(A16)
which includes matrices �α(R0)[�α(R0 + h)]−1 instead of
�α[�′

α]−1. Note that the effect of this additive �Uαα (or the
corresponding correction for the propagator matrix D) on the
physical elements K matrix is usually negligible (except for
the case of the very weakly closed channels), and in most cases
one can use the matching only in the space of open channels
without considering this correction.
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