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Diamagnetic effect on the Casimir force
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The Casimir force between a diamagnetic plate and a magnetodielectric plate at finite temperature is considered.
Under the condition that the permittivity of the magnetodielectric plate is sufficiently small, we show that the
diamagnetic property dominantly determines the asymptotic behavior of the repulsive Casimir force for large
separations. On the basis of this simple property, we present numerical results showing that if an effective
permeability of a superconductor is much less than one, its diamagnetic response can be indirectly detected by
measuring the Casimir force.

DOI: 10.1103/PhysRevA.83.032513 PACS number(s): 31.30.jh, 75.20.−g, 42.50.Lc, 74.25.Ha

I. INTRODUCTION

The recent interest in the repulsive Casimir force [1,2]
is inspired by the development of new magnetic materials.
Although a variety of methods [3–10] to generate the repulsive
Casimir force have been proposed, neither the repulsive
Casimir force nor the magnetic effect on the Casimir force have
been observed in vacuum, yet. Recently, Geyer et al. reported
a very important understanding of the Casimir force between
magnetodielectric plates [11,12]: at finite temperature, if the
permeability along the imaginary axis at the nonzero Matsub-
ara frequencies is very small, then the static permittivity and
the static permeability mainly determine the dependence of the
magnetic property on the Casimir force. Thus, to observe
the magnetic effect on the Casimir force, we must increase
either the permeability at the nonzero Matsubara frequencies
or the contribution to the repulsive Casimir force at zero
frequency. The former approach of increasing the permeability
at the nonzero Matsubara frequencies has been already
studied extensively [4,13]. Since the first nonzero Matsubara
frequency at room temperature is of the order of 1014 rad/s,
a novel optical material, namely a metamaterial, must be
synthesized. In this paper, we focus on the latter approach
of increasing the repulsive contribution of the Casimir force
at zero frequency due to the diamagnetic effect. Although
the permeability of existing diamagnetic materials is slightly
less than one, Wood and Pendry designed a metamaterial
having arbitrary effective permeability between 0 and 1 at
zero frequency by using highly conductive materials [14].
The diamagnetic metamaterials have potential to be useful
materials for investigating the Casimir effect.

Superconductors are also useful materials for examining
the Casimir effect [15–18]. However, we do not have sufficient
knowledge about the interaction of vacuum fluctuations with a
superconductor, in particular magnetic interactions. Although
it is often remarked that a superconductor is a perfect
diamagnetic material with zero permeability, we generally
regard superconductors as conductive materials having an
infinite static conductivity. The most significant difference
between a perfectly conductive material and a superconductor
is that only the superconductor can exclude any magnetic
field from it, i.e., the Meissner effect [19]. If the magnetic
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property of the superconductors affects the Casimir force, we
may have to consider the Casimir and the Meissner effects
simultaneously.

Since the Casimir force depends on electrical and magnetic
properties, we expect that the material properties can be
derived from the force-distance curve. Unfortunately, this is
not possible for permittivity [20]. However, the dc magnetic
permeability, which is a very important quantity to consider
for the Meissner effect, may be indirectly measured by
measuring the Casimir force. To examine this possibility,
we calculate the Casimir force between a diamagnetic plate
and a magnetodielectric plate. Our numerical results show
that the effective dc permeability of a superconductor for the
Casimir effect can be measured by current experiments, if
the permeability is much less than one. Thus, the question
of whether a superconductor should be considered as a
diamagnetic or a nonmagnetic material can be answered by
the experiments.

The structure of this paper is as follows. In Sec. II we
briefly introduce the Lifshitz formula at finite temperature and
consider the dependence of the direction of the Casimir force
on the permeability of the diamagnetic metamaterial designed
by Wood and Pendry. In Sec. III the repulsive Casimir force be-
tween a high-Tc superconductive plate and a porous magnetic
nanocomposite is considered. We chose Bi2Sr2CaCu2O8+δ

as a material of a high-Tc superconductor and show the
contributions to the Casimir force at zero frequency, which
determine the magnitude of the repulsive Casimir force for
large separations. In Sec. IV we present our conclusions and
discuss the possibility of the indirect measurement of the
effective permeability of the superconductor.

II. CASIMIR FORCE ACTING ON DIAMAGNETIC
METAMATERIAL

The Casimir force between infinite parallel plates at
temperature T is determined by the separation length between
the plates a, the complex permittivity ε(ω), and the complex
permeability µ(ω) of the plates. According to the Lifshitz
theory [21], the Casimir force per unit area of the plate can be
expressed by adding the following four components:

P (a,T ) = P TM
0 (a,T ) + P TE

0 (a,T )

+P TM
p (a,T ) + P TE

p (a,T ). (1)
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Here, P TM
0 and P TE

0 are contributions at zero frequency
to the Casimir force on the transverse magnetic (TM) and
transverse electric (TE) modes, respectively and P TM

p and
P TE

p are contributions at positive frequencies to the Casimir
force of the TM and TE modes, respectively. In this study, the
total contributions at zero frequency play an important role in
determining the sign of the Casimir force for large separations,
and they are given by

P
(mode)
0 (a,T ) = −kBT

2π

(
α

c

)3 ∫ ∞

0
κ2dκG

(mode)
0 (κ), (2)

where kB is the Boltzmann constant, α = 2πkBT /h̄, and κ

is the modulus of the wave-vector projection on the plate
normalized by α/c. The coefficient of the integral α3kBT /2πc3

is evaluated as 0.74 (T/300 K) (m Pa). The function G
(mode)
0 (κ)

is defined by

G
(mode)
0 (κ) =

[
eβaκ

r
(1)
mode(κ)r (2)

mode(κ)
− 1

]−1

, (3)

where β ≡ 2α/c = 1.65(T/300 K) µm−1. The electric and
magnetic dependences of the Casimir force at zero frequency
are determined by the reflection coefficients

r
(n)
TM(κ) =

ε(n)(0)κ −
√

κ2 + (
κ

(n)
0

)2

ε(n)(0)κ +
√

κ2 + (
κ

(n)
0

)2
, (4)

r
(n)
TE (κ) =

µ(n)(0)κ −
√

κ2 + (
κ

(n)
0

)2

µ(n)(0)κ +
√

κ2 + (
κ

(n)
0

)2
, (5)

where n is the index of the plate, and ε(n)(0) ≡ limξ→0 ε(iξ )
and µ(n)(0) ≡ limξ→0 µ(iξ ) denote the permittivity and perme-
ability of the plate, respectively, labeled by n at zero frequency.
The constant κ

(n)
0 is defined by

κ
(n)
0 = lim

ξ→0

√
ε(n)(iξ )µ(n)(iξ )ξ. (6)

We consider a metamaterial designed by Wood and Pendry
as an example of a diamagnetic plate, in the form of a cubic
array of a highly conductive material (see the inset in Fig. 1).
The effective permittivity εeff and permeability µeff at zero
frequency are approximately expressed using the ratio of the
cubic size to the lattice constant γ (<1) as εeff = γ 2/(1 − γ )
and µeff = 1 − γ 2 near γ = 1. As the ratio approaches 1, the
permittivity diverges and the permeability converges to zero.
However, the product of the permittivity and the permeability
does not exceed 2 for any γ . If the product of the permittivity
and the permeability is finite, the contributions to the Casimir
force at zero frequency can be obtained using the following
analytical formulas:

P TM
0 (a,T ) = − kBT

8πa3
Li3

(
ε(1)(0) − 1

ε(1)(0) + 1

ε(2)(0) − 1

ε(2)(0) + 1

)
, (7)

P TE
0 (a,T ) = − kBT

8πa3
Li3

(
µ(1)(0) − 1

µ(1)(0) + 1

µ(2)(0) − 1

µ(2)(0) + 1

)
, (8)

where Li3(z) is the polylogarithm function, which can be
expressed by z + z2/8 + O(z3) near zero and changes the sign
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FIG. 1. (Color online) Direction of the Casimir force between a
diamagnetic metamaterial and a magnetodielectric plate with µ(2)(0)
and ε(2)(0) for large plate separations. The solid and dashed curves
show boundaries corresponding to γ = 1 and γ = 0.8, respectively.
The inset illustrates the structure of a cubic array of a metamaterial
designed by Wood and Pendry.

at zero. Since the permittivities ε(1)(iξ ) and ε(2)(iξ ) are always
greater than one, the contribution of the TM mode at zero
frequency to the Casimir force is always attractive. However,
µ(1)(iξ ) and µ(2)(iξ ) can be less than one without violating
the Kramers-Kronig relation [22]. Thus, if µ(1)(0) < 1 and
µ(2)(0) > 1, then the contribution of the TE mode at zero
frequency to the Casimir force is always repulsive. If we
assume that the plate labeled by n = 1 is a metamaterial having
γ = 1, then the contribution at zero frequency to the Casimir
force is expressed by

P0(a,T ) = −C0
kBT

8πa3
, (9)

where C0 = Li3{[ε(2)(0) − 1]/[ε(2)(0) + 1]} + Li3
{−[µ(2)(0) − 1]/[µ(2)(0) + 1]}. Figure 1 shows the sign
of the coefficient C0 for ε(2)(0) and µ(2)(0). If the static
permittivity of the magnetodielectric plate is much less than
its static permeability, then the contribution at zero frequency
to the Casimir force is always repulsive, independent of the
separation length. On the other hand, if ε(2)(0) > 8.67, the
contribution at zero frequency is attractive for any µ(2)(0).

The contributions at positive frequencies are given by

P (mode)
p (a,T ) = −kBT

2π

(
α

c

)3 ∞∑
l=1

∫ ∞

0

√
κ2 + l2dκ

×
[

eβaql

r
(1)
mode(iξl,κ)r (2)

mode(iξl,κ)
− 1

]−1

, (10)
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where ξl = 2πkBT l/h̄ with positive integers l are the Matsub-
ara frequencies and

q2
l ≡ q2

l (l,κ) = κ2 + l2. (11)

The reflection coefficients for positive frequencies are given
by

r
(n)
TM(iξl,κ) =

ε
(n)
l

√
κ2 + l2 −

√
κ2 + ε

(n)
l µ

(n)
l l2

ε
(n)
l

√
κ2 + l2 +

√
κ2 + ε

(n)
l µ

(n)
l l2

, (12)

r
(n)
TE (iξl,κ) =

µ
(n)
l

√
κ2 + l2 −

√
κ2 + ε

(n)
l µ

(n)
l l2

µ
(n)
l

√
κ2 + l2 +

√
κ2 + ε

(n)
l µ

(n)
l l2

, (13)

where ε
(n)
l = ε(n)(iξl) and µ

(n)
l = µ(n)(iξl). For large separa-

tions, the exponential function in Eq. (8) rapidly decreases
as l increases; thus, the sign of the Casimir force for large
separations is determined by the contribution at zero frequency.

III. CASIMIR FORCE BETWEEN SUPERCONDUCTOR
AND NANOCOMPOSITE

Let us consider the Casimir force between a high-Tc super-
conductor Bi2Sr2CaCu2O8+δ (BSCCO) and a porous magnetic
nanocomposite plate. We can now evaluate the Casimir force
if explicit formulas of the permittivity and permeability are
given. Romanowsky and Capasso studied the Casimir force
acting on BSCCO [18]. They showed that the anisotropy
of the permittivity of BSCCO gives rise to a difference in
the Casimir force. Accordingly, the permittivity of the super-
conductor must be expressed by the component parallel to
the optical axis ε

(1)
‖ and the component perpendicular to the

optical axis ε
(1)
⊥ . In this paper, we define the optical axis as

perpendicular to the conducting copper-oxide planes. Both of
these components were described in the framework of the
oscillator model,

ε(iξ ) = 1 +
K∑

j=1

gj

ω2
j + ξ 2 + γj ξ

. (14)

We took the above parameters (oscillator frequencies ωj ,
oscillator strengths gj , and relaxation parameters γj ) from
Refs. [18,23]. These parameters are based on the experimental
measurement at room temperature. The optical data of BSCCO
below Tc is also measured in Ref. [23], and the spectrum
does not show drastic change. We note that the temperature
dependence of the permittivity in the framework of the
Drude model is theoretically studied using a nested Fermi-
liquid analysis [24]. Although the optical properties of the
superconductor depend also on other properties such as the
amount of dope and the properties of the surfaces [25], the most
important property of BSCCO in this study is that the product√

ε(iξ )ξ vanishes in the limit ξ → 0; the parameter κ
(1)
0

defined in Eq. (6) is zero in both the oscillator model and
the Drude model.

Figure 2(a) shows ε
(1)
‖ and ε

(1)
⊥ along the imaginary

frequency axis. Note that ε
(1)
‖ is much less than ε

(1)
⊥ , and this

implies suppression of the contribution of the TM mode to
the attractive Casimir force for short separations. For the ac
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FIG. 2. (Color online) Permittivity of (a) the superconductor and
(b) the nanocomposite along the imaginary frequency axis.

permeability of a high-Tc superconductor, we do not have
sufficient experimental data [26], and we set µl = 1 for l � 1.
As shown below, if µl < 1 for l � 1, its modification makes
the repulsive force increase, but the final result is not sensitive
to ac permeability.

To contrast the contribution to the Casimir force at zero
frequency with that at positive frequencies, we have to reduce
the permittivity of the magnetodielectric plate without de-
stroying its magnetism. A porous nanocomposite that consists
of nickel nanoparticles and polystyrene is a well-known
magnetodielectric material with a small permittivity [27].
Assuming that the permittivity of a porous nanocomposite
εd (iξ ) can be described by the Maxwell-Garnett theory, the
permittivity of the nanocomposite is a solution of the equation

εd (iξ ) − 1

εd (iξ ) − 2
= f1

εNi(iξ ) − 1

εNi(iξ ) − 2
+ f2

εpoly(iξ ) − 1

εpoly(iξ ) − 2
, (15)

where εNi(iξ ) and εpoly(iξ ) are the dielectric functions along
the imaginary frequency axis for nickel and polystyrene,
respectively, and f1 and f2 are the volume fractions of nickel
and polystyrene, respectively. For nickel, we used the plasma
model with plasma frequency 3.94 eV [28], and εpoly(iξ ) is
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FIG. 3. (Color online) Real and imaginary parts of the perme-
ability of a nanocomposite at T = 300 K (solid line) and T = 200 K
(broken line).

expressed by the oscillator model with K = 4. Figure 2(b)
shows the permittivity of a porous nanocomposite at f1 = 0.2
and f1 = 0.1 [29–31]. We find that the permittivity of the
nanocomposite at zero frequency, ε(2)(0) = 1.9, is less than
the above-mentioned threshold 8.67.

The permeability of a nanocomposite strongly affects the
contribution to the Casimir force at zero frequency. According
to Onsager’s theory [32,33], if the size of a nanoparticle aNi is
much smaller than the skin depth of nickel, then the complex
permeability of the nanocomposite µd (ω) is given by

µd (ω) = 1

4

[
1 + 4πRf

1 − iωτ
+

√
8 +

(
1 + 4πRf

1 − iωτ

)2]
. (16)
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FIG. 4. (Color online) Plot of four contributions of the Casimir
force between a superconductor and a nanocomposite at T = 130 K
to the Casimir force between perfectly conductive plates: P TM

0 (long
dashed line), P TE

0 (short dashed line), P TM
p (dotted line), and P TE

p

(dotted dashed line), as well as the total Casimir force (solid line).
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FIG. 5. (Color online) Absolute difference �P (a) between the
Casimir force acting on a superconductor with the static permeability
µ(0) and on a nonmagnetic superconductor. The rectangular shaded
area indicates the region in which the Casimir force could be measured
by current experiments.

Here τ is the Debye relaxation time and R is defined by
4πa3

Nim̄
2
0/kBT , where m̄0 is the saturation magnetization. The

solid lines in Fig. 3 show the permeability of nanocomposite
for aNi = 5 nm, τ = 4.8 ps, and m̄0 = 480 G at T = 300 K.
Note that the static permeability depends on the temperature,
and changes from 4.2 to 6.1 where the temperature decreases
from 300 to 200 K. Also, the frequency where the imaginary
part of the permeability has a maximum value is much smaller
than the Matsubara frequency with l = 1 (≈1014 rad/s). Thus
the magnetic effect on the contribution to the Casimir force at
positive frequencies is very small.

Figure 4 shows the contributions of the relative Casimir
force between a superconductor having µ(1)(0) = 0 and a
nanocomposite having µ(2)(0) = 7 to the Casimir force be-
tween perfectly conductive plates given by −π2h̄c/240a4

at T = 130 K, which is a typical transition temperature of
high-Tc superconductors. To take the anisotropic property
of the superconductor into account, we use the generalized
Lifshitz formula for uniaxial crystals [12]. The total Casimir
force changes from attractive to repulsive near a = 3.6 µm,
and the contribution of the TE mode at zero frequency
dominantly determines the asymptotic behavior for large plate
separations. The magnitude of the repulsive Casimir force is
very small and difficult to measure with current experiments.
However, the absolute value of the contribution at zero
frequency rapidly increases as the plate separation decreases,
as shown in Eq. (9). Figure 5 shows the difference between the
Casimir force acting on magnetic superconductors with three
different permeabilities and on a nonmagnetic superconductor.
According to the measurement criterion for the Casimir force
given in Ref. [13], the Casimir force can be measured in the
rectangular shadow region in Fig. 5.

IV. CONCLUDING REMARKS

One of the necessary conditions when the contribution to
the Casimir force between a magnetic plate and a nonmagnetic
plate at zero frequency is repulsive is that one of the reflection

032513-4



DIAMAGNETIC EFFECT ON THE CASIMIR FORCE PHYSICAL REVIEW A 83, 032513 (2011)

coefficients for the TE mode r
(n)
TE (κ), defined in Eq. (5), is

negative. Since the denominator of r
(n)
TE (κ) is always positive,

the numerator must be negative if r
(n)
TE (κ) is negative. This

means that κ2 + [κ (n)
0 ]2 is greater than [µ(n)(0)κ]2. If the

magnetic plate is not diamagnetic, the permeability is greater
than 1. Thus the value of [κ (n)

0 ]2 must be positive if the
reflection coefficient is negative. Since the parameter κ (n)

is defined by
√

ε(iξ )ξ , the permittivity along the imaginary
frequency must diverge at the zero frequency. The metallic
plate in which the permittivity is described by the plasma
model satisfies this condition; this possibility was studied by
Geyer et al. [11].

Another possibility of the negative reflection coefficient is
considered in this paper. Even if the permittivity is finite at zero
frequency, i.e., κ

(n)
0 = 0, the reflection coefficient becomes

negative if µ(n)(0) < 1. In contrast to the former case, the
sign of the reflection coefficient is independent of the wave
number κ and is always negative.

We calculated contributions to the Casimir force between
a diamagnetic plate and a magnetodielectric plate at finite

temperature and showed that if the permeability of the diamag-
netic material at zero frequency µ(0) satisfies µ(0) � 1, then
the diamagnetic effect determines the asymptotic behavior
of the repulsive Casimir force for large plate separations.
Based on this result, we showed that for the combination of a
superconductive plate and a porous magnetic nanocomposite,
if the effective permeability µ(0) < 0.9, current experiments
could detect the diamagnetic effect of the superconductor on
the Casimir force, suggesting that a superconductor should be
considered as a diamagnetic material.
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