
PHYSICAL REVIEW A 83, 032511 (2011)

Origin of Hund’s multiplicity rule in singly excited helium: Existence of a conjugate Fermi hole
in the lower spin state
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The origin of Hund’s multiplicity rule in the low-lying excited states of the helium atom has been studied
by considering the two-dimensional helium atom. The internal part of the full configuration interaction wave
functions for the (2s) and (2p) singlet-triplet pairs of states has been extracted and visualized in the three-
dimensional internal space (r1,r2, φ−). The internal wave function of the singlet states without electron repulsion
has a significant probability around the origin of the internal space while the corresponding probability of the
triplet wave function is negligible in this region due to the presence of a Fermi hole. The electron-electron
repulsion potential has been visualized also in the internal space. It manifests itself by three striking poles
penetrating exactly into the spatial region defined by the Fermi hole. Because of the existence of these strong
potential poles in the vicinity of the Fermi hole a major part of the singlet probability migrates out of this region.
In contrast, the corresponding triplet wave function is less affected by these poles due to the presence of the Fermi
hole. The singlet probability is shown to migrate from its original region close to the origin to a region far away
where either r1 or r2 are large. This results in a more diffuse electron density distribution and a smaller electron
repulsion energy of the singlet state than of the corresponding triplet state. The mechanism of the evolution of
the singlet probability toward the region of large ri (i = 1, 2) in the presence of the electron repulsion potential
has been rationalized on the basis of a new concept called conjugate Fermi hole.
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I. INTRODUCTION

Hund’s rules [1–4], initially derived empirically in atomic
spectroscopy of the prequantum-mechanical era, consist of
three rules that predict the ordering of the energy levels
possessing different spin and orbital angular momentum
quantum numbers. These three rules, particularly the first
rule concerning the spin multiplicity, proved to be almost
universally valid not only for atomic systems [5–8] but also
for molecules [9,10] and “artificial atoms” [11–13]. The first
Hund rule states that among the different spin states belonging
to the same orbital configuration it is the highest spin state
that has the lowest energy. In the intervening years since the
formulation of these rules numerous authors endeavored to
provide their theoretical underpinning [14–32]. More recently,
similar attention has been paid to the role of Hund rules in
quantum dots or artificial atoms [33,34].
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By using a minimum-basis-set frozen-orbital independent
particle model approximation, Slater [14] was the first to show
that higher spin states weaken the interelectronic repulsion so
that the energy difference between the singlet and triplet states
of the two-electron atom He can be ascribed to the difference
in their two-electron energies [6,7]. This explanation was then
employed in various studies until Davidson pointed out the
importance of orbital relaxation. He showed [15,16] that at
the Hartree-Fock level the two-electron energy contribution
is actually larger in the high-spin state while it is the nuclear
attraction term that is responsible for the lowering of the triplet
relative to the singlet state in the singly excited states of the
helium atom. This implies that the reason for a lower energy
of the triplet state relative to the corresponding singlet state
cannot be due to a decrease in the electron-electron interaction
potential. Instead, it must be ascribed to a more compact
electron density distribution of the triplet state, which then
results in a much larger energy decrease due to the nuclear
attraction potential that compensates for the energy increase
in the electron-electron repulsion potential [10,17,19–25].

Following Davidson’s paper a number of studies evalu-
ated one-electron and two-electron energies with improved
accuracy confirming Davidson’s conclusion for neutral atomic
species [30,31] and provided additional insight into the
problem. The same nature of the one- and two-electron
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components in the singlet and triplet excited states of He was
shown to hold even when correlation effects are accounted
for [18,32]. Recently, a very thorough study of these effects
has been carried out by Oyamada et al. [32] to which we refer
the reader for an excellent overview of the literature concerning
this problem.

Nonetheless, there still exists an ambiguity concerning the
reason why the triplet state has a more compact electron-
density distribution than the corresponding singlet state. We
recall here, for example, the puzzling behavior of various
global quantities, like 〈1/r12〉, 〈r12〉, and 〈r2

12〉, of the He atom
as observed by Katriel [19–22] and the analysis of intracule and
extracule density functions by Thakkar et al. [26–28]. Further,
it was argued [29] that the Fermi hole induces a larger repulsion
between electrons with parallel spins that results in a larger
average interelectron angle � (e-α-e) of the triplet electrons
than of the singlet electrons. This allows the triplet electrons
to be closer to the nucleus due to “less screening” of the nuclear
charge [25]. On the other hand, very recently it has been shown
by Sajeev et al. [33] that angular electron correlation is not
important in the singly excited states of helium to yield its
energy levels accurately, although the triplet electrons may be
required to be angularly correlated to some extent to have
a larger interelectron angle than the corresponding singlet
electrons.

In our earlier study [34] the origin of Hund’s multiplicity
rule in two-electron artificial atoms was studied. The mecha-
nism for a more compact electron density distribution in the
triplet states was clarified by examining the nodal pattern of the
wave functions in the internal space. Motivated by this analysis
the present study examines the internal wave functions of the
He atom to provide a deeper understanding of the workings
of the first Hund rule. For this very reason a two-dimensional
model of the helium atom has been employed since the reduced
dimension of the problem makes it possible to gain a more
thorough insight into the reasons for the validity of the first
Hund rule.

II. THEORETICAL MODEL AND
COMPUTATIONAL METHOD

In the present study the spatial degrees of freedom of
each of the two electrons in the helium atom are confined
to a two-dimensional xy plane. In the case of the real
three-dimensional helium atom this xy plane, as defined by
the position of the two electrons and the nucleus, can freely
rotate about the three principal axes of inertia by the Euler
angles (α, β, and γ ). In the two-dimensional helium atom
this rotation is limited to the rotation about the axis that is
normal to the xy plane. Although this two-dimensional helium
atom represents a simplified model, it has all the characteristic
features of the energy spectrum of the real three-dimensional
(3D) helium atom as will be shown in the next section. For
example, the same energy ordering of the (1s) 1S < (2s) 1S <

(2p) 1P < (3s) 1S < (3d) 1D < (3p) 1P, . . . , states for the
singlet manifold and of the (2s) 3S < (2p) 3P < (3s) 3S <

(3p) 3D < (3d) 3D, . . . , states for the triplet manifold follows
the Hund multiplicity rule. By reducing the number of the
degrees of freedom the internal part of the wave functions can

TABLE I. Summary of parameters for the atomic basis set of the
two-dimensional helium atom.

l ml ζmax,l ζmin,l

0 23 3000.0 0.0002
1 12 20.0 0.001
2 9 8.0 0.001
3 5 1.0 0.01

be easily visualized allowing an unambiguous manifestation
of the origin of the Hund rule.

The electronic Hamiltonian for the two-dimensional helium
model has the form

H = −1

2

2∑
i=1

�∇i −
2∑

i=1

Z

|�ri | + 1

|�r1 − �r2| , (1)

where Z = 2 and �ri = (xi,yi) for i = 1,2. A [23s12p9d5f ]
basis set of two-dimensional Cartesian Gaussian-type func-
tions of the form

χ �a,ζ (�r) = xax yay exp[−ζ (x2 + y2)], (2)

has been used. Following the quantum chemical convention
these functions are classified as of s, p, d, and f type for
l = ax + ay = 0, 1, 2, and 3, respectively. The exponents of
the Gaussian functions have been generated by using the
geometrical formula [35,36] (see also Ref. [37] for further
information)

ζj,l = αlβ
j−1
l , j = 1,2, . . . ,ml. (3)

The minimum and maximum exponents, ζmin,l and ζmax,l , and
the number of components ml for each l shell are listed in
Table I. For the calculation of He-like atomic ions, like Li+,
Be2+, and so on, presented in Sec. III E all exponents used
for the basis set of the He atom have been scaled as ζ (Z/2)2,
where Z represents the nuclear charge of the atomic species.

The eigenfunctions �FCI(�r1,�r2), �ri = ri(cos φi, sin φi), i =
1,2, and the corresponding energies for the relevant states
have been obtained by diagonalizing the full configuration
interaction (FCI) Hamiltonian matrix. Since the interelectronic
coordinate r12 depends only on r1 ≡ |�r1|, r2 ≡ |�r2| and the
phase difference �− ≡ (φ1 − φ2)/2, the complementary phase
coordinate �+ = (φ1 + φ2)/2 is associated with the total
angular momentum L = l1 + l2. Therefore we can write
�FCI(�r1,�r2) = �int(r1,r2,�−) exp(±i�+L), where �int repre-
sents the internal wave function. The square norm of �int is
equivalent to |�FCI|2 since | exp(±i�+L)| = 1. Thus |�int|2
provides the relevant information for each state.

Since real arithmetic has been employed in the com-
putations the diagonalization code generates some linear
combination of eigenvectors that are associated with doubly
degenerate eigenvalues when L �= 0. To obtain the internal
wave function from the resulting eigenvectors the square aver-
age of the probability amplitudes of these doubly degenerate
eigenvectors has been computed.

To normalize |�int|2 we have to perform integration on the
ignorable phase coordinates �+. For this purpose we introduce
new coordinates, namely φ+ ≡ �+ − π = 1

2 (φ1 + φ2) − π

and φ− ≡ �− = 1
2 (φ1 − φ2), so that φ1 = φ+ + φ− + π and
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φ2 = φ+ − φ− + π . Focusing on the angular part of the
fourfold integral over r1, r2, φ−, and φ+, we consider

I ≡
∫ 2π

0
dφ1

∫ 2π

0
dφ2F (φ−), (4)

where we have written for simplicity F (φ−) ≡
|�int(r1,r2,φ−)|2. We carry out a transformation to the
new coordinates φ+ and φ− yielding

I = 2

[ ∫ π

0
dφ−

∫ π−φ−

φ−−π

dφ+F (φ−)

+
∫ 0

−π

dφ−
∫ π+φ−

−(π+φ−)
dφ+F (φ−)

]

= 4
∫ π

−π

dφ−(π − |φ−|)F (φ−). (5)

In the second integral we have expressed (π + φ−) as (π −
|φ−|) since φ− � 0 and have accounted for the appropriate
Jacobian by the factor 2. Finally, we can write the cor-
rectly normalized probability density for the internal wave
function as∣∣�norm

int (r1,r2,φ−)
∣∣2 = 4(π − |φ−|)|�int|2, (6)

so that the normalization integral becomes∫ ∞

0
r1dr1

∫ ∞

0
r2dr2

∫ π

−π

dφ−
∣∣�norm

int (r1,r2,φ−)
∣∣2 = 1. (7)

For the S states with L = 0 the FCI wave function �FCI(�r1,�r2)
does not depend on �+ (or φ+) so that the internal wave
function can be obtained from Eq. (6) by replacing �int by
�FCI.

To understand the presence of the factor 2(π − |φ−|) we
observe that the square integration domain 0 � φi � 2π , i =
1,2 for φ1 and φ2 is transformed into a square domain with
vertices (φ+,φ−) = (−π,0), (0, ± π ), and (π,0). Thus, for a
given fixed value of φ−, the second variable φ+ cannot take on
all values of the interval −π � φ+ � π , but only those that are
inside the triangle −(π − φ−) � φ+ � (π − φ−) for φ− � 0
and, similarly, for φ− � 0. This fact will reappear in the next
section.

III. RESULTS AND DISCUSSION

A. Energy levels and electron density

The energy spectrum of the low-lying excited states of the
two-dimensional helium atom obtained from the FCI calcu-
lation is displayed in Fig. 1. This energy spectrum possesses
the same qualitative features as the spectrum of the actual 3D
helium atom. The singlet-triplet splitting is the largest for the S

states and decreases as the total angular momentum increases.
The magnitude of these splittings monotonically decreases
with increasing principal quantum number n. We note that
even the reverse order of the energy levels for the singlet P

states that is characteristic of He-like atoms is also found in
the energy spectrum of the two-dimensional (2D) He in Fig. 1.
This means that the P state has the largest energy among the
states belonging to the same n shell in the singlet manifold
[e.g., (3s) 1S < (3d) 1D < (3p) 1P , etc.]. The only apparent
difference between the energy spectra of the 2D and 3D helium

FIG. 1. (Color online) Energy-level diagram for the low-lying
excited states of the two-dimensional helium atom obtained from the
FCI calculation by using an [23s12p9d5f ] basis set. The singlet
and triplet levels are colored in green (light gray) and red (dark
gray), respectively. The number n on the right-hand side of the figure
specifies the principal quantum number. The correspondence between
singlet-triplet pairs is indicated by dotted lines.

atoms lies in their absolute energy values. The (2s) 1S excited
state, for example, is located at E = −2.146 a.u. for the 3D
helium atom, but at E = −8.245 a.u. for the 2D case. This
large negative energy of the 2D helium atom is likely due to
the missing zero-point energy in the z direction. The fact that
in the 3D case the electrons are confined not only in the x and
y directions, but also in the z direction results in an additional
energy increase by the amount corresponding to the zero-point
energy of the z degree of freedom.

The total energies SE and their one- and two-electron
components, SE1 and SE2, respectively, where S ≡ 1 or 3
specifies the spin multiplicity, have been calculated for the
five lowest singlet-triplet pairs of states which we label as
(2s), (2p), (3s), (3p), and (3d). The differences between
the respective singlet and triplet states (i.e., 
E ≡ 1E − 3E,

E1 ≡ 1E1 − 3E1, and 
E2 ≡ 1E2 − 3E2) are summarized
in Table II. In all cases the difference of the two-electron
energies 
E2 is negative. This indicates that the triplet is
associated with a larger expectation value of the two-electron
energy than the corresponding singlet as observed for the
3D helium atom. Consequently, the singlet-triplet energy
difference 
E is due to a decrease of the one-electron energy.
It should be noted also that the energy difference for the
(3d) singlet-triplet pair is very small in comparison to the
differences for the (3s) and (3p) pairs. This very small energy
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TABLE II. Energy differences (in 10−3 hartree) of the total, one-
electron, and two-electron energies 
E, 
E1, and 
E2 between
the singlet-triplet pairs for the low-lying excited states of the two-
dimensional helium atom.

State 
E 
E1 
E2

1s2s 45.888 83.823 −37.935
1s2p 14.483 49.483 −35.000
1s3s 8.822 17.748 −8.926
1s3p 3.342 11.232 −7.890
1s3d 0.015 0.086 −0.071

difference in the (3d) case is observed also for the 3D helium
atom.

The radial electron density distributions for the (2s) and
(2p) singlet and triplet states are plotted in Fig. 2. We
use a logarithmic scale for the density to emphasize small
differences between the singlet and triplet electron density
distributions. From this figure it is seen that for both the (2s)
and (2p) states the electron density distribution for the triplet
state, represented by the red (dark gray) curve, is more compact
and closer to the origin than for the corresponding singlet
state, represented by the green (light gray) line. This implies a
larger energy decrease in the nuclear attraction potential for the
triplet state than for the singlet state. This again parallels the 3D
case [27]. The difference between the singlet and triplet density
distributions is less pronounced for the (2p) singlet-triplet pair
than for the (2s) singlet-triplet pair. This is consistent with a
smaller energy difference 
E for the (2p) pair in comparison
to the (2s) pair as shown in Table II.

B. Internal wave functions

To rationalize the observations made in the preceding
section we present in Figs. 3 and 4 the internal wave functions
for the (2s) 1S and (2s) 3S pair of states and for the (2p) 1P and
(2p) 3P pair, respectively, as an isosurface of their square norm
for the value 0.015. To assess the role of the electron repulsion

FIG. 2. (Color online) Radial electron density distributions (in
logarithmic scale) for the 2s singlet-triplet pair of states (upper) and
the 2p singlet-triplet pair (lower) of the two-dimensional helium
atom. The singlet and triplet distributions are colored in green (light
gray) and red (dark gray), respectively.

FIG. 3. (Color online) Isosurfaces of the probability density for
the internal wave functions for the (2s) singlet-triple pair of the helium
atom: (a) (2s) 1S and (b) (2s) 3S. The isosurfaces in the bottom part
of the figure, (a′) and (b′), are obtained by ignoring the electron
repulsion. The square-norm of the displayed surface is 0.015. In
all four figures the right-handed Cartesian coordinates, x, y, and z,
indicated in (a) correspond, respectively, to r1, r2, and φ−.

we also show in these figures the results obtained with the
interelectronic potential ignored. In the right-handed Cartesian
coordinate system used in these figures the three axes x, y, and
z correspond to, respectively, the r1, r2, and φ− coordinates
and cover the spatial region 0 � ri � 5.0 for i = 1,2 and the
angular region −π � φ− � π (we note that in the following
figures the scale of the φ− axis is labeled numerically in radians
rather than fractions of π , e.g., π/2, etc.). From Fig. 3 a clear
difference between the singlet and triplet wave functions of
the (2s) pair in the vicinity of (r1,r2) = (0,0) is apparent. The
singlet wave functions obtained with and without electron
repulsion have a significant probability distribution in this
region while the triplet wave functions have a node in the
region. This node is the so-called Fermi hole arising due to
the fact that two electrons with the same spin cannot occupy
the same spatial position. The interchange of the coordinates
of electrons 1 and 2, (x1,y1) ↔ (x2,y2), corresponds to the
coordinate transformation r1 ↔ r2 and φ− ↔ −φ− in the
internal space. Due to the Pauli principle the triplet wave
functions for the (2s) 3S state [cf. Fig. 3(b)] must change sign
when exchanging their left and right lobes with respect to the
plane defined by the equation r1 = r2, while a change of sign
is not required for the singlet wave functions.

The above results for the left and right lobes of both the
singlet and triplet wave functions of the (2s) pair can be
easily interpreted in terms of the one-electron orbitals. In a
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FIG. 4. (Color online) Isosurfaces of the probability density for
the internal wave functions for the (2p) singlet-triple pair of the 2D
helium atom: (a) (2p) 1P and (b) (2p) 3P . The isosurfaces in the
bottom part of the figure, (a′) and (b′), are obtained by ignoring the
electron repulsion. See the caption of Fig. 3 for further details.

zeroth-order approximation the orbital part of these wave
functions can be expressed as a single determinant

�±
2s = 1√

2
[ψ1s(�r1)ψ2s(�r2) ± ψ2s(�r1)ψ1s(�r2)], (8)

where �+
2s and �−

2s correspond to, respectively, the singlet and
triplet state. Strictly speaking, the orbitals ψ1s and ψ2s are
distinct for the singlet and triplet states when independently
optimized. In particular, the ψ2s orbital of the singlet is more
diffuse than that of the triplet as also suggested by the radial
electron density distributions in Fig. 2 [15,16]. However, the
interpretation given here concerning the left and right lobes
of the internal wave functions does not depend on the fine
details of the orbitals. The wave functions of Eq. (8) involve
two terms, namely ψ1s(�r1)ψ2s(�r2) and ψ2s(�r1)ψ1s(�r2). The first
term represents a contribution in which electrons 1 and 2 are
in the 1s and 2s orbitals, respectively. This implies that the
probability distribution along the r1 axis that is associated
with this component is confined to the vicinity of the origin
due to the compactness of the 1s orbital, while it extends
along the r2 axis in view of the more diffuse nature of
the 2s orbital. Therefore, this part of the wave function is
associated with the right lobe of the internal wave functions
in Fig. 3 that extends along the r2 axis. Similarly, the second
term ψ2s(�r1)ψ1s(�r2) is associated with the left lobe extending
along the r1 axis. Internal wave functions involving doubly
excited configurations, such as (2s)2, (2s)(2p), and so on,
look different since, in this case, both electrons occupy outer
orbitals whose average radii are of the same order.

FIG. 5. (Color online) Probability density distributions along the
internal angle φ− for the (2s) and (2p) singlet-triplet pairs of states
and for the (1s) ground state of the helium atom. The solid and dotted
lines indicate (2s) and (2p), respectively; the green (light gray) and
red (dark gray) lines indicate singlet and triplet, respectively. The blue
(black) curve indicates the (1s) 1S ground state and the bold light gray
line represents the statistical distribution defined by (π − |φ−|)/π 2.

The internal wave functions for the (2p) singlet and triplet
pair of states shown in Fig. 4 have a more complicated nodal
structure along the φ− axis than those for (2s), particularly for
the case when the interelectron potential is ignored: The wave
functions (a′) and (b′) in Fig. 4 have, respectively, two nodes
at φ− = ±π/2 and one node at φ− = 0 with r1 = r2 ≡ r for
small r . The presence of these nodes along the φ− axis is due
to a nonzero orbital angular momentum of the (2p) states. The
mechanism for the appearance of these nodes will be discussed
in Sec. III D.

The angular correlation between the two electrons can be
examined by integrating the relevant wave functions over the
radial coordinates r1 and r2 for a given value of φ−. This
corresponds to cutting the wave functions displayed in Figs. 3
and 4 by a plane parallel to the xy plane for a particular
value of z = φ− and integrating the probability density in this
plane by using the volume element r1dr1r2dr2. The resulting
probability density as a function of φ− is displayed in Fig. 5
for the studied (2s) and (2p) singlet and triplet states. For
comparison, the distribution for the (1s)2 1S ground state is also
shown in this figure. The probability distributions for the (2s)
and (2p) singlet-triplet pairs of states are nearly identical and
have a triangular shape peaked at φ− = 0 that follows closely
the statistical distribution represented by the gray line. The
triangular statistical distribution is given by the factor (π −
|φ−|) in Eq. (6) and normalized so that the integral over φ− is
unity. It corresponds to the situation in which both electrons
change their polar angles independently over the interval
[0,2π ]. This means that the probability for the two electrons to
take a particular interelectron angle � (e-α-e), denoted by θ12, is
the same for all θ12. This is confirmed by a simple geometrical
analysis of the statistical triangular distribution. Since the set of
internal angles ±φ− and ±(π − φ−) for 0 � φ− � π/2 gives
the same value of θ12, summing the probability distribution
of Fig. 5 over these four internal angles gives the same value
of 2/π for any θ12. Therefore, since the present result of the
angular probability distributions for both (2s) and (2p) pairs
closely follows the statistical triangle, the two electrons in the
(2s) and (2p) excited states have little preference for their
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angular configuration. It indicates that they have a very small
angular correlation. This result is consistent with the recent
study that explored the angular correlation in excited states
of He by varying angular functions in the basis set that are
responsible for the angular correlation [33]. We note, however,
that a close examination of the numerical results does reveal
some angular dependence for the (2p) singlet-triplet pair of
states while it is negligibly small for the (2s) pair.

The situation is different for the ground (1s)2 1S state where
both electrons occupy the same lowest (1s) orbital. In this case
the angular dependence of the probability density significantly
deviates from the statistical triangle. It has a smaller probability
around φ− = 0 and a larger one around φ− = ±π/2 as shown
in Fig. 5. These deviations at φ− = 0 and ±π/2 correspond
to configurations where the two electrons are on the same and
on the opposite sides of the nucleus, respectively. Since in
the ground state both electrons occupy the same orbital they
strongly avoid each another resulting in the distribution shown
in Fig. 5. This feature of the ground state is not unlike that
characterizing doubly excited states of He for which it is known
[38] that the two electrons try to avoid one another by staying
on opposite sides of the nucleus indicating a strong angular
correlation. On the other hand, in the case of singly excited
states of He with one electron occupying the 1s orbital and the
other an outer orbital the angular correlation is insignificant
since the 1s electron is tightly bound to the nucleus and only
slightly affects the outer electron regardless of whether the 1s

electron is on the same side or on the opposite side of the
nucleus.

C. Electron repulsion in the internal space

We recall that the square norm of the internal wave
function for the (2s) 1S state, as obtained when disregarding
the interelectronic repulsion [cf. Fig. 3(a′)], shows a large
probability density in the vicinity of the φ− axis [i.e., for
(r1,r2) = (0,0)]. Once the electron repulsion is introduced,
however, a major part of the probability density migrates out
of this region [cf. Fig. 3(a)]. On the other hand, in the case
of the corresponding triplet states [cf. Figs. 3(b) and (b′)]
the role of the electron repulsion seems to have a smaller
effect although the distribution as a whole becomes broader
as in the singlet case. To better understand the migration of
the probability in the singlet case and thus to rationalize the
differences between the singlet and triplet wave functions, we
have plotted the electron repulsion potential and the difference
between the probability density distributions of the singlet and
triplet states in Figs. 6 and 7, respectively. The surface of the
electron repulsion potential displayed in Fig. 6 represents the
region where the potential energy is larger than 3.0 a.u. It has
three peaks along the φ− axis at φ− = 0 and ±π that extend
into the r1 = r2 direction. These internal angles correspond to
spatial configurations in which the electron position vectors
align parallel to each other. Therefore, the electron repulsion
potential diverges along r1 = r2. Since the potential energy
becomes very large in this region, the probability density in it
should be small. For this reason the density in the (2s) 1S state
decreases close to the φ− axis when the electron repulsion is
accounted for. In the corresponding triplet case there is a node

FIG. 6. (Color online) Electron repulsion potential in the internal
space (r1, r2, φ−). The displayed surface represents the area where
the electron repulsion potential energy becomes larger than 3.0 (a.u.).
See the caption to Fig. 3 for further details.

along the φ− axis due to the Pauli principle so that it is less
affected by the electron repulsion potential.

In the case of the (2p) singlet-triplet pair the singlet and
triplet wave functions without electron repulsion have similar
probability distributions along the φ− axis except for the
location of their node points as displayed in Figs. 4(a′) and (b′).
Since this difference is less pronounced than in the case of the
(2s) pair, the difference between the singlet and triplet states is
still smaller when the interelectron potential is accounted for.
This is consistent with the smaller energy gap shown in Fig. 1
relative to the (2s) singlet-triplet pair.

D. Emergence of a conjugate Fermi hole

The origin of a more compact electron density distribution
and a larger electron repulsion in the triplet state relative to
the corresponding singlet of the (2s) pair can be rationalized

FIG. 7. (Color online) Difference between the probability density
distributions of the (2s) 1S singlet state and of (2s) 3S triplet state in
the internal space: (a) and (b) correspond to the cases with and without
electron repulsion, respectively. The square norm of the displayed
surface is 0.005. The blue (light gray) and red (dark gray) surfaces
correspond, respectively, to the regions where the probability density
of the singlet wave function is larger than that of the triplet wave
function and vice versa. See the caption to Fig. 3 for further details.
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by the difference between their probability distributions as
obtained with and without the electron repulsion displayed in
Figs. 7(a) and 7(b), respectively. The blue (light gray) and red
(dark gray) surfaces in these figures represent, respectively,
the regions in which the singlet wave functions have a larger
probability than the corresponding triplet and vice versa. As
is apparent from Fig. 7(a) the blue surfaces extend in the
direction of increasing r1 or r2 coordinates. This implies that
the singlet-state electron density for large r1 and r2 exceeds
that of the triplet state as has been noticed already in the upper
part of Fig. 2. Yet if there is no electron repulsion there is
no difference in the probability distributions of the singlet
and triplet wave functions in the region of large r as is seen
from Fig. 7(b). Therefore, the singlet probability density in the
region of large r values must originate in the region of small r

where the singlet wave function without the electron repulsion
has a significant probability density as is seen in Fig. 3(a′). We
emphasize that the probability density that migrates from the
region of small r values does not accumulate in the nearby red
surface region, but rather in the distant blue region. The region
in which the singlet state has a smaller probability density
than the triplet, as represented by the red surfaces in Fig. 7,
arises due to the sign change of the outer 2s orbital within
the region of large overlap with the inner 1s orbital. Within a
single-determinant approximation the orbital part of the singlet
and triplet wave functions has the form as represented by
Eq. (8) with + and − corresponding to the singlet and triplet
functions, respectively. A subtle difference between the one-
electron orbitals for the singlet and triplet states does not affect
the following discussion. The 1s orbital ψ1s is nodeless while
the 2s orbital ψ2s has a node as displayed in Fig. 8 where the
radial orbital density distributions of the analytical 1s and 2s

orbitals for the two-dimensional Coulomb problem [39] are
displayed. For two spatial points, �ra and �rb, (as indicated by
the arrows in the figure) that are separated by the nodal point,
the square norm of the singlet wave function |�+

2s(�ra,�rb)|2 is
smaller than that of the triplet |�−

2s(�ra,�rb)|2 since in the case
of the singlet the two terms ψ1s(�ra)ψ2s(�rb) and ψ2s(�ra)ψ1s(�rb)
are subtracted due to the sign change of ψ2s between ra and rb.
This sign change is canceled in the triplet case by the minus
sign arising from the antisymmetrization. We may thus refer to
this region of a smaller singlet probability relative to the triplet
as 2s-conjugate Fermi hole as will become apparent below.

FIG. 8. (Color online) Radial density distribution of the analytical
1s and 2s orbitals of a two-dimensional Coulomb problem with
Z = 2. The arrows indicate an example of a pair of coordinates
(ra,rb) delimiting a conjugate Fermi hole where the (2s) singlet wave
function has a lower probability than the corresponding triplet in the
region of small r close to the nucleus.

FIG. 9. (Color online) Cross sections at φ− = 0 of the isosurfaces
of the difference between the (2s) singlet and triplet internal
probability densities displayed in Figs. 7(a) and 7(b). The figures (a)
and (b) correspond to the cases with and without electron repulsion,
respectively. Along the dotted diagonal line the electron repulsion
potential diverges. The blue (light gray) and red (dark gray) contours
represent, respectively, the regions where the singlet wave function
has a larger probability density than the corresponding triplet and
vice versa.

The precise location of the 2s-conjugate Fermi hole in the
internal wave functions can be clearly seen by considering a
cross section at φ− = 0 for the difference between the singlet
and triplet probability densities of the (2s) states of Figs. 7(a)
and 7(b). These cross sections are displayed in Figs. 9(a) and
9(b) corresponding, respectively, to Figs. 7(a) and 7(b) and
represent cases with and without electron repulsion. The blue
(light gray) and red (dark gray) contours indicate the region
where the singlet wave function has a larger probability than
the corresponding triplet and vice versa. Therefore, the red
contours in Fig. 9 represent the location of the 2s-conjugate
Fermi hole. As shown for the case without electron repulsion
[cf. Fig. 9(b)], both the blue and red contours are located within
a region of small r, ri < 2 (i = 1,2). The dotted diagonal line
along which the electron repulsion potential diverges is defined
by r1 = r2. Since the singlet and triplet wave functions are,
respectively, symmetric and antisymmetric with respect to the
exchange of the r1 and r2 coordinates, the singlet wave function
can have a finite density along this diagonal line while the
triplet wave function cannot. For this reason the blue contours,
representing the region where the singlet wave function has
a larger density than the triplet, appear along this diagonal
line. The region of these blue contours can be regarded as the
location of the Fermi hole for the triplet wave function. On the
other hand, since the electron density distributions calculated
from these singlet and triplet wave functions without electron
repulsion should be identical, the smaller probability density
in the triplet wave function due to the Fermi hole should be
balanced by a decrease in the singlet probability density in
the region where the Fermi hole is located. This decrease in
the singlet probability density corresponds to the 2s-conjugate
Fermi hole that is indicated by the red contours in Fig. 9(b).
Therefore, the 2s-conjugate Fermi hole and the genuine Fermi
hole always appear as a pair since both of them have their origin
in the antisymmetrization of the total wave functions. One may
be apprehensive about this pairwise appearance of the genuine
and the 2s-conjugate Fermi holes since the latter requires a
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node in the orbitals to appear as described above while the
Fermi hole does not require any such constraint. It is noted,
however, that the Fermi hole requires two different orbitals
since it appears only in the triplet wave function. Therefore,
the number of nodes in the respective orbitals should differ.
This guarantees the appearance of a 2s-conjugate Fermi hole.

Once the electron repulsion potential is accounted for,
the probability density distribution displayed in Fig. 9(b) for
the case without electron repulsion is spread toward large
ri(i = 1,2) values thus avoiding a strong potential barrier due
to the electron repulsion along the diagonal line. The resulting
distribution, shown in Fig. 9(a), still has a 2s-conjugate Fermi
hole in the range 0.5 < ri < 2.5, indicated by the red contours,
while the size of the Fermi hole is significantly reduced
along the diagonal line indicated by blue contours close
to the origin. However, new blue contours in the range of
ri > 2.8 appear instead. These blue contours in the range
of large ri represent a singlet probability that has migrated
from the original small ri region. Due to the presence of
the 2s-conjugate Fermi hole in the region of intermediate
ri (0.5 < ri < 2.5), the singlet probability migrating out of
the region of small ri cannot accumulate in the intermediate
region but has to move further away from the nucleus. This
results in a broader electron density distribution for the singlet
wave function. Further, since the blue contours in the region
of large ri displayed in Fig. 9(a), representing the migrated
singlet probability, is also apart from the diagonal line of the
electron repulsion, the singlet wave function has a smaller
electron repulsion energy than the corresponding triplet wave
function.

A similar argument can be applied to the (2p) singlet-triplet
pair although their 2p-conjugate Fermi hole has a different
topological structure in the internal space as displayed in
Fig. 10. Indeed, unlike the 2s orbital, the 2p orbital is nodeless
along the radial r coordinate. Therefore, it is its angular part
that plays the key role. Similarly as for the (2s) singlet-triplet
pair the orbital part of the (2p) wave functions can be written
in a single-determinant approximation as

�±
2p = 1√

4π
[ψ1s(r1)ψ2p(r2)eiφ2 ± ψ2p(r1)eiφ1ψ1s(r2)], (9)

FIG. 10. (Color online) Difference between the probability den-
sity distributions of the (2p) 1P singlet and (2p) 3P triplet states
in the internal space: (a) and (b) correspond to the cases with and
without electron repulsion, respectively. See the caption to Fig. 7 for
further details.

where �+
2p and �−

2p represent singlet and triplet wave func-
tions. These wave functions correspond to one component of
the (2p) state with a positive orbital angular momentum of
L = 1. There is, of course, another component with L = −1,
but it yields the same internal wave function as does the other
component. Therefore it is sufficient to consider the case of
L = 1. By transforming the independent polar coordinates
(φ1,φ2) into the symmetric and antisymmetric coordinates
(φ+,φ−), the square of the |�±

2p| wave functions becomes

|�±
2p|2 = 1

4π
[|ψ1s(r1)|2|ψ2p(r2)|2 + |ψ2p(r1)|2|ψ1s(r2)|2

±2ψ1s(r1)ψ2p(r1)ψ1s(r2)ψ2p(r2) cos 2φ−], (10)

which does not depend on the φ+ coordinate. Multiplying
the factor 4(π − |φ−|) due to the angular volume element, as
described in Sec. II, the wave functions of Eq. (10) become
the internal wave functions |�norm

int,2p|2. By choosing the spatial
region defined by φ− = 0, ±π with r1 = r2, where the electron
repulsion potential diverges, the triplet probability density
|�−

2p|2 becomes zero while the singlet density |�+
2p|2 has a

finite amplitude. This indicates clearly the existence of Fermi
holes in this region. On the other hand, the singlet density
|�+

2p|2 becomes, in turn, zero at φ− = ±π/2 with r1 = r2 while
the triplet density |�−

2p|2 has a finite amplitude. This indicates
that there exist 2p-conjugate Fermi holes in this region of
the internal space. The location of these 2p-conjugate Fermi
holes, as well as of the genuine Fermi holes, in the internal
space for the zeroth-order wave functions of Eq. (9) can be
seen in Fig. 10(b) where the difference in probability densities
between the singlet and triplet wave functions without electron
repulsion has been displayed. The blue and red surfaces
in Fig. 10, representing, respectively, the regions where the
singlet wave function has a larger probability than the triplet
and vice versa are located in the region centered at small
ri (i = 1,2) and φ− = 0, ±π for the former and φ− = ±π/2
for the latter, respectively, as has been reasoned on the basis
of Eq. (10).

As explained in the case of the (2s) singlet-triplet pair,
the conjugate and the genuine Fermi holes occupy the same
ri region when disregarding the electron repulsion since, in
this case, the singlet and triplet wave functions have the
same radial electron density distribution. Once the electron
repulsion potential is accounted for, the three “poles” of the
electron repulsion potential peaked at φ− = 0, ±π [cf. Fig. 6]
penetrate exactly into the respective three blue surfaces of the
Fermi holes and strongly push the singlet probability densities
away from this region. The resulting distribution displayed
in Fig. 10(a) shows that most of the density indicated by
the blue surfaces has migrated from the original region of
small ri (i = 1,2) into the region of large ri . Again, due to the
presence of the 2p-conjugate Fermi holes in the intermediate
ri region, the singlet probability migrating out of the original
region of small ri cannot accumulate in this region, but has to
move farther away from the nucleus. The resultant singlet
wave function thus has a broader radial electron density
distribution and a smaller electron repulsion energy than the
counterpart triplet state. The present results for the (2s) and
(2p) singlet-triplet pairs of states which create a conjugate
Fermi hole suggest that the Hund multiplicity rule has a
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clear wave mechanical origin and cannot be explained at the
classical level of theory.

E. He-like atomic ions

The origin of the Hund multiplicity rule in the 2D helium
atom as presented in the preceding section will now be
reaffirmed by extending our analysis to 2D He-like ions. As
in the case of the 2D He atom the three energy differences

E, 
E1, and 
E2, corresponding, respectively, to the total,
one-electron, and two-electron energies between the singlet-
triplet pairs of the (2s) and (2p) states, have been calculated
for different nuclear charges Z (2 � Z � 10) and are plotted
in Fig. 11. The results for fractional values of the nuclear
charge Z have been included also in this figure in order to
emphasize the trend of the energy differences as a function of
Z. The energy differences are scaled by Z2 so that the results
for different values of Z can be easily compared. The total
energy 
E and its components 
E1 and 
E2 are represented
in Fig. 11 by squares, triangles, and circles, respectively.

The two-electron energy difference 
E2 for both the (2s)
and (2p) pairs of states is negative for small Z values that are
close to the helium case of Z = 2. This indicates again a larger
electron repulsion for the triplet. Similarly, the one-electron
energy difference 
E1 is positive and overcompensates the
negative 
E2 so that the triplet has a lower energy than the
singlet. On the other hand, as Z increases 
E2 increases as
well and becomes positive at Z = 3 for the (2s) pair and for
Z slightly larger than four also for the (2p) pair. This is again
consistent with the result known for the 3D helium-like ions

FIG. 11. (Color online) Energy differences between the (2s)
singlet-triplet pair (upper figure) and the (2p) singlet-triplet pair
(lower figure) of states of He-like ions for different nuclear charges
Z. The difference in the total, one-electron, and two-electron energies
is denoted by 
E, 
E1, and 
E2, respectively.

[27] for which 
E2 becomes positive for the (2s) pair at
Z = 3 and for the (2p) pair at Z = 4. In the present case
of 2D helium-like ions 
E2 is still slightly negative for the
(2p) pair at Z = 4. For the corresponding 3D helium-like ions
it is slightly positive at Z = 4. Therefore, the general trend
is basically the same. In contrast to the increasing 
E2, the
one-electron energy difference 
E1 monotonically decreases
with increasing Z. Thus, the energy differences 
E1 and 
E2

eventually cross in the range 4 < Z < 5 for the (2s) pair and
7 < Z < 8 for the (2p) pair. Finally, 
E1 approaches zero as
Z further increases so that 
E2 approaches closer and closer
to 
E. This indicates that for large values of Z the two-
electron contribution to the singlet-triplet energy gap becomes
dominant so that the interpretation of Hund’s first rule based
on Slater’s early study [14] becomes more and more plausible.

The dominant effect of 
E2 over 
E1 that governs the
singlet-triplet energy gap for large Z values may be easily
understood by scaling the electron coordinates by the nuclear
charge. By using the new coordinates �si = Z�ri (i = 1,2) in the
Hamiltonian (1) for a general nuclear charge Z we obtain

H/Z2 =
[
−1

2

2∑
i=1

�∇s,i −
2∑

i=1

1

|�si | + 1

Z

1

|�s1 − �s2|

]
, (11)

where both sides of the equation have been divided by Z2 so
that the eigenenergies for different values of Z will be of the
same order of magnitude and may be easily compared. As seen
from Eq. (11) the one-electron part of the scaled Hamiltonian
is identical for all Z so that the same one-electron orbitals
and solutions result for all values Z when the interelectronic
repulsion is disregarded. Furthermore, the interelectronic
repulsion potential involves a factor inversely proportional to
Z and this term is becoming less and less important relative to
the kinetic and nuclear attraction energies as Z increases. This
relative decrease in the electron repulsion potential manifests
itself in a decrease of the size of the three “poles” of the
electron repulsion potential shown in Fig. 6 when the Z-scaled
internal space (Zr1,Zr2,φ−) is used. Moreover, since in this
Z-scaled internal space the wave functions are identical for
different Z when disregarding the electron repulsion, the effect
of the electron repulsion potential term on the wave functions
decreases with increasing Z.

The general trend of the energy differences between the
singlet-triplet pairs of states, displayed in Fig. 11 for different
Z, can be rationalized based on the previous discussion.
For large values of Z (e.g., Z ≈ 10) the three poles of
the electron repulsion potential get small so that both the
singlet and triplet wave functions will not differ significantly
from those obtained without the electron repulsion term. This
means that the electron density distribution of the singlet
and triplet states will be nearly the same and will yield
similar expectation values for the one-electron energies. On
the other hand, as has been seen earlier in Figs. 3(a′) and 4(a′),
the singlet wave functions without electron repulsion have
a significant probability density in the region φ− = 0, ±π

with r1 = r2, where the electron repulsion potential diverges
and the corresponding triplet wave functions have a node in
this region due to the Fermi hole. Thus, the singlet states
should have a larger expectation value of the electron repulsion
potential than the corresponding triplet states. Precisely for
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this reason the singlet-triplet energy gap is dominated in
the large Z regime by the difference in the two-electron
energies and the one-electron contribution is small as proved
by the results displayed in Fig. 11. This dominance of the
two-electron contribution corresponds more or less to the
interpretation of Hund’s first rule based on Slater’s early
study [14]. As the nuclear charge Z decreases, the three poles
of the electron repulsion potential become more pronounced
and cause larger changes of the internal wave functions. As a
result, the probability density of the singlet wave function in
the vicinity of the Fermi hole migrates into the region of large
ri (i = 1,2) values due to the existence of the conjugate Fermi
hole, as explained in Sec. III C. The triplet wave function
is modified more gently due to the Fermi hole. Due to the
decrease in the probability density in the region of the Fermi
hole for the singlet wave function, the electron repulsion in the
singlet state becomes smaller and thus the energy difference in
the two-electron energies between the corresponding singlet
and triplet states, 
E2, decreases. On the other hand, since
the singlet wave function acquires an increased probability
density in the region of large ri values, the potential energy
increases stronger due to the nuclear attraction potential than
in the case of the counterpart triplet wave function. Therefore,
as Z decreases the two-electron contribution to the singlet-
triplet energy gap becomes smaller while the one-electron
contribution becomes larger as displayed in Fig. 11. Finally,
as Z further decreases toward the helium case the three poles
of the electron repulsion potential become so strong that a
major part of the singlet probability density around the origin
migrates toward the region of large ri . Since the migrated
probability is located away from the nucleus as well as from
the three poles of the electron repulsion potential as displayed
in Figs. 7 and 10, the singlet state has a broader electron density
distribution and a smaller electron repulsion potential than its
counterpart triplet state. In other words, for small Z values
close to the helium case the triplet is characterized by a more
compact electron density distribution and a larger electron
repulsion.

IV. SUMMARY

In the present study of the origin of Hund’s multiplicity
rule in the excited states of the 2D helium atom we have
employed the full configuration interaction method to generate
the energy spectrum and to partition the total energy into its
one-electron and two-electron components. The differences of
these quantities for the singlet-triplet pairs of states possess
similar characteristics as are known for the corresponding
3D helium atom. This supports our attempt to provide new
fundamental insight into the origin of the Hund multiplicity
rule on the basis of the results for the 2D helium atom that
is made possible by the lower dimensionality of our model. It
must be emphasized that the dimension of the internal space
of our 2D helium atom is the same as that of the corresponding
3D helium atom. This coincidence of the dimensionality of the
internal space of the 2D and 3D systems is usually not the case
for more than three electrons, but it happens for two-electron
systems having circular and spherical symmetries for the 2D
and 3D systems, respectively. This is one of the main reasons

why we have chosen the 2D helium atom for our investigation
of the origin of Hund’s multiplicity rule.

In our analysis we have extracted first the internal part of
the wave functions for the (2s) and (2p) singlet-triplet pair
of states from the CI wave functions and visualized them in
the internal space (r1, r2, φ−). This has provided us with
new insight into the structure of the relevant wave functions,
which, in turn, has enabled us to rationalize the well-known
characteristics of helium, namely, a more compact electron
density distribution and larger electron repulsion in the triplet
states than in the corresponding singlet states. The probability
density distributions along the internal angle φ− obtained
by integrating the internal wave functions over the radial
coordinates (r1, r2) closely follow the statistical distribution.
This indicates that there is little preference for the two electrons
to take a particular inter-electron angle � (e-α-e). We have
visualized also the electron repulsion potential in the internal
space which is characterized by three striking poles peaked
at φ− = 0, ±π penetrating exactly into the spatial region
defined by the Fermi hole. To identify the role played by
the electron repulsion potential, the internal wave functions
without electron repulsion have been generated and visualized
also. A careful examination of these zero-order internal wave
functions without the electron repulsion implies the existence
of a region in the internal space in the immediate vicinity of
the Fermi hole where the singlet wave function has a smaller
probability density than the counterpart triplet wave function.
We refer to it as the conjugate Fermi hole. It is shown to be
a consequence of the antisymmetrization of the total wave
function and thus has the same origin as the genuine Fermi
hole.

The internal wave functions of the singlet and triplet states
obtained by ignoring the electron repulsion undergo distinct
changes once the electron repulsion is accounted for. The three
poles of the electron repulsion potential exactly penetrate into
the region of a Fermi hole. Therefore the triplet wave function
that has a rather insignificant probability in the vicinity of this
Fermi hole is less affected by these poles than the singlet wave
function. This explains why, generally, the interelectronic
repulsion plays a more important role in the singlet state than in
the counterpart triplet state. In contrast, the probability density
of the singlet wave function has to migrate from this region
to avoid the strong potential poles of the electron repulsion.
This migrating probability density of the singlet wave function
has to avoid also the region around the conjugate Fermi hole
since the singlet probability cannot penetrate into the conjugate
Fermi hole. Consequently, the migrating probability density of
the singlet state has to move far away from its original region
close to the nucleus. Thus, the resultant singlet wave function
has a probability distribution extended into the region of large
ri (i = 1,2) values which, in turn, make the radial electron
density distribution of the singlet state more diffuse than that
of the counterpart triplet state. Furthermore, since the singlet
probability that is located in the region of large ri is now further
away from both poles of the electron repulsion and from the
nucleus, the singlet state has a smaller electron repulsion and a
smaller energy decrease due to the nuclear attraction potential
than the triplet state. In other words, the counterpart triplet
state possesses a more compact electron density distribution,
a larger electron repulsion, and a larger energy decrease due
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to the nuclear attraction than does the corresponding singlet
state.
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