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A theoretical study of the polarization entanglement of two photons emitted in the decay of metastable ionic
states is performed within the framework of density-matrix theory and second-order perturbative approach.
Particular attention is paid to relativistic and nondipole effects that become important for medium- and high-Z
ions. To analyze these effects, the degree of entanglement is evaluated both in the dipole approximation and within
rigorous relativistic theory. Detailed calculations are performed for the two-photon 2s1/2 → 1s1/2 transition in
hydrogenlike ions as well as for the 1s1/2 2s1/2
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I. INTRODUCTION

Over the decades, two-photon bound-bound transitions in
atoms and ions have provided a unique testing ground for
advanced atomic theories. Starting from the early work by
Göppert-Mayer [1] and Breit and Teller [2], a large number
of theoretical studies were carried out to estimate the total as
well as the energy- and angle-differential (two-photon) decay
rates [3–10]. When compared with experimental data [11–15],
these studies revealed important information on relativistic,
quantum electrodynamics, and many-body phenomena in
atomic systems. Besides structure-related investigations, more
recent interest focuses on the quantum correlations between
the emitted photons, which can be used to probe fundamental
aspects of modern quantum theory. In a series of studies,
for example, photon-photon polarization correlations were
employed to test the Bell inequality [16–18]. In particular,
these investigations demonstrated that the polarization corre-
lations cannot be explained by any local realistic theory that
uses hidden variables. Hence, together with other Bell test
experiments, two-photon studies proved that nature indeed
exhibits quantum-mechanical nonlocality. These results con-
tributed to the long-lasting historical debate of Einstein with
Bohr and Schrödinger [19,20], who introduced the notion of
entanglement for denoting nonproduct (pure) states.

In the past, both experimental [17] and theoretical [21,22]
studies of γ -γ polarization correlation were mainly restricted
to the 2s → 1s decay of neutral hydrogen (or deuterium).
Much less attention was paid to two-photon transitions in
other atomic or ionic species. With the recent advances in
heavy-ion accelerator and trap facilities as well as in x-ray
detection techniques, concrete possibilities arise to study spin-
correlation phenomena in the decay of heavy, few-electron
ions. In the medium- and high-Z domain, however, a proper
analysis of polarization quantum correlations requires detailed
knowledge of relativistic effects and many-electron effects, as
well as of those contributions that arise from the higher-order
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(nondipole) terms in the expansion of the electron-photon
interaction.

In this paper we investigate quantum correlations between
the polarization states of two photons emitted in the decay of
few-electron ions. Most naturally, spin-correlation phenomena
are described within the framework of density-matrix theory.
However, before we present details from this theory, we
first summarize the geometry under which the two-photon
decay is considered in Sec. II. Then in Sec. III A the general
expression for the spin-density matrix of the photon pair
is derived in terms of the initial populations of the ionic
substates as well as in terms of the (second-order) transition
amplitudes. The evaluation of these amplitudes in relativistic,
second-order perturbation theory is thereafter discussed for
hydrogenlike and heliumlike ions. For the latter species,
we make use of the independent-particle model, which is
appropriate for the analysis of bound-state transitions in
the high-Z domain [23,24]. Apart from rigorous relativistic
results, we also present simplified expressions describing the
photons’ polarization state within the dipole approximation.
These intuitive expressions, derived in Sec. III B, will enable us
to understand the general behavior of polarization correlations.
In order to provide a quantitative description for these
correlations, we briefly recall in Sec. IV the definition of
concurrence as the measure of entanglement. Fully relativistic
calculations of the concurrence are then performed for the
2s1/2 → 1s1/2 transition in hydrogenlike ions, as well as for the
1s1/2 2s1/2

1S0 → 1s2
1/2

1S0, 1s1/2 2s1/2
3S1 → 1s2

1/2
1S0, and

1s1/2 2p1/2
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1/2
1S0 transitions in heliumlike ions. The

results of these calculations are displayed in Sec. V and are
compared to the predictions based on the dipole approxima-
tion. From this comparison we infer the twofold impact of
relativity on polarization entanglement: Apart from (i) the loss
of purity of the photon states, (ii) the relativistic contraction
of the wave functions and the nondipole contributions to the
electron-photon interaction generally lead to the reduction of
concurrence—an effect that becomes prominent for heavy ions
and high photon energies. A brief summary, together with some
perspectives, is given in Sec. VI.

Atomic units are used throughout the paper, unless stated
otherwise.
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FIG. 1. (Color online) General decay geometry. The z axis is
oriented in the direction of the photon with momentum �k1, measured
by the detector A. Together with the emission direction of the second
photon, it defines the x-z reaction plane. The opening angle between
both photons is denoted by θ , while the (linear) polarization angles
of the photons, measured with respect to the x-z plane, are denoted
by χ1 and χ2, respectively.

II. GEOMETRY OF THE SETUP AND THE PHOTON
LABELING PROBLEM

In order to analyze γ -γ polarization correlations, we first
introduce the geometry of the two-photon emission. Since, for
the decay of unpolarized ions, there is no direction initially
preferred for the overall system, we adopt the momentum of
the first photon to coincide with the z axis, which is also
taken to be the quantization axis. Together with the direction
of the second photon, this axis defines the reaction plane (the
x-z plane). A single opening angle θ is therefore required to
characterize the emission of the photons with respect to each
other (see Fig. 1).

Since the two photons are in a symmetrized state, it is
a priori not possible to address them individually. However,
we can safely assume that photons observed by the detectors
have definite energies and momenta, i.e., they collapse onto
energy and momentum eigenstates. Therefore a clear identity
can be given to the photons [25]: the first (second) photon
is the one detected by the detector A (B) (marked gray in
Fig. 1) at a certain energy ω1(2) and with momentum �k1(2).
By distinguishing the photons in such a way, we can use
their polarization states in order to investigate the associated
entanglement properties. Indeed, such an analysis is possible
since—in contrast to the energy and momentum spaces—the
photon spin state can be directly measured in any basis.

III. THEORY

A. Density-matrix approach

Having defined the geometry of the two-photon decay,
we shall next recall the theoretical background needed to
investigate the polarization of the emitted radiation. Most
naturally, polarization-correlation studies can be performed
in terms of the system’s density matrix. Since this approach
was recently applied to describe two-photon transitions in
hydrogenlike ions [21,22], here we restrict ourselves to a

short compilation of the basic formulas relevant to our further
analysis.

The initial state of the overall system in our two-photon
decay problem is given by the photon vacuum |vac〉 ≡
|0,0〉i,γ and by the excited ion (or atom) in states |αi,Ji,Mi〉
with well-defined total angular momentum Ji and associated
projection Mi onto the z axis. Moreover, αi is a collective
label for all additional quantum numbers required for a
unique specification of the state. In particular, it characterizes
electronic configurations that give rise to the state and hence
provides its parity Pi .

The magnetic sublevel population of the ion in initial
states is described as a statistical mixture by the density
operator

ρ̂i,ion =
∑
Mi

CMi
|αi,Ji,Mi〉 〈αi,Ji,Mi | , (1)

where CMi
denotes the population of the magnetic substate

|αi,Ji,Mi〉. Since in most (two-photon) experiments, the
initially prepared excited ionic states are unpolarized, we fix
the parameters as CMi

= 1/(2Ji + 1). Such a realistic choice
for the initial-state population has important consequences for
the (spin) entanglement of emitted photon pairs. As we will see
later, by introducing the incoherent mixture of initial magnetic
substates [Eq. (1)], the two-photon state’s coherences are
jeopardized as well and hence a loss of quantum correlations
is induced.

The density (statistical) operators of the initial and the final
states of the overall system are connected by the standard
relation [26–28]

ρ̂f = Û ρ̂i,ion ⊗ ρ̂i,γ Û †, (2)

where Û is the evolution operator, which accounts for the
interaction of the ion with the radiation field. The final-state
operator [Eq. (2)] describes both the deexcited ion in some
state |αf ,Jf ,Mf 〉 and the two emitted photons with momenta
�k1,2 and helicities λ1,2. Owing to the transverse character of
the electromagnetic radiation, these helicities, or projections
of the photon momenta on their own directions of propagation,
can take only two values, λ1,2 = ±1.

Instead of using the final-state density operator ρ̂f , it is
often more convenient to work with its matrix representation,
briefly referred to as the final-state density matrix. In the
representation of the individual angular momenta this matrix
reads

〈f ; �k1λ1,�k2λ2|ρ̂f |f ′; �k1λ
′
1,

�k2λ
′
2〉

≡ 〈αf Jf Mf ; �k1λ1,�k2λ2|ρ̂f |αf Jf M ′
f ; �k1λ

′
1,

�k2λ
′
2〉

= 1

2Ji + 1

∑
Mi

CiM
�k1 �k2
f i (λ1,λ2)M�k1�k2 ∗

f i (λ′
1,λ

′
2), (3)

where we employed Eq. (1) to evaluate elements of the ionic
initial-state matrix 〈αiJiMi |ρ̂i,ion|αiJiM

′
i〉 and introduced for-

mal notation for the transition amplitude:

M�k1 �k2
f i (λ1,λ2) = 〈αf Jf Mf ; �k1λ1,�k2λ2|Û |αiJiMi ; 0,0〉. (4)
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As seen from this expression, M�k1�k2
f i (λ1,λ2) describes a

transition between two bound ionic states accompanied by
the simultaneous emission of two photons.

The final-state matrix [Eq. (3)] still contains the complete
information about the system and can be used to derive the
properties of the photons or the residual ion. Assuming that
the final magnetic substate of the ion remains unobserved in
an experiment, we can derive the reduced density matrix ρ̂γ ,
which describes only the polarization state of the two photons,
measured at a certain opening angle θ , with certain energies
ω1 and ω2:

〈�k1,λ1,�k2,λ2|ρ̂f,γ |�k1,λ
′
1,

�k2,λ
′
2〉

≡
∑
Mf

〈f ; �k1,λ1,�k2,λ2|ρ̂f |f ; �k1,λ
′
1,

�k2,λ
′
2〉

= N
2Ji + 1

∑
Mi,Mf

CMi
M�k1 �k2

f i (λ1,λ2)M�k1�k2 ∗
f i (λ′

1,λ
′
2), (5)

where we introduced the factor N to ensure the proper
normalization of the matrix Tr(ρ̂γ ) = 1. In what follows we
will use this (reduced) matrix to analyze the polarization
entanglement of the photons’ pair. Before starting such an
analysis, we shall briefly discuss the computation of the
second-order amplitude [Eq. (4)]. Most naturally such an
amplitude can be evaluated within the framework of second-
order perturbation theory [6,26,27]:

M�k1 �k2
f i (λ1,λ2) =

∑
ν

∫ ( 〈f | R̂(�k1,λ1)|ν〉〈ν|R̂(�k2,λ2) |i〉
Eν − Ei + ω2

+ 〈f |R̂(�k2,λ2) |ν〉 〈ν| R̂(�k1,λ1) |i〉
Eν − Ei + ω1

)
. (6)

Here |i〉 = |αi,Ji,Mi〉, |ν〉 = |αν,Jν,Mν〉, and |f 〉 =
|αf ,Jf ,Mf 〉 denote the solutions of Dirac’s equation for the
initial, intermediate, and final ionic states, respectively, while
Ei , Eν , and Ef are the corresponding energies. Because of
energy conservation, Ei and Ef are related to the energies
ω1,2 of the emitted photons by

Ei − Ef = ω1 + ω2. (7)

From this relation it is convenient to define the energy sharing
parameter η = ω1/(Ei − Ef ), i.e., the fraction of energy that
is carried away by the first photon.

In Eq. (6) R̂(�k,λ) is the transition operator that describes the
relativistic interaction of the electrons with the electromagnetic
radiation. In the velocity (Coulomb) gauge, this operator can
be written as a sum of one-particle operators,

R̂†(�k,λ) =
∑
m

�αm
�Aλ,m =

∑
m

�αm�uλe
i�k·�rm , (8)

where �αm denotes the vector of the Dirac matrices for the mth
particle, �Aλ,m is the vector potential of the photon field, and
�uλ is the unit polarization vector. For practical computations,
it is convenient to decompose the vector potential �Aλ,m into
spherical tensors (i.e., into its electric and magnetic multipole
components). For the emission of the photon in the direction

k̂ = (θ,φ) with respect to the quantization z axis, such a
decomposition reads

�Aλ,m =
√

2π

∞∑
Lγ =1

Lγ∑
Mγ =−Lγ

∑
p=0,1

iLγ [Lγ ]1/2(iλ)p

× â
p

Lγ Mγ
(k)D

Lγ

Mγ λ(k̂), (9)

where [Lγ ] = 2Lγ + 1, k = |�k|, D
Lγ

Mγ λ is the Wigner rotation

matrix of rank Lγ , and the â
p=0,1
Lγ Mγ

(k) refer to magnetic (p = 0)
and electric (p = 1) multipoles, respectively.

The great advantage of the multipole expansion [Eq. (9)],
when compared to the plane-wave formulation on the right-
hand side of Eq. (8), is that it provides a radial-angular
representation of the photon wave function. Together with
similar representations of the atomic wave functions it al-
lows for significant simplification of the transition amplitude

M�k1 �k2
f i (λ1,λ2) (see Ref. [9] for further details). Moreover,

Eq. (9) gives a very useful tool for studying multipole effects in
the electron-photon interaction. If, for example, the summation
in Eq. (9) is restricted to the term with Lγ = 1 and p = 1,
one obtains the electric dipole (E1) contribution, while the
component with Lγ = 1 and p = 0 provides the magnetic
dipole (M1) contribution, and so on.

As seen from Eq. (6), the evaluation of second-order tran-
sition amplitudes requires the summation over the complete
spectrum of the ion. Within the relativistic framework, such a
computation is not a simple task since it includes a summation
over the discrete part of the Dirac spectrum as well as an
integration over the positive- and negative-energy continua. A
number of methods have been developed in the past decades to
compute Eq. (6) consistently. Apart from a direct summation
over just a few intermediate states that are close in energy
to the states involved in the decay, the discrete-basis-set
approach is widely employed nowadays in (relativistic as
well as nonrelativistic) second-order calculations. Within this
approach, a finite set of discrete pseudostates is constructed
from some basis functions and utilized to compute the
transition amplitude Mf i [8,29]. In the present work we use
an alternative—the Green’s-function approach—which helps
to avoid the direct summation over the (virtual) intermediate
states |ν〉 = |αν,Jν,Mν〉. In the framework of this alternative
approach, moreover, we employ the Sturmian representation
[30] of the radial components of the Green’s function, which
allows the analytical evaluation of the transition amplitude
[Eq. (6)] as well as the entanglement measures.

In contrast to hydrogenlike ions, the relativistic second-
order calculations for few-electron systems are more intricate
since one has to take into account electron-electron interaction
effects. In the high-Z domain, however, the radiative transi-
tions in few-electron ions can be reasonably well understood
within the independent-particle model. This model, which
takes the Pauli principle into account, is especially justified
for heavy species since the interelectronic effects scale with
1/Z and hence are much weaker than the electron-nucleus
interaction. The great advantage of the independent-particle
model is that it allows the decomposition of the many-body,
second-order transition amplitudes in terms of their one-
electron analogs (see Ref. [24] for further details). In Sec. V B
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we will apply this approach for the computation of the spin
entanglement between photons emitted in the decay of heavy
heliumlike ions.

B. Dipole approximation

1. S → S transitions

The reduced density matrix [Eq. (5)] contains complete
information about the spin states of the photon pairs emitted
in the decay of atoms or ions. Together with the transition
amplitude [Eq. (6)], it is suitable to explore two-photon
transitions also in the high-Z domain, where relativistic and
nondipole effects are significant. However, before we perform
such a fully relativistic analysis, let us restrict ourselves first
to the non-relativistic dipole theory and derive approximate
expressions for the description of the two-photon polarization
states. As we will see later, this will provide intuitive insight
into the entanglement properties of the photon pairs. Moreover,
by comparing predictions of such a simplified dipole approach
with the results of the fully relativistic theory, we will be able to
identify the relativistic and multipole effects in the two-photon
transitions.

By making use of the nonrelativistic dipole approximation
for the electron-photon interaction and by restricting the
intermediate-state summation to states |ν〉 = |αν,Jν,Mν〉 with
definite momentum Jν and parity Pν , defined by dipole
selection rules, it is possible to express the two-photon density
matrix [Eq. (5)] in the form [22]

〈�k1,λ1,�k2λ2|ρ̂γ |�k1,λ
′
1,

�k2,λ
′
2〉

≈ C λ1λ2λ
′
1λ

′
2

∑
L,µ1µ2

DL
µ1µ2

(x̂ ′ŷ ′ẑ′ → x̂ŷẑ)

×〈1,λ1,1, − λ′
1|L,µ1〉〈1, − λ2,1,λ′

2|L,µ2〉

×

⎛
⎜⎝

⎧⎪⎨
⎪⎩

Jν Jf 1

Ji Jν 1

1 1 L

⎫⎪⎬
⎪⎭ +

{
1 1 L

Jν Jν Ji

}{
1 1 L

Jν Jν Jf

}⎞
⎟⎠ ,

(10)

where we employ the standard notation for the Wigner 6j and
9j symbols [28] and C is a normalization constant that absorbs
the radial parts of the (dipole) transition amplitudes Mf i . The
final-state density matrix [Eq. (10)] therefore depends only on
the symmetry of the initial and final ionic states as well as on
the photons’ helicities.

As mentioned above, Eq. (10) can be applied to the analysis
of only those transitions that proceed—within the nonrela-
tivistic picture—via intermediate (virtual) states |αν,Jν,Mν〉
having one particular set of values for the total angular
momentum Jν and parity Pν . This is the case of the
1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transition in heliumlike ions, for
which the intermediate-state summation in the amplitude
[Eq. (6)] is restricted to the nν

1P1 levels only if one treats
the electron-photon interaction in the dipole approximation.
Our approach is also justified for the 2s1/2 → 1s1/2 decay
in hydrogenlike ions since the intermediate states nνp1/2

and nνp3/2 are degenerate in the nonrelativistic limit. In the
following analysis, therefore, we shall restrict the discussion

of the nonrelativistic dipole approximation [Eq. (10)] to these
two transitions.

By inspecting Eq. (10) for the cases of the (nonrelativistic)
2s1/2 → 1s1/2 and 1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transitions, it
can be proven that the density matrix ρ̂γ fulfills the relation
Tr(ρ̂2

γ ) = [Tr(ρ̂γ )]2 = 1 and hence represents a pure quantum-
mechanical spin state of the emitted photons. This pure state
can be described by the state vector

|�〉 = − 1

2
√

1 + cos2 θ
[(cos θ − 1)(|++〉 + |−−〉)

+ (cos θ + 1)(|+−〉 + |−+〉)], (11)

as directly derived from Eq. (10). In this expression the
prefactor arises due to the normalization condition 〈�|�〉 = 1
and, for the sake of brevity, we use the notation |±〉 ≡
|λ = ±1〉. Here and henceforth, whenever a state vector
describing both photons appears, the first (second) index is
to be attributed to the first (second) photon, the photons being
identified and detected according to Sec. II. For the particular
case of back-to-back photon emission (θ = π ), the vector
[Eq. (11)] further simplifies to a Bell state:

|�〉 = 1√
2

(|++〉 + |−−〉) . (12)

As seen from this expression, for the opening angle θ = π ,
photons can only be detected having the same helicity. In the
past, such a quantum correlation between the photons emitted
in the 2s1/2 → 1s1/2 decay of atomic deuterium has been
employed for verifying a violation of Bell’s inequality [18].

Instead of the helicity basis |λ = ±1〉, it is often more
convenient to analyze the polarization correlations of two
photons in terms of their linear polarization unit vectors.
These vectors are defined in the plane perpendicular to the
photon propagation axis and can be obtained by the standard
transformations [31]:

|x〉 = 1√
2

(|+〉 + |−〉),
(13)

|y〉 = i√
2

(−|+〉 + |−〉).

They can be used to rewrite the state vector [Eq. (11)] in the
xy representation as

|�〉 = − 1√
1 + cos2 θ

[|yy〉 + cos θ |xx〉]. (14)

Since we just change the basis, the opening angle θ = π

again corresponds to a Bell, i.e., maximally entangled, state.
In contrast, in this representation [Eq. (14)] we immediately
see that perpendicular emission under θ = π/2 results in a
product (nonentangled, or separable) photon spin state.

The quantitative analysis of entanglement for the emitted
photon pair will be performed in the following sections based
on our general expression [Eq. (10)] as well as on the dipole
approximation [Eqs. (12)–(14)]. Before we start with such an
analysis let us discuss some basic properties of the spin state
[Eq. (14)]. We recall the typical experimental scenario in which
both photons are detected by polarimeters whose transmission
axes are characterized by the angles χ1 and χ2 with respect to
the reaction (x-z) plane (see Fig. 1). Equation (14) predicts that
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after the first photon has been detected by the detector A (the
first detector) with some defined (linear) polarization angle χ1,
the second photon collapses onto the vector:

|�〉 → N (sin χ1 |y〉 + cos θ cos χ1 |x〉), (15)

with N some normalization factor. It follows from Eq. (15)
that the second photon is then found in a linearly polarized
state. The direction of this linear polarization, characterized
by the angle χ̃2, depends on the opening angle θ and on the
polarization angle χ1 of the first photon:

tan χ̃2 = 1

cos θ
tan χ1. (16)

As we will show later, such a definite (except for the
opening angle θ = π/2) correspondence between the linear
polarizations does not generally imply maximal entanglement
of the photon pairs. To understand this issue and to quantify
the degree of entanglement we shall introduce the concurrence
measure in Sec. IV.

2. P → S transitions

In contrast to the S → S transitions from above, the
nonrelativistic dipole approximation [Eqs. (10)–(14)] cannot
be applied to the analysis of the 1s1/2 2p1/2

3P0 → 1s2
1/2

1S0

decay of heliumlike ions. The principal reason for this failure
is that the leading (electric-magnetic dipole) E1M1-M1E1
1s1/2 2p1/2

3P0 → 1s2
1/2

1S0 transition may proceed via inter-
mediate 1s1/2 nνs1/2

3S1 or 1s1/2 nνp
3P1 states, thus giving

rise to a double-slit picture. By taking into account such a
Young-type interference and by restricting ourselves to the
dipole (E1M1-M1E1) terms in the electron-photon interaction,
we again find the photon pair in a pure state:

|�〉 = C

(
− 
(η) sin2 θ

2
|++〉 + �(η) cos2 θ

2
|−+〉

−�(η) cos2 θ

2
|+−〉 + 
(η) sin2 θ

2
|−−〉

)
. (17)

Here C is the normalization constant and the energy-
dependent functions 
(η) = SE1M1(ω1) + SE1M1(ω2) +
SM1E1(ω1) + SM1E1(ω2) and �(η) = SE1M1(ω1) −
SE1M1(ω2) − SM1E1(ω1) + SM1E1(ω2) are given in
terms of the multipole, second-order reduced transition
amplitudes SL1p1,L2p2 (ω) (see Ref. [24] for further
details).

As seen from Eq. (17), the spin state of the photons
emitted in the 1s1/2 2p1/2

3P0 → 1s2
1/2

1S0 transition depends
on the energy sharing η. No simple analytical expression
for this dependence can be derived in general, owing to
the complicated structure of the functions �(η) and 
(η).
However, if both photons carry away the same fraction of
energy ω1 = ω2, the function �(η = 0.5) vanishes and the
vector [Eq. (17)] represents a maximally entangled (Bell) state:

|�〉 = 1√
2

(− |++〉 + |−−〉) = − i√
2

(|xy〉 + |yx〉). (18)

By comparing this expression with Eq. (14), one can see
that polarization properties of P0 → S0 and S0 → S0 (as well
as nonrelativistic s1/2 → s1/2) transitions are rather different:
While the photons emitted in the S → S transitions can be

detected having parallel linear polarization vectors, the P → S

decay should result in emission of the photon pair with
orthogonal linear polarizations. Moreover, no angular depen-
dence arises in the state vector [Eq. (18)], implying maximal
entanglement between the photons’ spins, irrespective of the
particular decay geometry.

IV. ENTANGLEMENT OF THE TWO-PHOTON STATE

We are ready now to discuss the concept of entanglement
for the emitted photon pairs and to introduce a proper measure
for it. Let us first return to the full two-photon state, which
accounts not only for the spin, but also for the spatial degrees
of freedom. Within the nonrelativistic dipole approximation
[Eq. (14)], such a state before its detection reads

|�〉 = N

∫
dω1dω2δ(ω1 + ω2 − �ω)f (ω1)|ω1ω2〉

×
∫

dθ1dθ2|θ1θ2〉[|yy〉 + cos(θ1 − θ2)|xx〉] + (1 ↔ 2),

(19)

where (1 ↔ 2) denotes the previous terms but with all
particles’ labels exchanged and the state is normalized by
virtue of the constant N . Moreover, f (ω1,2) is the energy
probability density function of the decay, �ω = Ei − Ef is
the transition energy, and θ1,2 are the angles that address the
positions of the first and second photons in the reaction plane,
respectively. Due to the integral over angles and energies, the
above state cannot be written as a product state for the energies,
the emission angles, or the polarization. It can hence be seen
as highly entangled, in general.

In order to rigorously discuss entanglement, due to the
identity of particles, a degree of freedom for discrimination is
needed. The energy of the photons and their opening angles
are an appropriate choice since one naturally projects onto
energy and momentum eigenstates in the experiment. In the
coincidence experiment displayed in Fig. 1, the two-photon
state collapses onto a state with definite momenta, while the
polarization can be measured in any basis. If the energies of
the photons are equal and the emission directions are exactly
the same, we are unable to identify two separate particles
between which entanglement may be defined. As long as
this is not the case, we identify the particle projected on the
two energies and angles as the two distinct entities to which
we can safely assign an entanglement measure [25]. Hence,
even though we start with a rather complex state of identical
particles in which no physical subsystem structure is apparent,
we can effectively deal with the two-qubit system of polarized
photons projected on energy and momentum states.

Having clarified the concept of the two-photon entangle-
ment, we shall now introduce its quantitative measure. For a
photon pair, which can be seen as a two-qubit system, it is
convenient to describe the degree of entanglement by means
of Wootter’s concurrence C [32]. For an arbitrary two-qubit
system described by the density operator ρ̂ the concurrence is
defined as

C = max(0,
√

e1 − √
e2 − √

e3 − √
e4), (20)
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where
√

ei are the square roots of the eigenvalues of the
operator ρ̂(σ̂ (1)

2 ⊗ σ̂
(2)
2 )ρ̂∗(σ̂2

(1) ⊗ σ̂
(2)
2 ) in descending order, ρ̂∗

is the complex conjugate of ρ̂, and σ̂
(1,2)
2 = σ̂ (1,2)

y are the Pauli
matrices acting on the first and the second qubit, respectively.
Before we discuss further the properties of the concurrence C,
let us first recall that it quantifies correlations that can be fully
attributed to the entanglement. Biparticle states with vanishing
concurrence can still exhibit correlations that are not, however,
of quantum nature.

The definition in Eq. (20) can be simplified further if applied
to a pure quantum-mechanical state described by a ket vector

|β〉 = Caa |aa〉 + Cab |ab〉 + Cba |ba〉 + Cbb |bb〉 , (21)

where a and b are arbitrary two-dimensional basis states and
Cij are complex numbers. For this state the concurrence reads

C = 2|CaaCbb − CabCba|. (22)

By using this expression and Eq. (14), we immediately obtain
the analytical expression

C(θ ) = 2
| cos θ |

1 + cos2 θ
(23)

for the spin entanglement of the photons emitted in the
2s1/2 → 1s1/2 and 1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transitions. We
recall that Eq. (23) is obtained within the nonrelativistic
dipole approximation and should be questioned in the high-Z
domain, where higher-order and relativistic effects can play a
significant role. To explore the influence of these effects on
the photon spin entanglement, in Sec. V we will compare the
predictions obtained from Eq. (23) with the rigorous relativistic
calculations based on Eqs. (5), (6), and (20).

V. RESULTS AND DISCUSSION

A. Hydrogenlike ions

1. Polarization entanglement

After discussing the theoretical background of two-photon
polarization studies, we are now prepared to analyze the
influence of the relativistic and higher-multipole effects on
quantum correlations between the emitted particles. We start
our analysis with the 2s1/2 → 1s1/2 decay of hydrogenlike
ions, which is well established both in theory and in exper-
iment. As shown above, the polarization properties of this
transition can be described—within the nonrelativistic dipole
approximation—by the state vector [Eq. (14)] and hence
by the degree of entanglement [Eq. (23)]. The theoretical
predictions obtained within such a nonrelativistic approach
are displayed in Fig. 2 for the decay of neutral hydrogen
as well as hydrogenlike xenon Xe53+ and uranium U91+
ions and are compared with the results of the rigorous
relativistic treatment. In the relativistic treatment, one deals
with the relativistic Dirac wave functions and includes the
full interaction between the electron and the radiation field in
the amplitude [Eq. (6)]. Relativistic as well as nonrelativistic
dipole calculations of the concurrence [Eqs. (20)–(22)] are
performed at two relative photon energies η = 1/16 (upper
panel) and η = 1/2 (lower panel). As seen from the figure, in
the case of equal energy sharing (η = 1/2), both approaches
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FIG. 2. (Color online) Concurrence of two photons emitted in the
2s1/2 → 1s1/2 decay of neutral hydrogen and hydrogenlike xenon and
uranium ions. The results of the nonrelativistic dipole approximation
(dashed line) and the rigorous relativistic theory (solid line) are shown
for two relative photon energies η = 1/16 (upper panel) and η = 1/2
(lower panel).

yield almost identical results along the entire isoelectronic
sequence. Our calculations show that, while being maximal for
the parallel (θ = 0) and back-to-back (θ = π ) photon emission,
the concurrence vanishes at the opening angle θ = π/2. This
behavior is well understood from Eqs. (11) and (14) as well
as from the conservation of the projection Mtot of the total
angular momentum Jtot of the overall system of an ion plus
two photons. Namely, if no electron-spin flip were to occur
during the 2s1/2 → 1s1/2 decay and assuming zero nuclear
spin, the conservation law enforces that the change of the
projection of the ion’s total angular momentum relative to
the quantization axis z (chosen along the momentum of the
first photon) would be given by Mi − Mf = 0 = λ1 + Mγ2 .
In this expression, λ1 is the helicity of the first photon and
Mγ2 is the projection of the angular momentum of the second
photon. For photons emitted in parallel or back to back,
this projection is Mγ2 = λ2 and −λ2, correspondingly, thus
leading to the conditions λ1 = −λ2 or λ1 = λ2. Moreover,
owing to the spherical symmetry of s-ionic states there is
an equal probability of emission of the first photon with
helicity λ1 = +1 or −1. This immediately implies maximally
entangled Bell states |�〉 = (|+−〉 + |+−〉)/√2 for θ = 0
and |�〉 = (|++〉 + |−−〉)/√2 for θ = π , as predicted by
Eqs. (11) and (12).

Similar to the cases of parallel and back-to-back photon
emission, the conservation condition λ1 = −Mγ2 with the
helicity of the first photon being λ1 = ±1 may help explain the
behavior of the entanglement measure C(θ ) at θ = π/2. This
will require us to return to Eq. (9), which simplifies—within
the dipole approximation—to

�Aλ = −
√

6π

1∑
Mγ =−1

λ â
p=1
1Mγ

(k) d1
Mγ λ(θ ), (24)

where d1
Mγ λ(θ ) is Wigner’s (small) d matrix, whose properties

are discussed in detail in Ref. [28]. For the opening angle
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θ = π/2, the elements of this matrix are d1
11 = d1

1−1 = d1
−11 =

d1
−1−1 = 1/2, implying, together with Eq. (6) and the fact that

the ionic states are spherically symmetric, that the probability
for the second photon to have projection Mγ2 = ∓1 on
the quantization axis of the overall system is independent
of its helicity λ2. Therefore, no correlations between the
polarization (spin) states of the emitted photons appear for
the perpendicular emission, thus leading to the vanishing
entanglement C(π/2) = 0, as displayed in Fig. 2.

2. Purity of the two-photon state and impact on entanglement

As seen from the top panel of Fig. 2, the accuracy of the
nonrelativistic approximation [Eq. (23)] becomes generally
worse if one of the photons has a significantly higher
energy than the other one. For the 2s1/2 → 1s1/2 transition
of hydrogenlike uranium, for example, the nonrelativistic
dipole approximation overestimates the concurrence measure
by about 10% for forward as well as backward opening angles,
for an energy sharing η = 1/16. In order to understand better
such an energy-dependent behavior, we study the purity of the
two-photon polarization state, defined as

P = 4
3 Tr(ρ̂2

γ ) − 1
3 , (25)

where ρ̂γ represents the photon density matrix [Eq. (10)].
The purity varies from P = 0 (completely mixed state) to
P = 1 (pure state). In Fig. 3 we display the purity P for
the 2s1/2 → 1s1/2 decay of U91+ for two relative photon
energies: η = 1/16 (upper panel) and η = 1/2 (lower panel).
As seen from the figure, the purity strongly depends on the
energy-sharing parameter: While the purity of the two-photon
state is always greater than 0.987 for an equal energy sharing
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FIG. 3. (Color online) Purity [Eq. (25)] of the two-photon state
in the 2s1/2 → 1s1/2 decay of hydrogenlike uranium. Results of the
nonrelativistic dipole approximation (dashed line) and a rigorous
relativistic treatment (solid line) are shown for relative photon
energies η = 1/16 (upper panel) and η = 1/2 (lower panel).

η = 0.5, it is significantly reduced for η = 1/16. The loss
of purity can be attributed to the spin-orbit coupling in
hydrogenlike ions as well as to the magnetic terms in the
electron-photon interaction. Both of these relativistic effects
increase with the nuclear charge Z and with the photon
energy ω. They lead to the fact that the decay of the
unpolarized and hence mixed 2s1/2 level results in the emission
of photons characterized by a partially mixed state. Due to
complementarity of entanglement, mixedness and purity of a
quantum mechanical state [33], such a loss of purity causes the
reduction of the concurrence measure, which can be observed
in the top panel of Fig. 2. Despite such a reduction, there are
still quantum correlations between the polarization states of
the photons.

B. Heliumlike ions

1. 1s1/2 2s1/2
1 S0 → 1s2

1/2
1 S0 transition

In contrast to the 2s1/2 → 1s1/2 decay of one-electron
systems, the 1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transition in helium-
like ions always proceeds between the pure J = 0 quantum-
mechanical states [see Eq. (1)]. Therefore, the spin state of
the photon pair emitted in such a transition will be pure at
any energy sharing. The concurrence measure C(θ ) of such
a pure state calculated within the exact relativistic theory
turns out to be almost identical to the dipole approximation
[Eq. (23)]. The deviation between both predictions does not
exceed 1%, even for the heaviest heliumlike ions, and arises
due to the higher, nondipole terms in the electron-photon
interaction [Eq. (8)]. By comparing this prediction with the
calculations performed in Sec. V A for hydrogenlike ions,
we again argue that the reduction of the spin entanglement
between the photons emitted in the 2s1/2 → 1s1/2 transition
shall be mainly attributed to the loss of purity of ionic states.

2. 1s1/2 2 p1/2
3 P0 → 1s2

1/2
1 S0 transition

After the preceding, brief discussion of the
1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transition, we turn now to explore
quantum correlations in the 1s1/2 2p1/2

3P0 → 1s2
1/2

1S0

decay. As one can expect from the spin-state vector [Eq. (17)]
derived in the leading order, electric and magnetic dipole
approximation, these correlations should differ from those
predicted for the S → S cases. Indeed, by inserting the vector
[Eq. (17)] into Eq. (23), we obtain—within the dipole (E1M1)
approximation—the concurrence measure as

C(θ,η) =
∣∣∣∣∣
�2(η) cos4 θ

2 − 
2(η) sin4 θ
2

�2(η) cos4 θ
2 + 
2(η) sin4 θ

2

∣∣∣∣∣ . (26)

In contrast to the polarization entanglement [Eq. (23)] between
the photons emitted in the S → S transitions, here the concur-
rence turns out to depend on the photons’ energy sharing.
To better understand such a dependence, we display the
entanglement of the photons emitted in the 1s1/2 2p1/2

3P0 →
1s2

1/2
1S0 decay of heliumlike xenon and uranium ions in

Fig. 4. Calculations are performed for two relative energies
η = 1/10 and 1/4, both within the dipole approximation
[Eq. (26)], and by using the exact theory, which accounts for
the higher-multipole channels. As seen from the figure, both
theoretical approximations predict maximal entanglement
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FIG. 4. (Color online) Concurrence of two photons emitted in the
1s1/2 2p1/2

3P0 → 1s2
1/2

1S0 decay of heliumlike xenon and uranium
ions. Results of the E1M1 dipole approximation (dash-dotted line)
and of the rigorous relativistic theory (solid line) are shown for two
relative photon energies η = 1/10 (upper panel) and η = 1/4 (lower
panel).

C = 1 for the parallel and back-to-back photon emission at
any energy sharing η, a feature that could be expected from
the conservation laws. In contrast, the critical opening angle
θc at which the concurrence vanishes, C(θc) = 0, varies with
the relative photon energy. By inspecting Eq. (26) we find the
following relation for this angle:

tan2

(
θc

2

)
= |�(η)|

|
(η)| . (27)

It follows from this expression that for any nonzero values of
the functions �(η) and 
(η) there exists one single critical
angle θc(η), as can also be seen, for example, from Fig. 4.

If the photons emitted in the 1s1/2 2p1/2
3P0 → 1s2

1/2
1S0

decay carry away the same portion of energy ω1 = ω2, the
function �(η) turns out to be zero and Eq. (27) cannot be
applied for the determination of the critical angle θc. As can
be seen from Eqs. (18) and (26), in this case the photons’
state is maximally entangled (a Bell state) for any opening
angle, i.e., C(θ,0.5) = 1. This behavior differs from that of the
1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 and 2s1/2 → 1s1/2 transitions for
which no correlations appear at the opening angle θ = π/2.
In order to understand the reason for this difference we shall
return to Eqs. (6)–(9). By making use of these expressions
and the properties of the Wigner matrices we rewrite the
two-photon transition amplitude in terms of reduced matrix
elements as

M�k1 �k2
f i (λ1,λ2) ∝ (λ1 + λ2)[SE1M1(ω) + SM1E1(ω)], (28)

where, for the case of equal energy sharing, ω1 = ω2 = ω.
It follows from Eq. (28) that, apart from the conservation of

the projection of the total angular momentum Jtot discussed
in Sec. V A, an additional selection rule arises for the
1s1/2 2p1/2

3P0 → 1s2
1/2

1S0 transition that forbids emission of
the photons with opposite helicities. Together with the equal
probabilities of the spin states |++〉 and |−−〉, this selection
rule implies the Bell state [Eq. (18)] and hence maximal
engagement of the photons’ state.

3. Incoherent preparation of the ions: 1s1/2 2s1/2
3 S1

→ 1s2
1/2

1 S0 transition

Until now our discussion of the two-photon decay of
heliumlike ions was restricted to J = 0 → J = 0 transitions.
In this case, both initial and final ionic states are pure
along the entire isoelectronic sequence and, consequently, the
two-photon states are pure as well. In order to underline again
the effect of the loss of purity on the quantum correlations, we
study the two-photon decay of the unpolarized 1s1/2 2s1/2

3S1

state. In Fig. 5 we display the degree of spin entanglement for
the 1s1/2 2s1/2

3S1 → 1s2
1/2

1S0 transition in heliumlike xenon
and uranium ions. Again, the exact relativistic calculations are
compared with the predictions of the electric dipole (E1E1)
approach for two relative energies η = 1/10 and 1/4. As
seen from the figure, the general behavior of the measure
C 3S0→1S0 is similar to that of the 1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 and
2s1/2 → 1s1/2 transitions. Namely, the concurrence changes
from C 3S0→1S0 = 1 for the parallel photon emission down to
zero at θ = π/2 and back to a maximum entanglement for
θ = π . Similar to the discussion in Sec. V A, this can be easily
understood if one applies again the momentum projection
selection rules and Eq. (24). In contrast to the 1s1/2 2s1/2

1S0 →
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FIG. 5. (Color online) Concurrence of two photons emitted in the
1s1/2 2s1/2

3S1 → 1s2
1/2

1S0 decay of heliumlike xenon and uranium
ions. Results of the E1E1 dipole approximation (dash-dotted line)
and the rigorous relativistic theory (solid line) are shown for two
relative photon energies η = 1/10 (upper panel) and η = 1/4 (lower
panel).
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1s2
1/2

1S0 and 2s1/2 → 1s1/2 transitions, however, the degree of
entanglement C 3S0→1S0 decreases much faster for the forward
0 < θ < π/3 and backward 2π/3 < θ < π angles, an effect
that can be understood if we remember that the initial ionic
state is prepared in an unpolarized (mixed) state.

As one can see from Fig. 5, spin entanglement for
the 1s1/2 2s1/2

3S1 → 1s2
1/2

1S0 transition is very sensitive to
higher multipoles in the electron-photon interaction. This is a
direct consequence of a strong suppression of the E1E1 decay
channel caused by the symmetry properties of the multiphoton
systems as described by Bose statistics (see Refs. [34–40]
for further details). The nondipole contributions become more
significant for heavier ions and with increasing energy sharing
η (0 < η < 0.5) and result in an asymmetric shift in the
concurrence.

VI. CONCLUSION

In summary, the two-photon decay of few-electron ions
has been investigated within the framework of density-matrix
and second-order perturbation theory. In our study special
attention has been paid to the quantum correlations between
the spin states of the emitted photons. By making use
of the nonrelativistic dipole model, we derived a simple
analytical expression for such spin entanglement if observed
in 2s1/2 → 1s1/2 and 1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transitions in
hydrogen and heliumlike ions, respectively. By comparing
the predictions of the dipole approximation with the fully
relativistic calculations, we were able to explore the influence
of the relativistic effects on the photon polarization properties.
In particular, we observed a reduction of entanglement that
becomes greater for high-Z systems and can be attributed to
the loss of purity of the two-photon spin states induced by
higher-multipole contributions and the relativistic contraction
of the wave functions.

In addition to the well-established 2s1/2 → 1s1/2 and
1s1/2 2s1/2

1S0 → 1s2
1/2

1S0 transitions, entanglement studies
were also performed for the 1s1/2 2s1/2

3S1 → 1s2
1/2

1S0 and

1s1/2 2p1/2
3P0 → 1s2

1/2
1S0 decays of intermediate- and high-

Z heliumlike ions. Based on the independent-particle model,
which is a good approximation for the analysis of the bound-
bound transitions in heavy atomic systems, we found that the
concurrence is very sensitive to the relative energy of emitted
photons, as well as to the higher-multipole contributions
to the electron-photon interaction. The strongest nondipole
effects have been identified for the 1s1/2 2s1/2

3S1 → 1s2
1/2

1S0

two-photon transition for which the E1E1 decay channel is
forbidden due to symmetry properties of the system.

Our theoretical analysis, performed for the intermediate-
and high-Z domain, underlines the importance of a detailed
knowledge of the electronic structure of ions (atoms) for
a better understanding of two-photon entanglement. This is
rather different from the earlier studies on the decay of
light neutral atoms [16–18] where the quantum correlations
between the photons could be predicted solely from angular
momentum conservation. In contrast, for heavy ions, entan-
glement properties of the photon pairs are governed by the
complicated interplay between these conservation laws and
relativistic as well as many-body effects.

The spin quantum correlation studies reported in the present
work may help explain the outcome of future γ -γ coincidence
measurements. Apart from the analysis of relativistic and
quantum electrodynamics effects, parity-violation corrections
to the photon spin entanglement can be observed in such
coincidence experiments. A theoretical analysis of these
parity-violation phenomena is currently under way.
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Radiat. Phys. Chem. 75, 1451 (2006).

[14] A. Kumar et al., Eur. Phys. J. Spec. Top. 169, 19
(2009).

[15] S. Trotsenko et al., Phys. Rev. Lett. 104, 033001 (2010).
[16] A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804

(1982).
[17] W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys.

Rev. Lett. 54, 1790 (1985).
[18] H. Kleinpoppen, A. J. Duncan, H.-J. Beyer, and Z. A. Sheikh,

Phys. Scr. T 72, 7 (1997).
[19] A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777

(1935).
[20] P. A. Schilpp, Albert Einstein: Philosopher-Scientist (Open

Court, Chicago, 1949), pp. 224–228.
[21] T. Radtke, A. Surzhykov, and S. Fritzsche, Eur. Phys. J. D 49, 7

(2008).

032506-9

http://dx.doi.org/10.1002/andp.19314010303
http://dx.doi.org/10.1086/144158
http://dx.doi.org/10.1016/0375-9601(69)90719-1
http://dx.doi.org/10.1103/PhysRevA.14.531
http://dx.doi.org/10.1103/PhysRevA.30.1175
http://dx.doi.org/10.1103/PhysRevA.30.1175
http://dx.doi.org/10.1103/PhysRevA.24.183
http://dx.doi.org/10.1103/PhysRevA.42.1442
http://dx.doi.org/10.1103/PhysRevA.42.1442
http://dx.doi.org/10.1007/s100530050147
http://dx.doi.org/10.1007/s100530050147
http://dx.doi.org/10.1103/PhysRevA.71.022509
http://dx.doi.org/10.1103/PhysRevA.71.022509
http://dx.doi.org/10.1103/PhysRevA.77.042507
http://dx.doi.org/10.1103/PhysRevA.77.042507
http://dx.doi.org/10.1103/PhysRevA.5.1160
http://dx.doi.org/10.1238/Physica.Regular.069a000C1
http://dx.doi.org/10.1016/j.radphyschem.2005.07.008
http://dx.doi.org/10.1140/epjst/e2009-00967-x
http://dx.doi.org/10.1140/epjst/e2009-00967-x
http://dx.doi.org/10.1103/PhysRevLett.104.033001
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1103/PhysRevLett.54.1790
http://dx.doi.org/10.1103/PhysRevLett.54.1790
http://dx.doi.org/10.1088/0031-8949/1997/T72/001
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1140/epjd/e2008-00132-1
http://dx.doi.org/10.1140/epjd/e2008-00132-1


FILIPPO FRATINI et al. PHYSICAL REVIEW A 83, 032506 (2011)

[22] T. Radtke, A. Surzhykov, and S. Fritzsche, Phys. Rev. A 77,
022507 (2008).

[23] A. Surzhykov, U. D. Jentschura, Th. Stöhlker, and S. Fritzsche,
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