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Interpreting quantum discord through quantum state merging
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We present an operational interpretation of quantum discord based on the quantum state merging protocol.
Quantum discord is the markup in the cost of quantum communication in the process of quantum state merging,
if one discards relevant prior information. Our interpretation has an intuitive explanation based on the strong
subadditivity of von Neumann entropy. We use our result to provide operational interpretations of other quantities
like the local purity and quantum deficit. Finally, we discuss in brief some instances where our interpretation is
valid in the single-copy scenario.
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I. INTRODUCTION

Quantum-information science is primarily aimed at har-
nessing the quantum structure of nature for information
processing and computing tasks [1]. This quest has met with
considerable success over the last decade, but there has been
substantial progress in the other direction as well. Information
theory has provided a novel framework for unraveling the
intricacies of quantum mechanics. Quantum correlations, as
well as classical ones, are now viewed as resources, whose
interconvertability is governed by quantum-information theory
[2]. Foremost among these is evidently entanglement, which
provides enhanced performance in several important tasks like
communication, computation, metrology, and others [3].

In the realm of mixed-state quantum-information, however,
instances are known where quantum advantages are evidenced
in the presence of little or no entanglement [4]. Recently,
quantum discord was proposed as the source behind this
enhancement and first steps toward a formal proof have
been taken [5]. Quantum discord was originally suggested
as a measure of quantumness of correlations [6], and has
since been studied in variety of systems and settings [7–9].
Initial motivation for its definition arose in the context of
pointer states and environment-induced decoherence [10].
It has since been related to quantum phase transitions [11]
and the performance to quantum and classical Maxwell’s
demons [12]. Though satisfactory from a physical perspective,
the benchmark for accepting some quantity as a resource in
quantum-information science is that it appear as the solution
to an appropriate asymptotic information processing task. It is
this information theoretic interpretation that has been lacking
for quantum discord, and we now provide in this article. This
also addresses a more fundamental dichotomy in quantum-
information science, where resources and their manipulations
can have both thermodynamic and information theoretic
interpretations independently, which are not intuitively or
mathematically reconciled. Our article bridges this gap in the
context of quantum discord, as well quantum deficit and local
purity.

Quantum discord aims at capturing all quantum correla-
tions in a quantum state, including entanglement [6,13,14].
Quantum mutual information is generally taken to be the
measure of total correlations, classical and quantum, in a
quantum state. For two systems, A and B, it is defined as

I (A : B) = H (A) + H (B) − H (A,B). Here H (·) denotes the
Shannon entropy of the appropriate distribution. For a classical
probability distribution, Bayes’ rule leads to an equivalent
definition of the mutual information as I (A : B) = H (A) −
H (A|B). This motivates a definition of classical correlation
in a quantum state. Suppose Alice and Bob share a quantum
state ρAB ∈ HA ⊗ HB. If Bob performs the Positive operator
valued measurements (POVM) set {�i}, the resulting state is
given by the shared ensemble {pi,ρA|i}, where

ρA|i = TrB(�iρAB)/pi, pi = TrA,B(�iρAB).

A quantum analog of the conditional entropy can then be
defined as S̃{�i }(A|B) ≡ ∑

i piS(ρA|i), and an alternative
version of the quantum mutual information can now be defined
as J{�i }(ρAB) = S(ρA) − S̃{�i }(A|B), where S(·) denotes the
von Neumann entropy of the relevant state. The above
quantity depends on the chosen set of measurements {�i}.
To capture all the classical correlations present in ρAB, we
maximizeJ{�i }(ρAB) over all {�i}, arriving at a measurement-
independent quantity

J (ρAB) = max
{�i }

[S(ρA) − S̃{�i }(A|B)]. (1)

Then, quantum discord is defined as [6]

D(ρAB) = I (ρAB) − J (ρAB)

= S(ρB) − S(ρAB) + min
{�i }

S̃{�i }(A|B). (2)

Since the conditional entropy is concave over the set of
POVMs, which is convex, the minimum is attained on the
extreme points of the set of POVMs, which are rank 1 [15].
In the asymptotic limit, when Alice and Bob share n copies of
the state ρAB, we can define a regularized version of quantum
discord as

D(ρAB) = lim
n→∞

D
(
ρ⊗n

AB

)
n

≡ I (ρAB) − J (ρAB), (3)

where

J (ρAB) = lim
n→∞

J
(
ρ⊗n

AB

)
n

. (4)

The quantity J (ρAB) has an operational interpretation as a
measure of classical correlations, as the distillable common
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randomness (DCR) with one-way classical communication
[15], which is identical to the regularized version of the
measure of classical correlations as defined by Henderson and
Vedral [13]. Whether there exists a “single-letter” expression
for discord depends on its additivity, which is equivalent to
that of the entanglement of formation, since

D(ρAC) = EC(ρAB) + S(ρC) − S(ρAC), (5)

where ρABC is pure and EC(·) is the entanglement cost, the
regularized version of the entanglement of formation [3]. This
can be obtained using the monogamy between DCR and EC

[16]. Following the counterexample to the additivity of the
minimum output entropy [17] and therefore the entanglement
of formation, we can conclude that quantum discord is not
additive either. In fact, the subadditivity of minimum output
entropy implies that in general, quantum discord is subadditive.
Our endeavor here is to provide an operational interpretation
for quantum discord D itself, without seeking recourse to its
definition as the difference of total and classical correlations.
To that end, we employ the process of quantum state merging,
which we describe next. For brevity, in the remainder of the
paper we suppress explicit mention of the state ρAB in the
argument of quantities, denoting its von Neumann entropy as
S(A,B), its quantum discord when measurements are made on
B as D(A|B), etc.

II. QUANTUM STATE MERGING AND DISCORD

Consider a party Bob having access to some incomplete
information Y, and another party Alice having the missing
the part X. We can think of X and Y as random variables. If
Bob wishes to learn X fully, how much information must
Alice send to him? Evidently, she can send H (X) bits to
satisfy Bob. However, Slepian and Wolf showed that she can
do better by merely sending H (X|Y ) = H (X,Y ) − H (Y ), the
conditional information [18]. Since H (X|Y ) � H (X), Alice
can take advantage of correlations between X and Y to reduce
the communication cost needed to accomplish the given task.
The quantum state merging protocol is the extension of the
classical Slepian-Wolf protocol into the quantum domain
where Alice and Bob share the quantum state ρ⊗n

AB , with
each party having the marginal density operators ρ⊗n

A and ρ⊗n
B ,

respectively. Let |�ABC〉 be a purification of ρAB. Assume,
without loss of generality, that Bob holds C. The quantum
state merging protocol quantifies the minimum amount of
quantum-information which Alice must send to Bob so that
he ends up with a state arbitrarily close to |�〉⊗n

B ′BC, B ′
being a register at Bob’s end to store the qubits received
from Alice. It was shown that in the limit of n → ∞, and
asymptotically vanishing errors, the answer is given by the
quantum conditional entropy [19,20]: S(A|B) = S(A,B) −
S(B). When S(A|B) is negative, Bob obtains the full state
with just local operations and classical communication, and
distills −S(A|B) ebits with Alice, which can be used to transfer
additional quantum-information in the future.

An intuitive argument for our interpretation of quantum
discord begins with strong subadditivity, which states that [20]

S(A|B,C) � S(A|B). (6)

From the point of view of the state merging protocol, the above
has a very clear interpretation: having more prior information
makes state merging cheaper. Or in other words, throwing
away information will make state merging more expensive.
Thus, if Bob discards system C, it will increase the cost of
quantum communication needed by Alice in order to merge her
state with Bob. Our intent here shall be to relate this increase
in the cost of state merging to quantum discord between
A and B.

To that end, we expand the size of the Hilbert space so that
an arbitrary measurement (with forgetting) can be modeled
by coupling to the auxiliary subsystem and then discarding it.
This permits us to apply strong subadditivity to the problem
in question. We assume C to initially be in a pure state |0〉,
and a unitary interaction U between B and C. Letting primes
denote the state of the system after U has acted, we have
S(A,B) = S(A,BC) as C starts out in a product state with
AB. We also have I (A : BC) = I (A′ : B ′C ′). As discarding
quantum systems cannot increase the mutual information,
we get I (A′ : B ′) � I (A′ : B ′C ′). Now consider the state
merging protocol between A and B in the presence of C.
We have S(A|B) = S(A) − I (A : B) = S(A) − I (A : BC) =
S(A|BC). After the application of the unitary U , but before
discarding the subsystem C, the cost of merging is still given by
S(A′|B ′C ′) = S(A|B). This implies that one can always view
the cost of merging the state of system A with B as the cost
of merging A with the system BC, where C is some ancilla
(initially in a pure state) with which B interacts coherently
through a unitary U . Such a scheme does not change the cost
of state merging, as shown, but helps us in counting resources.
Discarding system C yields

I (A′ : B ′) � I (A′ : B ′C ′) = I (A : BC) = I (A : B), (7)

or alternatively,

S(A′|B ′) � S(A′|B ′C ′) = S(A|B). (8)

Computing the markup in the price in the state merging on
discarding information gives D = I (A : B) − I (A′ : B ′). This
quantity D is equal to quantum discord when our quantum
operations are quantum measurements maximizing I (A′ : B ′).
Thus, discord is the minimum possible increase in the cost of
quantum communication in performing state merging, with a
measurement on the party receiving the final state. This also
addresses the asymmetry that is inherent in quantum discord.
This is exhibited operationally in our interpretation since the
state merging protocol is not invariant under exchanging the
parties.

We now show that the minimum of D over all possible
measurements is the quantum discord. The state ρAB, under
measurement of subsystem B, changes to ρ ′

AB = ∑
j pjρA|j ⊗

πj , where {πj } are orthogonal projectors resulting from a
Neumark extension of the POVM elements. The unconditioned
post-measurement states of A and B are

ρ ′
A =

∑
j

pjρA|j = ρA, ρ ′
B =

∑
j

pjπj .
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Computing the value of I (A′ : B ′), we get

I (A′ : B ′) = S(A′) + S(B ′) − S(A′,B ′),

= S(A′) + H (p) −
{

H (p) +
∑

j

pjS(ρA|j )

}
,

= S(A) −
∑

j

pjS(ρA|j ). (9)

After maximization, it reduces to J (ρAB), as in Eq. (1).
The reduction to rank 1 POVMs follows as stated
earlier.

We can also rewrite the expression for D using Eq. (8)
instead of Eq. (7) as the increase of the conditional entropy
D = S(A′|B ′) − S(A|B). The above expression makes our
interpretation even more transparent. Quantum measurements
on B destroy quantum correlations between A and B.
This increases the average cost of quantum communication
needed by A to merge her post-measurement state with B.
Since S(A′|B ′) = ∑

j pjS(ρA|j ) � S(A|B), there is always a
markup in the cost of state merging.

III. EXAMPLE AND DISCUSSIONS

As an example, consider the separable state that has nonzero
discord, ρAB = (|0〉A〈0| ⊗ |0〉B〈0| + |1〉A〈1| ⊗ |+〉B〈+|)/2,

where |+〉 = (|0〉 + |1〉)/√2. The cost incurred by A to merge
her state with B is S(A|B) = 0.399124 ebits, which is equal
to the number of EPR pairs that A and B need to share per
copy in order to merge this state. After measuring B using
the projectors (I ± σx−σz√

2
)/2, S(A′|B ′) = 0.600876 ebits. This

means that one now needs these many EPR pairs to perform
state merging (SM). The markup in the cost of state merging
is S(A′|B ′) − S(A|B) = 0.201752 ebits, which is equal to the
additional EPR pairs needed to perform SM after measuring
B. This is exactly the quantum discord of the state ρAB, as
per our interpretation. Hence, any information lost through
the measurement results in making the quantum state merging
more expensive by exactly the same amount.

We can now use our quantum state merging perspective to
derive the various properties of discord. Since measurements
on system B will always result in either discarding of some
information or at best preserving the original correlations, we
will always get a price hike in state merging or at best we can
hope to just break even. Hence, discord, which is the markup,
will always be greater than zero [6,21].

Quantum discord of a state is zero if and only if the density
matrix is of the form ρAB = ∑

i piρA|i ⊗ |λi〉〈λi |, in the basis
which diagonalizes ρB . Measuring the projectors |λi〉〈λi | and
discarding the measurement results on such a state yields
ρM

AB = ∑
i PjρABPj = ρAB. Thus we have a measurement

which causes no loss of information and retains all the
correlations between A and B. Hence there is no markup in
the cost of merging a zero discord state.

The converse can be seen through the application of strong
subadditivity in Eq. (6). The equality of mutual information,
I (A : B), of the initial state and that of the state after
quantum operations on B, I (A′ : B ′) coincides with the
equality condition for strong subadditivity. But this is exactly

the condition for the nullity of quantum discord [21]. Thus a
zero markup in the cost of state merging implies zero discord.

An upper bound on discord is decided by an upper bound
on the markup we can get. Since Bob cannot lose more
information than there is at his disposal, the entropy of the state
at Bob’s end, S(B), is an upper bound on quantum discord.

Finally, for pure states, quantum discord reduces to entan-
glement and S(A|B) = S(A) − I (A : B) = −S(A) � 0. From
our perspective, measurement destroys all the correlations
present between A and B. Though the post-measurement state
merging of the state of A with that of B occurs at zero cost, they
lose the −S(A|B) potential Bell pairs, which could have been
put to some use. This provides us a novel way of measuring
entanglement, as the markup in merging a pure state, when B

is measured.

IV. OTHER MEASURES

We now use our result to provide operational interpretations
for a couple of other quantities that were introduced to capture
the quantumness of correlations, with motivations different
from those of discord. Since the entropy of a closed system
cannot decrease, thermodynamically, the purity of quantum
states is a resource that needs quantification. The allowed
set of operations in this paradigm are called closed local
operations and classical communications (CLOCC), which
is a modification of the local operations and the classical
communications (LOCC) paradigm without free pure ancilla.
The central task in this setup then is local purity distillation.
If one-way communication is allowed from Bob to Alice, the
rate for this task is given by [22]

κ(A|B) = log2(dAB) − S(A,B) − D(A|B), (10)

where dAB = dim(HA ⊗ HB). This immediately provides an
operational interpretation for local purity.

Another measure of quantumness of correlations in the
CLOCC framework is the quantum deficit, which is also
thermodynamically motivated and can be intuitively thought
of as a form of nonlocality without entanglement, but with
distinguishability [23]. Like quantum discord, unlike entangle-
ment, it can be nonzero for separable states. The corresponding
measure of classical correlations, the classical deficit, is known
to be equivalent to the DCR [22] in the asymptotic limit. So the
quantum deficit actually coincides with the quantum discord
in this regime and has the same operational interpretation as
discord. For a finite number of copies, the quantum deficit is
always a lower bound on the quantum discord [23], provided
the measurements are restricted to von Neumann projections
instead of POVMs, because free pure ancilla are not allowed.
Finally, operational interpretations can easily be provided
for other discord-like measures, for instance, measurement-
induced disturbance (MID) [24] using quantum state merging,
by simple variations of our argument.

The end product of our information theoretic interpreta-
tion is the regularized form of quantum discord. This was
necessitated since the single-copy version of state merging
does not lead to the conditional von Neumann entropy [25].
There are, however, several interesting cases in which the
rate of asymptotic state merging can be identified with the
quantum discord of a single copy. Evidently, pure states are
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one such class, since in that case quantum discord reduces
to entanglement. Since the DCR is additive for separable
states [15], we have a “single-letter” definition of discord for
such states as well. A more interesting set of states for which
discord is additive are the Bell-diagonal states, since their
DCR is additive too [26]. Quantum discord of Bell diagonal
states of two qubits is among the best understood [7], and we
have now shown that this understanding can be exported to the
asymptotic regime without further effort.

In conclusion, this article places quantum discord
squarely in the midst of quantum informational concepts
and opens up the way for its manipulation as a resource in
quantum-information processing. We also hope that our work
will serve as a stepping stone for a more comprehensive and
unified understanding of quantum physics, thermodynamics,
and information theory.

Note added. Recently a manuscript [28] appeared which
interprets quantum discord in terms of the entanglement
consumption in an extended state merging of ρAB. The
interpretation is through the entanglement of formation of ρAC,

ρAC = Tr B[|ψABC〉〈ψABC |], where |ψABC〉 is the purification
of ρAB.
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