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In many architectures for fault-tolerant quantum computing universality is achieved by a combination of
Clifford group unitary operators and preparation of suitable nonstabilizer states, the so-called magic states.
Universality is possible even for some fairly noisy nonstabilizer states, as distillation can convert many noisy
copies into fewer purer magic states. Here we propose protocols that exploit multiple species of magic states in
surprising ways. These protocols provide examples of previously unobserved phenomena that are analogous to
catalysis and activation well known in entanglement theory.
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Quantum computers are capable of executing algorithms
while tolerating modest rates of faults or errors. Stabilizer
codes encode information in subspaces of larger Hilbert spaces
and allow a proportion of errors to be actively detected and
corrected [1], whereas some anyonic systems with topolog-
ically protected ground states provide a passive method of
safely storing quantum information [2]. Research into anyonic
systems has been stimulated by the recent discovery of alloys
that are topological insulators [3,4], opening up a variety of
readily available systems that may be suitable for anyonic
quantum computing.

However, fault-tolerant quantum computing is not just
about archiving quantum information, but also processing
the information while stored in its protected form. However,
by employing stabilizer codes and topological systems we
restrict how the quantum information may be manipulated
in a fault-tolerant way. Stabilizer codes only allow coherent
implementation of a limited group of fault-tolerant gates, the
so-called transversal gates. Unfortunately, recent research has
shown that no stabilizer code can both protect against generic
errors and offer a universal set of transversal gates [5]. Sim-
ilarly, topologically protected groups of gates, implemented
by braiding anyons, are not universal for many species of
anyons [6–8]. Theoretically, some exotic anyons do offer
universal topologically protected gates, but these are more
physically speculative [9]. Consequently, an alternative route
to universal and fault-tolerant quantum computing must be
sought out.

This obstacle is overcome by gate injection techniques. A
suitable resource state is identified, and through fault-tolerant
gates and measurements, this resource is consumed in ex-
change for a new fault-tolerant unitary operator that promotes
the group of gates to full universality. For both stabilizer codes
and anyonic systems, the manifestly fault-tolerant gates are
often contained within the Clifford group, the group of unitary
operators that conjugate the Pauli operators. What resource
states might promote the Clifford group to universality?
Since the Clifford group maps stabilizer states—eigenstates
of Pauli operators—to other stabilizer states, and such evo-
lutions are efficiently classically simulable [10], we know
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that stabilizer states fail to provide universality. However,
numerous nonstabilizer states do provide universality,
including all single-qubit pure nonstabilizer states [11]. Bravyi
and Kitaev proposed the appellation magic states for such
resources [12]. In their seminal article, Bravyi and Kitaev
showed that some mixed nonstabilizer states can enable
universal quantum computing via a process of distillation into
purer magic states. Since preparation of the raw resources is not
fault tolerant, we expect them to be noisy, and so distillation is
essential.

Some fault-tolerance schemes actually provide a proper
subgroup of the Clifford group, such as when braiding Ising
anyons [6–8]. Universality may still be possible via two levels
of distillation if a resource state is available that first promotes
the subgroup to the full Clifford group. For example, Bravyi [8]
has shown that the aforementioned Ising anyon systems can be
promoted to the full Clifford group by distilling certain noisy
stabilizer resources.

The paradigm of magic states as a resource for promoting
the Clifford group is analogous to other resource theories, such
as how entanglement is a resource when only local operations
are available [13] and how continuous variable Gaussian en-
tangled states can be utilized provided with just local Gaussian
operations [14]. In both these alternative examples of resource
theories we have a thorough understanding of the fundamental
principles behind what state transformations are possible. The
role of magic states is not yet understood as comprehensively
as entanglement, although lately several results have begun to
illuminate the subject. Reichardt [11,15,16] provided several
additional distillation protocols beyond those found by Bravyi
and Kitaev. He also identified some multiqubit nonstabilizer
states that cannot, even probabilistically, be reduced to a
single-qubit nonstabilizer state [11]. Howard and van Dam
[17,18] studied the role of noisy unitary operators as resources.
They found that all depolarized single-qubit unitary operators
that fall outside the Clifford group can enable universal
quantum computing. Campbell and Browne [19,20] identified
an analog to bound entanglement, with certain families
of nonstabilizer states being undistillable for finite-sized
computers. Ratanje and Virmani [21] considered resource
theories that interpolate between separable states and stabilizer
states and found new regimes that are efficiently classically
simulable.
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This article explores the fundamental principles that govern
magic states, and we uncover several phenomena. Many
of the phenomena have analogous, though subtly distinct,
counterparts in entanglement theory, such as entanglement
catalysis [22] and entanglement activation [23]. Previous work
on magic states has focused on what is achievable with many
copies of the same quantum state, whereas, all protocols
presented here exploit two different sorts of resource in a
counterintuitive manner.

Magic catalysis can be described as a scenario involving two
agents: a “magic-state banker”; and an operator of a computer
capable of only Clifford-group operations. The banker is
willing to loan magic states to the operator, but requires
that the operator returns exactly the same quantum state at
a later time. We identify a protocol where the loaned magic
state acts as a catalyst, enabling the operator to perform state
transformations that would have been impossible otherwise.
Our protocol counteracts the misleading but intuitive idea that
resources must be consumed to serve a function.

Magic activation again involves a special resource, this time
called the activator, that enables a probabilistic transformation
that was impossible without this assistance. This phenomenon
differs from catalysis in several key ways. The activator is not
returned to a banker, and the transformation may succeed with
nonunit probability. Furthermore, the probabilistic transfor-
mation also consumes a supply of bound magic states [19,20]
that alone have limited computational power when in finite
quantity.

Next we discuss the existence of the aforementioned com-
putationally weak multiqubit states that were first identified
by Reichardt [11], which we call irreducible nonstabilizer
states. The defining feature of irreducible nonstabilizer states
is that, on their own, no single-qubit nonstabilizer state can be
extracted from one copy. We present examples of irreducible
nonstabilizer states for any number of qubits above two. Next
we introduce another new protocol that exploits a combination
of irreducible nonstabilizer states and bound magic states.
Despite both resources being of limited utility, we can, with
some probability, extract a magic state of arbitrarily high
fidelity. In many ways this protocol is more surprising than the
previous magic-state activation protocol. However, this latter
protocol relies on a large number of resources. Depending on
your preferred definition of activation, this protocol may also
qualify as such. However, we prefer to stress its unique aspects
and so refer to it as an asymptotic activation protocol.

Combined, these results provide a significant step toward
a complete understanding of the principles governing magic
states and their manipulation. Our results also prompt several
interesting open problems that we discuss in the final section.

I. TECHNICAL PREAMBLE

In this section we refine our terminology and define
notation, beginning with a quick review of stabilizer states
and the Clifford group. An n-qubit pure stabilizer state, |ψ〉,
is a quantum state uniquely defined by n commuting, and
independent, Pauli operators gj . These operators generate by
multiplication a group S of order 2n, the so-called stabilizer
group for |ψ〉. Every element of this group is said to
stabilize the quantum state, such that s|ψ〉 = |ψ〉,∀ s ∈ S.

More generally, a mixed state is a stabilizer state if and
only if it is an incoherent mixture of pure stabilizer states.
The Clifford group is the group of unitary operators that
conjugate Pauli operators, such that for all Pauli operators p

we have CpC† = p′. Equivalently, the Clifford group consists
of the unitary operators that preserve the set of pure stabilizer
states. Important single-qubit Clifford unitary operators are the
H (Hadamard) and T gates, which are best described in terms
of their action on Pauli operators:

HXH † = Z; HZH † = X;
(1)

T XT † = Y ; T YT † = Z.

All single-qubit Clifford unitary operators can be decomposed
into some sequence of these gates; that is, they generate the
single-qubit Clifford group. To generate the entire multiqubit
Clifford group we have to add an entangling gate, such as
the well-known control-not gate. For further information on
stabilizer states and the Clifford group, we refer the reader to
Refs. [1,24].

Throughout we refer to a Clifford computer as follows.
Definition 1. A Clifford computer is a device capable of

performing ideal Clifford unitary operators, preparation of
stabilizer states, classical feedforward, classical randomness,
and Pauli measurements.

For transformations implemented on such a device, the
following definition applies.

Definition 2. If a Clifford computer can take an input state
ρ and deterministically output a state ρ ′, then we denote this
as ρ →D ρ ′, and say that ρ can be deterministically Clifford
transformed to ρ ′. Conversely, if there exists no such Clifford
transform, we denote this as ρ→/ Dρ ′.

More generally, transformations may be probabilistic, as
follows.

Definition 3. If a Clifford computer can take an input state
ρ and with nonzero probability output a state ρ ′, then we
denote this as ρ →P ρ ′, and say that ρ can be probabilistically
Clifford transformed to ρ ′. Conversely, if there exists no such
probabilistic Clifford transform, we denote this as ρ→/ P ρ ′.

The phenomena of catalysis and activation are essentially
concerned with deterministic and probabilistic transforma-
tions, respectively.

The two most important single-qubit magic states are the
eigenstates of the Clifford group unitary operators defined
earlier, H and T , such that

H |H0〉 = |H0〉; H |H1〉 = −|H1〉;
(2)

T |T0〉 = eiπ/3|T0〉; T |T1〉 = e−iπ/3|T1〉.
We also use similar notation for stabilizer states such as Y

eigenstates |Y0,1〉. For an n-qubit state a binary vector v =
{v1, . . . ,vn} specifies the state

|Hv〉 =
n⊗

j=1

|Hvj
〉, (3)

and similarly for |Tv〉. Employing Greek characters for mixed
density matrices, we use

τv = |Tv〉〈Tv|, (4)

with v again an n-bit vector.
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FIG. 1. (Color online) An outline of the magic catalysis protocol.
Circles represent qubits, and lines between qubits denote correlations.
The protocol involves two measurements with random outcomes.
Although different measurement outcomes produce different pro-
jections, adaptively applied Clifford unitaries ensure the outcome is
deterministic. However, the determinism of our protocol relies heavily
on the symmetries of the initial states. The quantum states |ϕ〉 and
|H0〉 are defined in Theorem 1 and Eq. (2), respectively.

II. MAGIC CATALYSIS

Here we present an example of magic catalysis.
Theorem 1. Magic catalysis is possible: For the state |ϕ〉 ∝

|H0,0,0〉 + |H1,1,1〉 we have |ϕ〉→/D|H0〉 but with the addition
of catalyst |H0〉 we have |ϕ〉|H0〉 →D |H0〉|H0〉.

Clearly, this satisfies the constraints of the scenario de-
scribed in the introduction since the process is deterministic
and the catalyst is unchanged it can always be returned
to the banker. First we describe a protocol, also illustrated
in Fig. 1, that implements the deterministic transformation
|ϕ〉|H0〉 →D |H0〉|H0〉:

(1) prepare the state |ϕ〉 on qubits A, B, and C and state
|H0〉 on qubit D;

(2) measure the Pauli stabilizer YCYD;
(3) if the measurement yields outcome +1, then apply the

unitary operator HD;
(4) measure the Pauli stabilizer ZCZD;
(5) if the previous measure yields outcome −1, then apply

the unitary operator YAYB ;
(6) keep qubits A and B, and discard qubits C and D.
Although the process involves two measurements with ran-

dom outcomes, each measurement is conditionally followed
by a unitary operator that ensures the same output regardless of
the measurement outcome. Consider step (3), after the YCYD

measurement with a +1 outcome, we have the state

HD(1 + YCYD)|ϕ〉|H0〉 = (1 − YCYD)|ϕ〉HD|H0〉,
= (1 − YCYD)|ϕ〉|H0〉, (5)

where the first line uses HjYj = −YjHj and the second
line uses H |H0〉 = |H0〉. Hence, we can deterministically
implement a projection onto the −YCYD subspace.

Next, measurement results −ZCZD or +ZCZD give a
projection of these qubits onto the state |�−〉 ∝ |1,0〉 − |0,1〉
or |�+〉 ∝ |0,0〉 + |1,1〉, respectively. The use of |�−〉 pro-
jections plays a pivotal role throughout this article, effectively
functioning as an odd parity projector for any basis. That
is, for any orthonormal basis {|b0〉,|b1〉} shared between two
qubits we have |〈�−|bj ,bk〉| = (1 − δj,k)/

√
2, where δj,k is

the Kronecker δ. This feature of the singlet projector follows
from (U ⊗ U )|�−〉 ∝ |�−〉 for any unitary operator U , and
so |�−〉 is odd parity in any basis. Returning to the problem at
hand, the relevant basis is the Hadamard basis, where |�−〉 ∝
|H0,1〉 − |H1,0〉. Hence, the singlet projection picks out the
second term of |H0,0,0,0〉 + |H1,1,1,0〉, producing |H1,1〉|�−〉.
In accordance with step (5), we apply YAYB (noting Y -gates
flip Hadamard eigenstates) and discard the last two qubits.
This yields the desired output |H0,0〉.

If instead, step (4) provides a +ZCZD measurement
outcome, we have a projection onto the state |�+〉, and so

〈�+|C,D|ϕ〉|H0〉 ∝ 〈�−|C,DYD(|H0,0,0,0〉 + |H1,1,1,0〉),
∝ 〈�−|C,D(|H0,0,0,1〉 + |H1,1,1,1〉),
∝ |H0,0〉,

where the first line uses |�+〉 ∝ YD|�−〉, allowing further
employment of the singlet projector. Hence, we yield the
desired output regardless of measurement outcomes.

To prove that we have identified a truly catalytic process,
we must also show that the process was otherwise impossible,
such that |ϕ〉→/D|H0〉. We actually proceed by showing the
stronger result that |ϕ〉→/P |H0〉, which directly entails the
weaker deterministic no-go result. Since we are attempting
to probabilistically output a single-qubit state, we only have to
consider Clifford transformations that project onto a stabilizer
code space, with a single logical qubit, and then decode [19].
For a code space with logical states |0L〉 and |1L〉, the result of
projecting and decoding performs the transformation

|ϕ〉 → |ψout〉 ∝ 〈0L|ϕ〉|0〉 + 〈1L|ϕ〉|1〉. (6)

For projections onto stabilizer subspaces, the ratio of the
computational amplitudes,

R(|ψout〉) = |〈0L|ϕ〉|2/|〈1L|ϕ〉|2, (7)

must be one of a few possible rational fractions (see
Appendix A). However, for the target state, |H0〉, this ratio is
an irrational number tan2(π/8) = 3 − 2

√
2. Hence, the exact

transformation is impossible, and our proof is complete.
The techniques in Appendix A are sufficiently general to

rule out many other Clifford transformations. For example, if
we ask whether n copies of |ϕ〉 can be exactly converted into a
H state, our method also proves this is impossible with finite
n, and so |ϕ〉⊗n→/P |H0〉 (discussed further in Appendix B).

Describing catalysis in terms of an interaction between
a magic-state banker and a computer operator gives it an
operational flavor, although the scenario could be considered
somewhat artificial. We feel that the true depth of catalysis
is that certain transformations become possible, for free,
assuming a reserve of magic states. Such transformations can
be called magic-assisted Clifford group operations, and it is
an interesting open problem to determine the full structure of
these operations.
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III. MAGIC ACTIVATION

Here we give an example of magic activation. One of the
distinguishing features of activation is that it utilizes resources
from a family of bound states. Rather than a general account
of magic-state boundness, for brevity we describe the concept
with respect to noisy T -magic states,

τ (f ) = f τ0 + (1 − f )τ1, (8)

where f is the fidelity and fst = (1 + 1/
√

3)/2 is the threshold
above which we have a nonstabilizer state. The following
statement follows directly from the more general results of
Ref. [20].

Theorem 2. For any finite n, there exists a positive εn > 0,
and a corresponding no-go region of fidelities f � fst + εn.
Inside this no-go region, it follows that for any single-qubit
state, ρ, we have that τ (f )⊗n →P ρ if and only if τ (f ) →P ρ.
We say that the family of states τ (f ) is bound.

Heuristically, this result instructs us that there exist nonsta-
bilizer states where n copies are no more useful than a single
copy. Since this holds even with probabilistic postselection,
we cannot distill these states to higher purity. There is clearly
a parallel with bound entanglement, but there is also a subtle
distinction. The threshold fidelity, fst + εn, below which the
theorem applies, depends on the number of copies, n. Hence,
it is possible that the region shrinks as n is increased, maybe
even such that εn → 0 as n → ∞. In contrast, bound entangled
states are bound regardless of how many copies we have.
However, it is not known that the region actually does shrink.
Rather, it is merely a limitation of the techniques of Ref. [20]
that this possibility has not been ruled out. While known
techniques [12] can distill noisy T states with fidelities greater
than (1 + √

3/7)/2, there is no known method of distillation
that functions below this fidelity. Hence, it is possible that even
for large n the no-go region does not shrink below this level.

Subtleties aside, it is clear that τ (f )⊗n, with sufficiently
small fidelity and fixed n, cannot be distilled. This is in
contrast with noisy H states, which are not a bound family
of states. For example, consider noisy H states with any
initial fidelity large enough that no stabilizer decomposition
exists. With seven copies of such noisy H states one can
implement a protocol [11,16] based on the STEANE code that,
when successful, increases the fidelity.1 The protocol must
be iterated to achieve higher fidelities, and a unit fidelity
is asymptotically approached with increasing n. However,
the important feature is that some fidelity increase is always
possible with finite copies, and that a similar protocol for all
noisy T states is ruled out by Theorem 2. This prompts the
question, are very noisy T states ever useful resources? We
affirmatively answer this question by providing an activation
protocol.

1Note that STEANE code distillation only reduces noise polynomially
rather than exponentially, and so alone the protocol is not efficient.
However, overall efficiency can be achieved by using this protocol
to reach a threshold fidelity and then switching to another protocol.
For example, one may switch to implementing a protocol devised by
Bravyi and Kitaev [12] that utilizes 15 qubits per attempt.

Π=

σ(q) τ(f) Πτ(f )

|Ψ− Ψ−|
Measure and 

postselect

A B C A C

FIG. 2. (Color online) An outline of the magic-activation protocol
which exploits the bound state τ (f ) [see Eq. (8)] in the presence of
its activator σ (q) (defined in Theorem 2). This single-shot protocol
succeeds probabilistically when qubits B and C are projected onto
the singlet state.

Theorem 3. Magic activation is possible: For the activator
σ (q) = qτ0,1 + (1 − q)τ1,0 (for some 1 > q > 1/2) and any
τ (f ), with fst < f , there exists a single-qubit state ρ such that

(i) σ (q) ⊗ τ (f ) →P ρ; even though
(ii) σ (q)→/P ρ; and

(iii) τ (f )→/P ρ.
Alone, neither state can produce a particular output ρ, but

combined it is possible. The output state is again a noisy T -
magic state, so ρ = τ (f ′). Provided f ′ > f , condition (iii) of
the theorem immediately follows.

We begin by describing the activation protocol, also
illustrated in Fig. 2:

(1) Prepare state σ (q) on qubits A and B and τ (f ) on
qubit C;

(2) measure the observables YBYC and ZBZC ;
(3) postselect on −1 for both measurement outcomes, and

discard qubits B and C.
The initial state can be expanded out as

σ (q) ⊗ τ (f ) = qf τ0,1,0 + (1 − q)f τ1,0,0

+ q(1 − f )τ0,1,1 + (1 − q)(1 − f )τ1,0,1. (9)

The postselected measurements project qubits B and C onto
the singlet state. We use that |�−〉 ∝ |T1,0〉 − |T0,1〉, and so

〈�−|σ (q) ⊗ τ (f )|�−〉 ∝ qf τ0 + (1 − q)(1 − f )τ1. (10)

We have effectively projected onto the odd parity terms of
qubits B and C and then traced them out. After renormaliza-
tion, the state is τ (f ′) with fidelity

f ′ = qf

qf + (1 − q)(1 − f )
. (11)

It is easy to see that f ′ > f whenever 1 > q > 1/2, and so
the transformation could not be achieved with τ (f ) alone,
satisfying condition (iii). To complete the proof we must show
condition (ii), that the transform could not be achieved with
σ (q) alone.

The simplest transformation on σ (q) alone is to measure
qubit A of σ (q) in the computational basis. Due to the
T symmetry of the state, any Pauli basis gives the same
result. Hence, for a ±1 outcome of any single qubit Pauli
measurement, the resulting unnormalized state is

trA[(1 ± ZA)σ (q)] ∝ qc±τ1 + (1 − q)(1 − c±)τ0, (12)

where

c± = tr[(1 ± ZA)τ0]/2 = (1 ± 1/
√

3)/2. (13)
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Clearly, the “+1” outcome gives a greater fidelity. Further-
more, we have c+ = fst. Renormalizing gives a noisy T state
with fidelity

f ′′ = qfst

qfst + (1 − q)(1 − fst)
. (14)

This fidelity fails to match that achieved by our activation
protocol. However, a single-qubit observable is clearly not
the only option available, with many possible stabilizer
measurements over both qubits. Checking other possible
measurements (see Appendix C), one finds that the simple
single-qubit measurement proves to be optimal. Therefore,
a single copy of σ (q) cannot be probabilistically Clifford
transformed to ρ(f ′), the output of the protocol, and so the
activation is genuine. Of course, our argument does not rule out
that many copies of σ (q) may accomplish this transformation,
as is indeed the case (see Appendix E). This feature is
consistent with the analogous phenomena of activation in
entanglement theory [23], as known entanglement activators
are also many-copy distillable.

It is unclear whether more copies of the bound resource
could be exploited to iterate or improve this particular magic-
state activation protocol. However, the subsequent sections
describe a more involved protocol that is stronger in two prin-
ciple respects: First, it can be extended to consume arbitrarily
many bound resources, with an output fidelity asymptotically
approaching unity; second, the activating resources is also
a computational weak state of a species that we introduce
next.

IV. IRREDUCIBLE NONSTABILIZER STATES

This section introduces the notion of an irreducible nonsta-
bilizer state, which is another form of noisy resource that is
computationally weak. We also present some new examples
of such states to be used in the next section.

Definition 4. A state σ is an irreducible nonstabilizer state
(an INS state) if both

(1) σ is not a stabilizer state; and
(2) for all single-qubit nonstabilizer states, ρ, we have

σ→/P ρ.
Reichardt identified the first examples of INS states [11].

However, Reichardt referred to them as counterexample states,
as he presented them to disprove a conjecture that all multiqubit
nonstabilizer states can be Clifford transformed to a single-
qubit nonstabilizer state. Obviously, there are no single-qubit
INS states, but Reichardt showed that two-qubit INS states
do exist. Despite being of limited computational power, some
INS states prove useful when combined with other resources.
We consider states of the form

σINS(q,n) = qτ⊗n
0 + (1 − q)1/2n, (15)

which satisfy the definition of an INS state whenever the
weighting, q, falls in a specific interval, qmin < q � qmax,
where

qmax = [1 + (2fst)
n−1(

√
3 − 1)]−1, (16)

qmin = (2n − 1)/[(1 +
√

3)n − 1]. (17)

Values of q and n satisfying these conditions are shown in
Fig. 3.
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FIG. 3. (Color online) A region of INS states of the form
σINS(q,n), as in Eq. (15). The weighting, q, is shown on a log-scale,
against the number of qubits n. All states with the weighting satisfying
qmin < q � qmax are INS states, with the region being empty for
n = 1,2 and appearing for n � 3. Some states outside the shaded
region may also qualify as INS states.

First we show that for sufficiently pure states, we indeed
have a nonstabilizer state, and so meet condition (1) of the
definition. In general, mapping out the space of multiqubit
mixed stabilizer states is an involved problem [11]. However,
there exists a simple witness that can detect many nonstabilizer
states. We introduce this witness in terms of a norm we call
the stabilizer-norm (or just st-norm):

Lemma 1. A density matrix ρ, with decomposition in the
Pauli basis ρ = ∑

j ajσj , is a nonstabilizer state if

‖ρ‖st =
∑

j

|aj | > 1. (18)

For single-qubit states the condition is not just sufficient, but
also necessary. Indeed, for a single-qubit state this inequality
marks out an octahderon in the Bloch sphere. However, there
are many multiqubit nonstabilizer states that are not detected
by this witness. To prove the lemma we first observe that the
st-norm satisfies the triangle inequality and hence is convex.
Furthermore, all pure stabilizer states, ρst, have unit st-norm,
‖ρst‖st = 1, and so no mixed stabilizer states can exceed
unity.

For the states of interest here, the st-norm is

‖σINS(q,n)‖st = q
∥∥τ⊗n

0

∥∥
st + (1 − q)/2n, (19)

= q
∥∥τ0

∥∥n

st + (1 − q)/2n, (20)

where the second line uses multiplicity of the st-norm with
respect to the tensor product; in general, ‖ρa ⊗ ρb‖st =
‖ρa‖st‖ρb‖st. Calculating ‖τ0‖st = (1 + √

3)/2, and requiring
the st-norm exceed unity, entails q > qmin.

Next we prove that for sufficiently impure states, condi-
tion (2) of our definition is satisfied. It is well known [19] that
such a transformation is impossible if it cannot be achieved by
projecting onto a stabilizer code space, with one logical qubit
and decoding. First we note that all mixed single-qubit states
with largest eigenvalue satisfying λ � fst are stabilizer states.
We prove that, for q < qmax, all code space projections fail to
achieve sufficient purity. Hence, they output stabilizer states.
For a stabilizer code with projector �, the projected state is

ρout = q�τ⊗n
0 � + (1 − q)�/2n

qtr
(
�τ⊗n

0

) + (1 − q)/2n−1
. (21)
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The largest eigenvalue of the projected state is

λ = qtr
(
�τ⊗n

0

) + (1 − q)/2n

qtr
(
�τ⊗n

0

) + (1 − q)/2n−1
. (22)

To make further progress we must evaluate the maximum
possible value of tr(�τ⊗n

0 ).
Lemma 2. For n copies of a single-qubit state, τ0, and for

all projectors, �, onto a 2m-dimensional stabilizer subspace,
the maximum probability of projection is

max
�

[
tr
(
�τ⊗n

0

)] = f n−m
st . (23)

This lemma asserts that the maximum probability of any
stabilizer projection is achieved by a series of single-qubit
stabilizer measurements. The lemma can be proven using
graph codes [25] as shown in Appendix D. Applying the lemma
(with m = 1) to Eq. (22) gives a maximum achievable value
of λ, which we denote with a star:

λ∗ = qf n−1
st + (1 − q)/2n

qf n−1
st + (1 − q)/2n−1

. (24)

If we wish to guarantee that the output is a stabilizer state,
we require λ∗ � fst, and a little rearrangement produces the
inequality q � qmax.

Hence, we have proven the existence of a whole class of
INS states using a very different approach to Reichardt. Note
that qmin and qmax differ only for three or more qubits, so our
construction does not provide any two-qubit INS states.

V. ASYMPTOTIC MAGIC ACTIVATION

Another new protocol is described here, which demon-
strates two features not exhibited by the previous activation
protocol. First, it exploits a combination of an INS state and
many bound magic states. Second, the output magic state can
be arbitrarily pure, asymptotically approaching unit fidelity
with the number of bound states used. In light of this, we
distinguish this protocol by calling it asymptotic activation.
For the purposes of this section, we consider the INS states
with q = qmax, as in Eq. (19), and for brevity herein use the
notation

σINS(n) = σINS(qmax,n). (25)

Using this resource we have the following result.
Theorem 4. Asymptotic magic activation is possible: For

the INS state σINS(n) and any τ (f )⊗n−1 (with f > fst), we
have that σINS(n) ⊗ τ (f )⊗n−1 →P τ (f ′), where f ′ → 1 as
n → ∞.

By definition, the INS state cannot be reduced to a single-
qubit nonstabilizer state. Since the bound states also resist dis-
tillation, the protocol seems to exploit some synergy between
the two resources. As with the previous activation protocol, we
utilize singlet projection. The asymptotic activation protocol,
also illustrated in Fig. 4, is as follows:

(1) Prepare σINS(n) on qubits A,B, . . . , and prepare
τ (f )⊗n−1 on qubits A′,B ′, . . . ;

(2) flip every qubit of τ (f )⊗n−1 using the local Clifford HY

that maps τ0 → τ1;
(3) pair up n − 1 qubits from each resource, pairing A with

A′ and B with B ′, etc.;

Π

A B C

A B C

...

...
Π Π Π

σIMS(n)

τ(1-f)⊗n−1

Measure and 
postselect

...

...
τ(f )

FIG. 4. (Color online) An outline of the asymptotic magic-
activation protocol. The protocol uses n − 1 copies of the noisy
T states τ (f ) [see Eq. (8)] and a specific n-qubit activator σINS(q)
[see Eq. (25)]. The activator is an especially weak resource, known
as an irreducible nonstabilizer state (defined in Definition 4). The
protocol pairs up each noisy T state with a qubit from the activator
and succeeds when all n − 1 pairs are projected onto the singlet
state.

(4) measure the observables XjXj ′ and ZjZj ′ for every pair;
(5) postselect on “−1” outcomes for every measurement

outcome in every pair, and discard all measured qubits.
After step (2), the quantum state is

ρ = qmaxτ
⊗n
0 ⊗ τ (1 − f )⊗n−1

+ (1 − qmax)
1

2n
⊗ τ (1 − f )⊗n−1. (26)

The subsequent steps project on the singlet state between
paired-up qubits, giving

ρ ∝ qmaxa
n−1τ0 + (1 − qmax)bn−1τ1, (27)

where

a = 〈�−|τ0 ⊗ τ (1 − f )|�−〉 = f/2,
(28)

b = 〈�−|1 ⊗ τ (1 − f )|�−〉/2 = 1/4.

Combining these equations and after some manipulation, we
find that the output fidelity is

f ′ =
[

1 +
(

fst

f

)n−1

(
√

3 − 1)

]−1

. (29)

Clearly, this approaches unity in the large n limit, provided
that f exceeds the stabilizer threshold.

Unlike the previous activation protocol we are allowing for
the number of copies to vary, with the phenomena becoming
more pronounced in the large n limit. Since the number of
copies is varying, and not fixed to some finite n, previous no-go
results on the nondistillability of τ (f )⊗n do not apply. Con-
sequently, we cannot guarantee that the transformation would
be impossible without the addition of the INS state. As we
have not strictly proven τ (f )⊗n →P τ (f ′), we have exercised
caution and not described this as a vanilla activation protocol.
However, for small fidelities, f < (1 + √

3/7)/2, there is no
known protocol [12] that performs this transformation, even
in the limit of many copies. The lesson this protocol teaches
us is that large numbers of noisy T -states can be exploited
to great effect when accompanied by another resource state.
The most fundamental open problem in this research area is
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now whether asymptotically many nonstabilizer states can be
purified when completely unassisted by activating resources.

VI. DISCUSSION AND CONCLUSIONS

We have introduced three protocols for quantum computers
with Clifford-group unitary operators that are fault tolerant
and, for clarity, taken to be ideal. All our protocols make
use of two different species of nonstabilizer states, which is
a relatively unstudied topic compared with that of distilling
many identical copies of a quantum state. Each of the protocols
is designed to illustrate a peculiar and counterintuitive phe-
nomena that can occur in Clifford computers. We now review
each of these protocols and discuss related open problems.

Magic catalysis demonstrates that reserves of magic states
do not have to be depleted to serve a function. A magic state
can act as a catalyst that enables a deterministic transformation
that is impossible by Clifford transformations alone. In our
catalytic protocol, the catalyst was a Hadamard eigenstate,
and the protocol depended on some very specific symmetries
of this state. This prompts the question of whether other
nonstabilizer states can serve as catalysts. For example, can
eigenstates of the T gate also act as catalysts? We conjecture
that—in light of deep underlying differences between H and T

states—the answer will be no. The T magic states are weaker
in several regards. First, existing proposals for implementing
non-Clifford gates do not directly exploit T states. Rather the
T states are probabilistically converted into states on the Bloch
sphere equator (see Ref. [12] or Appendix C), and only then are
they used for implementing a non-Clifford gate. Second, noisy
T states just outside the set of stabilizer states are undistillable,
or bound, in the sense reviewed earlier. Beyond this anecdotal
evidence, we have no firm proof that T states cannot function
as catalysts. However, settling the conjecture either way should
prove illuminating.

No protocol, prior to this article, has exploited noisy T

states arbitrarily close to the set of stabilizer states. Indeed,
the evidence surveyed in the previous paragraph suggests that
there exist noisy T states, which despite being nonstabilizer
states, cannot be utilized for any useful task. However, our
magic-activation protocol shows that a noisy T state combined
with an activator resource can probabilistically output a single-
qubit state that could not be achieved with either resource
alone. Hence, all noisy T states outside the set of stabilizer
states are useful for some task. Since all noisy H nonstabilizer
states are already known to be useful without the assistance of
an activator, it is somewhat redundant to ask whether activation
could be performed with H states.2 A dissimilarity with
entanglement activation is that our magic-activation protocol
is not iterative, being defined for only a single round. The
most interesting questions on this topic concern what kinds of
iteration are possible. Our third and final protocol, asymptotic
activation, gives one possible extension.

Asymptotic activation shows that (n − 1) copies of any
noisy T state and a particular n-qubit resource can prob-
abilistically output a magic state, which in the asymptotic

2This is true although it is straightforward to check that a Hadamard
analog of the activation protocol does work.

limit approaches unit fidelity. Furthermore, the special n-qubit
resource is an irreducible nonstabilizer state, from which
no single-qubit nonstabilizer states can be probabilistically
extracted. The class of irreducible nonstabilizer states is
interesting in it own right, so our methods for constructing
them may find applications elsewhere. Indeed, one interesting
problem is whether many copies of irreducible nonstabilizer
states are distillable or a new form of bound state.

Neither asymptotic activation nor standard activation are
analogous to entanglement activation in every respect. For
example, in the entanglement activation of Ref. [23] the
protocol simultaneously exhibits the following three features:

(1) The protocol can consume a variable number, n − 1,
copies of the bound resource with the output fidelity tending
toward unity with increasing n;

(2) the activating resource has a fixed size;
(3) it is proven that neither the bound resources nor the

activating resource can on their own be probabilistically
transformed to the output of the activation protocol.

Asymptotic activation has property (1), standard activation
satisfies (2) and (3), but neither magic protocols simultane-
ously exhibit all three features. This prompts the following
question: Do magic protocols exist that are more sturdy
analogs of entanglement activation with all three features?
The extent of symmetries between the two resource theories
is far from clear, and hence so is the answer to our posited
problem.

Considering all our protocols together, a key tool in all is
the use of a singlet projection along with at least one state
with multiqubit correlations. The singlet projector functions
as a method of verifying if two qubits are nonidentical,
although at the price of projecting those qubits into a stabilizer
state. Since our aim is to prepare nonstabilizer states, singlet
projections can only be exploited when accompanied by
multiqubit correlations. Indeed, we have seen that singlet
projection is an extremely useful tool in this context. So far
we have not considered any scenarios with many copies of
a multiqubit correlated state, but it seems plausible that the
singlet projection would prove useful in such contexts. This is
indeed the case, and for completeness we provide just such a
strategy in Appendix E.
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APPENDIX A

Here we show that the ratio of amplitudes in Eq. (7)
can only take rational values, and hence cannot achieve the
required irrational number. Furthermore, the set of possible
ratios is finite, so there is a limit to how closely the target
ratio can be approximated. We present a very general form of
the proof, which can be used to rule out many other Clifford
transformations. The techniques introduced here indicate that
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there may well be hope for building a general framework for
understanding catalysis.

Before beginning the core proof, we make some obser-
vations. The specific initial state of interest, |ϕ〉, is Clifford
equivalent to

|ϕ′〉 = (|0,0,0〉 + i|0,1,1〉 + i|1,0,1〉 + i|1,1,0〉)/2. (A1)

The required Clifford is simply
√

X
⊗3

, which maps the
Hadamard eigenstates to the Bloch sphere equator such that

√
X|Hj 〉 = |H ′

j 〉 = (|0〉 + (−1)j eiπ/4|1〉)/
√

2. (A2)

Hence, an equal superposition of |H ′
0,0,0〉 and |H ′

1,1,1〉 cancels
out odd excitation terms, leaving only the even terms shown
in Eq. (A1). Next we recall that stabilizer states must have the
form [26]

|ψst〉 =
∑

x∈C+y

il(x)(−1)q(x)|x + y〉/
√

|C|, (A3)

where l(x) and q(x) are some linear and quadratic functions in
x, C is a binary linear subspace and y is some constant binary
vector. Notice that our state |ϕ′〉 has a very similar form to
stabilizer states as in the computational basis the coefficient
have equal magnitude and phases are multiplies of i. Such
states are interesting and deserving of their own title.

Definition 5. We say a pure quantum state, |ψ〉, is a
pseudostabilizer state if and only if there exists a Clifford
unitary U such that

U |ψ〉 =
(∑

x∈P
if (x)|x〉

)
/
√

|P|, (A4)

where P is a set of n-qubit bit strings, and f : x → {0,1}.
Furthermore, we say a pseudostabilizer state has complexity
P , such that

P (|ψ〉) = min

{
|P| |U |ψ〉 =

∑
x∈P

if (x)|x〉√|P| ; ∀ U ∈ C
}

. (A5)

This is simply the smallest possible |P| over all valid
decompositions.

Notice that genuine stabilizer states also satisfy this defini-
tion but have trivial complexity P = 1, and the decomposition
of Eq. (A1) entails that P (|ϕ′〉) � 4. In contrast the H states
are not pseudostabilizer states as defined above.

Here we prove that the complexity of a pseudostabilizer
state limits the possible single-qubit states one can produce by
Clifford transformations.

Theorem 5. Consider a pseudostabilizer state |ψ〉 of com-
plexity P . If |ψ〉 →P |ψout〉, where |ψout〉 is a pure single-qubit
state, then it follows that the amplitude ratio satisfies

R(|ψout〉) = |〈0|ψout〉|2
|〈1|ψout〉|2 ∈ Rp, (A6)

where RP is the set of feasible ratios

RP =
{

a2
0 + b2

0

a2
1 + b2

1

∣∣∣∣aj ,bj ∈ Z; |aj | + |bj | � P

}
. (A7)

Conversely, for any |ψ ′〉 with R(|ψ ′〉) /∈ RP we can conclude
|ψ〉→/P |ψ ′〉.

Notice that all of the feasible ratios from a pseudostabilizer
state are rational fractions, so exactly producing a H state is
impossible. The specific result |ϕ〉→/P |H0〉 then follows from
our earlier observation that |ϕ〉 is a pseudostabilizer state of
bounded complexity P (|ϕ〉) � 4.

As noted in the main text, we only have to consider
probabilistic Clifford transforms that project onto a single-
qubit stabilizer subspace and then decode, and so we can
achieve

R(|ψout〉) = |〈0L|ψ〉|2/|〈1L|ψ〉|2, (A8)

where |0L〉 and |1L〉 are logical states of the stabilizer subspace,
which by Eq. (A3) can be expressed as

|0,1L〉 =
∑

x∈C0,1+y0,1

il0,1(x)(−1)q0,1(x)|x〉√|C0,1|
, (A9)

with the numeric subscripts differentiating (C,y,q,l) for the
two states. It is well known that logical states of stabilizer codes
can always be found such that they differ by Pauli rotations,
such that |1L〉 = XL|0L〉. Pauli operators can change y, l, and
q, but not C and so C0 = C1 = C.

Using Eqs. (A4) and (A9) we find that

〈0,1L|ψ ′〉 =
∑

x∈P∩(C+y0,1)

il0,1(x)+f (x)(−1)q0,1(x)

√|C‖P| , (A10)

each term in the summation is a multiple of i and there are no
more than P (|ψ ′〉) = |P| terms. Hence, we have

〈0,1L|ψ ′〉 = (a0,1 + ib0,1)/
√

|C‖P|, (A11)

where aj ,bj ∈ Z and the limited number of terms entails
|aj | + |bj | � P (|ψ ′〉). Calculating the ratio of these ampli-
tudes, the |C‖P| factors cancel and we have the result as
stated in Theorem 5.

From an infinite set of rational numbers, one can always
find an arbitrarily good approximation to any irrational.
However, the set of feasible ratios is limited by the constraints
|aj | + |bj | � P (|ψ〉) and and so the set of possibilities is not
just finite but potentially very small. We have presented an
argument based on rationality for generality. However, it is
quite straightforward to numerically search the limited set
of possibilities and verify that for P (|ϕ〉) = 4 we can never
achieve R = tan(π/8)2. Such a search produces 1/5 as the
closest possibility, which differs from the target by over 0.028.
Note that Theorem 5 places a restriction on feasible ratios, but
does not guarantee that all such ratios are achievable.

The theorem deduced here rules out many Clifford trans-
forms, but is far from the generality of the majorization
criteria that is used in entanglement theory [22]. In en-
tanglement theory, the majorization criteria depend on the
coefficients of the quantum state in the Schmidt basis. If
we consider all possible local unitaries and rotate a state
to have the minimal possible support in the computational
basis then this also yields the all important Schmidt co-
efficients. Returning to the context of magic states, our
approach hints that minimizing support over all possible
Clifford unitaries also gives a decomposition with impor-
tant coefficients. Our investigations into this approach are
ongoing.

032317-8



CATALYSIS AND ACTIVATION OF MAGIC STATES IN . . . PHYSICAL REVIEW A 83, 032317 (2011)

APPENDIX B

Here we briefly address the question of whether many
copies of |ϕ〉 can be probabilistically Clifford transformed
into |H0〉. Much of the technical apparatus required was
established in Appendix A. Given that |ϕ〉 is a pseudostabilizer
state with complexity P (|ϕ〉) � 4, it follows that |ϕ〉⊗n

is also a pseudostabilizer state but with P (|ϕ〉⊗n) � 4n.
Hence, for finite n, Theorem 5 applies and we can conclude
|ϕ〉⊗n→/P |H0〉. However, a supply of |ϕ〉 states is a resource
for universal quantum computation. This paradox is resolved
by observing that although an exact |H0〉 is impossible
to produce, we may approximate |H0〉 with a fidelity that
asymptotically approaches unity as n increases. Similarly,
in entanglement theory many copies of any pure entangled
state may be converted into any other state in the asymptotic
limit.

APPENDIX C

We consider two qubit stabilizer measurements on the
state σ (q), defined in Theorem 3, which is an incoherent
mixture of |T0,1〉 and |T1,0〉. We shall exploit that the state is
invariant under T rotations of either qubit A or qubit B, such
that

T a
AT b

Bσ (q)
(
T a

AT b
B

)† = σ (q) (C1)

for any integers a and b. Furthermore, for any Pauli operator
PAPB , where PA,B = {XA,B,YA,B,ZA,B}, there exists integers
a and b such that

T a
AT b

BPAPB

(
T a

AT b
B

)† = ZAZB. (C2)

Combing these two properties of the T rotation, we have that
for any two-qubit Pauli projection

T a
AT b

B (1 ± PAPB)σ (q)(1 ± PAPB)
(
T a

AT b
B

)†
= (1 ± ZAZB)σ (q)(1 ± ZAZB). (C3)

This symmetry entails that we only have to consider two
possible Pauli projections, �± = (1 ± ZAZB)/2. As an inter-
mediate step in our proof, we see that when the state is pure,
q = 1, two T states can be probabilistically converted into a
pure state on the Bloch sphere equator. This equatorization is
an important step in using these resources for implementing
non-Clifford gates.

First, we note that T states in the computational basis are

|T0〉 = cos(β)|0〉 + eiπ/4 sin(β)|1〉,
(C4)

|T1〉 = sin(β)|0〉 − eiπ/4 cos(β)|1〉,
where cos(2β) = 1/

√
3. If we consider the �+ projection onto

the even parity subspace, then

�+|T0,1〉 = �+|T1,0〉 = cos(β) sin(β)(|0,0〉 − i|1,1〉). (C5)

Since either pure state is projected onto the same stabilizer
state, so too is the mixture σ (q).

For the odd parity projector, �−, the analysis is more
involved as

�−|T0,1〉 = eiπ/4[sin2(β)|1,0〉 − cos2(β)|0,1〉],
�−|T1,0〉 = eiπ/4[sin2(β)|0,1〉 − cos2(β)|1,0〉],

which are distinct nonstabilizer states. Using the decoding
|0,1〉 → |−〉 and |1,0〉 → −i|+〉, these states map to points
on Bloch sphere equator,

�−|T0,1〉 → |γ+〉 = (|0〉 + eiγ |1〉)/
√

2,

�−|T1,0〉 → |γ−〉 = (|0〉 + e−iγ |1〉)/
√

2,

where γ = π/6. Since |γ+〉 is in the positive octant of the
Bloch sphere, no other decoding gets closer to the target |T0〉
state. Applying this analysis to the projection of the initial
mixed state gives

�−σ (q)�− → q|γ+〉〈γ+| + (1 − q)|γ−〉〈γ−|. (C6)

The fidelity of this output with respect to |T0〉 is

f ′′′ = q|〈T0|γ+〉|2 + (1 − q)|〈T0|γ−〉|2, (C7)

where,

|〈T0|γ±〉|2 = (9 ±
√

3)/12. (C8)

Comparing the fidelity f ′′′ with f ′′ of Eq. (14), we find that f ′′′
is always smaller. Hence, no two qubit stabilizer projections
can outperform the single-qubit projection.

APPENDIX D

This appendix provides a proof of Lemma 2, which gives
the maximum probability of projection onto a 2m-dimensional
stabilizer subspace. All stabilizer subspaces are local-Clifford
equivalent to a linear graph code [25], such that

� = Cloc�GC
†
loc. (D1)

Our proof utilizes this local equivalence, so first we give a brief
account of graph codes and their relevant features. A graph
code is defined by a graph G and a m-dimensional linear code
C over Z2. We use |G〉 to denote the graph state corresponding
to graph G, which has stabilizer generators

kj = Xj

⊗
k∈N(j )

Zk, (D2)

where N (j ) denotes the set of vertices in the graph connected
to vertex j . The subspace for the graph code is spanned by
orthogonal graph states

|Gc〉 = Zc|G〉, (D3)

where c represents binary vectors in the code C, and Zc =⊗
Z

cj

j . The projector onto the graph code subspace is then

�G =
∑
c∈C

|Gc〉〈Gc|. (D4)

For our purposes we need to express this projector in terms of
the graph code stabilizer S

�G = 1

2n−m

∑
s∈S

s. (D5)

The stabilizer of the graph code is

S ≡
{

sy =
∏
j

k
yj

j |y ∈ C⊥
}

, (D6)
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where C⊥ is the dual of C. Allowing for local Clifford unitary
operators, the stabilizer of the graph code is S ′ = ClocSC

†
loc,

and so the actual projector is

� = 1

2n−m

∑
s ′∈S ′

s ′. (D7)

In our proof we use the following fact: The stabilizers of S ′
have the same weights as the those in the locally equivalent
graph code stabilizer, S. That is, if w(s) is the weight of
s (the number of nonidentity Pauli operators), then w(s ′) =
w(ClocsC

†
loc) = w(s), which holds because local Cliffords

conjugate Pauli operators without changing their weight. We
use this fact in combination with other features of graph
codes.

As for the relevant quantum state, this also has a Pauli
decomposition. Using that a single T -magic state is

τ0 = 1

2

(
1 + X + Y + Z√

3

)
, (D8)

it follows that n copies may be represented as

τ⊗n
0 = 1

2n

∑
g∈G

g

(
1√
3

)w(g)

, (D9)

whereG is the set of Pauli operators with positive phase. Hence,
the projection probability is

tr(�τ⊗n
0 )

2m−2n
= tr

[ ∑
s ′∈S ′,g∈G

s ′g
(

1√
3

)w(g)
]
,

=
∑

s ′∈S ′,g∈G
tr(s ′g)

(
1√
3

)w(g)

. (D10)

The trace vanishes except when gs ′ = ±1, and so

tr
(
�τ⊗n

0

)
2m−n

=
∑
s ′∈S ′

sgn(s ′)
(

1√
3

)w(s ′)

, (D11)

where sgn(s ′) is ±1, matching the phase of s ′. Clearly, an upper
bound is established when all signs are positive, and hence,

tr
(
�τ⊗n

0

)
2m−n

�
∑
s ′∈S ′

(
1√
3

)w(s ′)

. (D12)

Having arrived at an inequality purely dependent on the
weights of S ′, we can use w(s ′) = w(s) to switch to the
locally equivalent graph code. To determine the graph code
weights w(s) we use the decomposition in terms of canonical
generators expressed in Eq. (D6), where every sy is identified
with a binary vector y ∈ C⊥,

w(sy) = w

(∏
j

k
yj

j

)
. (D13)

When multiplying generators together the Xj contributions
can change into ±Yj , but never reduce in weight. Hence,

w(sy) � w(y), (D14)

where the right-hand side is the weight, number of 1 entries,
in the bit string y. Combining this result with Eq. (D12), we
have

tr
(
�τ⊗n

0

)
2m−n

�
∑
y∈C⊥

(
1√
3

)w(y)

. (D15)

This inequality now depends solely on the classical lin-
ear code C⊥. All such linear codes can, up to relabeling
of bits, be diagonalized such that the generator matrix,
M , has an identity over the first n − m elements, such
that M = [1n−m,M ′]. Dividing the bit strings into two
halves y = (y′,y′′) = (y ′

1, . . . ,y
′
n−m,y ′′

1 , . . . ,y ′′
m), then the el-

ements of y′ are fixed by diagonlization of the generator
matrix. Furthermore, since w(y) = w(y′) + w(y′′), we can
conclude

tr
(
�τ⊗n

0

)
� 2m−n

∑
y∈{0,1}n−m

(
1√
3

)w(y′)+w(y′′)

, (D16)

The weights of w(y′) are fixed by diagonalization, but w(y′′)
depends on features of the code. We are interested in an upper
bound, maximized over all possible projectors �, which can
be achieved when w(y′′) = 0, and so

max
�

[
tr
(
�τ⊗n

0

)]
� 2m−n

∑
y∈{0,1}n−m

(
1√
3

)w(y′)

,

= 2m−n

(
1 + 1√

3

)n−m

= f n−m
st . (D17)

This gives an upper bound, but it is easy to verify that it is
saturated by measuring m qubits in the computational basis
and postselecting on “+1” outcomes.

APPENDIX E

In our magic-activation protocol we saw that σ (q) states
(defined in Theorem 3) can be a powerful resource for
activation of bound families of states. This suggests that they
may be a powerful resource in their own right and that the
ability to prepare many copies of them may enable universal
quantum computation. This is the problem we address here,
although for a more general class of states. We consider states
of the form

σ (q,r) = qτ1,0 + (1 − q − 2r)τ0,1 + r(τ0,0 + τ1,1), (E1)

Before continuing let us reflect on some properties of these
states. First, states in this class are always separable. Second,
they are correlated states except for specific values r =√

q(1 − √
q), which give a product state. Although this class

of states is not completely general, any state can, by a suitable
twirling procedure (see Appendix F), be brought into this form.

We now outline a protocol for exploiting many copies of
these correlated states, where the maximum achievable fidelity
approaches 1 as r → 0. Since the protocol consists of a chain
of projections, we refer to the protocol as the daisy-chain
protocol:

(1) Prepare n copies of the state σ (q,r), with the first pair
as qubits A and B, pair 2 as qubits C and D, and so on;

(2) measure qubit A in the computational basis, and posts-
elect on a “+1” outcome;

032317-10



CATALYSIS AND ACTIVATION OF MAGIC STATES IN . . . PHYSICAL REVIEW A 83, 032317 (2011)

(3) for qubits B and C, measure XBXC and ZBZC and
postselect on “−1” outcomes for both;

(4) perform the preceding step for qubits D and E, and all
subsequent pairs;

(5) leave the final qubit unmeasured and discard all mea-
sured qubits.

After step (2), qubit B is left in a product state τ (f0) with
fidelity

f0 = q(1 − fst) + rfst

r + q(1 − fst) + (1 − q − 2r)fst
, (E2)

which is a generalization of Eq. (14).
Step (3) results in the familiar singlet projection on the

second and third qubits (B and C). After this projection, qubit
D is in the state τ (f1), where f1 is determined by the matrix
equation

(
f1

1 − f1

)
∝

(
q r

r (1 − 2r − q)

)
·
(

f0

1 − f0

)
, (E3)

where we use a proportionally sign because the leftmost
vector must be renormalized to obtain the fidelity. This is
then repeated between every (2j + 1)th and (2j + 2)th qubit.
After all n − 1 singlet projections, we find that the last qubit
is left in the state τ (fn−1), where

(
fn−1

1 − fn−1

)
∝

(
q r

r (1 − 2r − q)

)n−1

·
(

f0

1 − f0

)
.

The limiting behavior, for large n, of this matrix equation is
determined by the matrix eigenvalues, µ1 and µ2, and eigen-
vectors. Whenever eigenvalues have different magnitudes, the
matrix (as n → ∞) projects onto the eigenvector3 with the
largest eigenvalue. As one would expect, when σ (q,r) is a
product state the eigenvalues are identical, but in all other
cases there is one dominant eigenvalue which determines a
limiting fidelity:

lim
n→∞ fn =

{
1 + tan

[
1

2
arctan

(
2r

2(r + q) − 1

)]}−1

. (E4)

Convergence to this fidelity is exponentially fast in the number,
n, of copies of σ (q,r). Specifically, for large but finite n,
deviations from this fidelity vanish as (µ2/µ1)n, where µ2 is
the smaller eigenvalue. In Fig. 5 we chart out various parameter
regimes indicating when the resource is a stabilizer state and
when it provides a resource for universal quantum computing.
Universality may be achieved by a combination of the daisy-
chain protocol followed by the standard five-qubit distillation
procedure [12].

3Note that in this context an eigenvector corresponds to a particular
(f,1 − f ), and hence specifies a mixed state.
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FIG. 5. (Color online) The “phase” diagram for correlated noise
resource, σ (q,r), as described by Eq. (E1). The diagram shows the
region of stabilizer states, and the region of resources that are known
to be universal for quantum computing. Universality is possible if the
daisy-chain protocol achieves a fidelity [see Eq. (E4)] that exceeds
the threshold above which the five-qubit code can be utilized as in
Ref. [12].

Notice that product states are not the only nonstabilizer
states where we observe a regime where no known methods
enable universal quantum computing. There is a temptation
to conjecture that some notion of boundness applies to any
family of states that transverses the gap anywhere except via
the origin. However, the daisy-chain protocol shows that all
nonproduct states can be purified toward some state, even if
that state is not above the threshold for the five-qubit code. As
such, our current definition for boundness would not extend
to these families. However, this seems like a failing of our
definition more than anything else, as the extent of possible
purification appears to be limited by how correlated the raw
resource is.

Finally, note that a very similar protocol and analysis can
be performed for two-qubit correlated states in any basis, not
just the T basis.

APPENDIX F

Here we outline twirling protocols for bringing an arbitrary
state into the form σ (q,r), as defined in Eq. (E1). We perform
the following:

(1) Randomly choose a unitary operator from the set
{1,T ,T 2} and apply to qubit A;

(2) randomly choose a unitary operator from the set
{1,T ,T 2} and apply to qubit B;

(3) randomly choose a unitary operator from the set
{1,YAHASWAPA,BHAYA} and apply.

The first two steps diagonalize the state in the |Ti,j 〉 basis,
and the third step mixes the symmetric terms.
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