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Entanglement detection for bipartite systems with continuous variables in non-Markovian baths

Hong-Guang Duan and Xian-Ting Liang*

Department of Physics and Institute of Modern Physics, Ningbo University, Ningbo 315211, China
(Received 3 January 2011; published 24 March 2011)

By using the dynamics described with the quantum Langevin equation and the inseparability criterion for
continuous-variable systems [L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722
(2000).], we discuss a method to judge whether entanglement exists in the evolutions of bipartite systems with
continuous variables in their baths. By using this method we investigate a nontrivial example, namely, we judge
when the entanglement exists in the evolution of the two coupled anharmonic oscillators in their environments.
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I. INTRODUCTION

Quantum entanglement plays an essential role in all
branches of quantum information theory, and it may be also
important in other fields in which quantum physics should be
used. For bipartite systems, measurements of entanglement
have been introduced in many forms. The von Neumann
entropy [1], negativity [2], etc. have been used to measure the
degree of entanglement for pure states, while concurrence [3]
has been applied to describe entanglement for not only pure
states but also mixed states. These measures of entanglement
have also been extended to describe the pure states of
multipartite qubit systems in recent years [4,5].

Entanglement evolutions of bipartite systems [6], even
multipartite systems with continuous variables [7,8], have
recently been investigated in the Markovian approximation.
The entanglement evolutions of discrete lower level quan-
tum systems embedded in baths have also been studied in
both Markovian [9,10] and non-Markovian approximations
[11–13]. However, the entanglement evolution of quantum
systems with continuous variables in non-Markovian approx-
imation is still a challenge to theorists. The evolution process
of entanglement is indeed a quantum dynamic process and it
can be described by a system-plus-reservoir model [14]. There
are several methods to deal with this model. For example, the
Feynman path integral, stochastic dynamics, master equation
of Redfield form, and quantum Langevin equation [15], etc.
The former three schemes have been widely used to investigate
the entanglement dynamics of discrete lower level quantum
systems. In this paper we develop a model in which it is
convenient to use a c-number quantum Langevin equation
(QLE) [16–21] with the inseparability criterion of DGCZ
(discovered by L. -M. Duan, G. Giedke, J. I. Cirac, and P. Zoller
in Ref. [22]) for continuous variable systems to investigate
whether there is entanglement for coupled bipartite quantum
systems with continuous variables in their environments.

In the following, we first investigate the dynamics of two
coupled anharmonic oscillators in their baths by using the
QLE. Then, based on the dynamics, we use the DGCZ criterion
to judge whether the coupled anharmonic systems in their
environments are entangled in the process of evolution. It is
shown that in the short evolution times the coupled anharmonic
systems in baths are entangled. Although the method cannot be
used to quantitatively measure the degree of entanglement, it
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may be a convenient tool for determining whether the systems
with continuous variables are entangled.

II. MODEL AND DYNAMICS

As an example, we consider two coupled anharmonic
oscillators being embedded in their respective baths. The
Hamiltonian can be read as

H = H1 + H2 + H12, (1)

where

H1 = p2
1

2
+ V1(x1) +

N∑
α=1

p2
α

2
+ 1

2

N∑
α=1

kα(qα − x1)2,

(2)

H2 = p2
2

2
+ V2(x2) +

N∑
β=1

p2
β

2
+ 1

2

N∑
β=1

kβ(qβ − x2)2,

and

H12 = Kx1x2. (3)

Here, x1,2 and p1,2 are the coordinate and momentum operators
of the systems 1 and 2, and {qα,pα}, {qβ,pβ} is the set
of coordinate and momentum operators for the reservoir
oscillators bilinearly coupled to their systems. K is the
coupling coefficient between systems 1 and 2. The potentials
V1,2(x) are due to the external force field for the Brownian
particles. The coordinate and momentum operators follow the
usual commutation relations [x,p] = ih̄ and [qk,pl] = ih̄δkl .
In our model the two anharmonic oscillators are respectively
coupling to their baths. From Eq. (1), by eliminating the
reservoir degrees of freedom of baths, we obtain the quantum
Langevin equation for the two particles [23],

ẍ1,2(t) + V ′(x1,2) +
∫ t

0
dt ′γ1,2(t − t ′)ẋ1,2(t ′)

= F1,2(t) − Kx2,1, (4)

where the noise operator F1,2(t) and the memory kernel γ1,2(t)
are given by

Fi(t) =
∑

j

[{qj (t) − xi(0)}kj cos ωj t + pj (0)k1/2
j sin ωj t

]

(5)

and

γ1(t) =
∑

α

kα cos ωαt, γ2(t) =
∑

β

kβ cos ωβt, (6)
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with ka,β = ω2
α,β . For convenience, in this paper we set i = 1

and 2, corresponding to j = α and β, unless specifically
stated otherwise. As the bath oscillators are canonically
distributed with respect to the bath Hamiltonian at t = 0, we
have

〈Fi(t)〉QS = 0,

1

2
{〈Fi(t)Fi(t

′)〉QS + 〈Fi(t
′)Fi(t)〉QS}

= 1

2

∑
j

kjh̄ωj

(
coth

h̄ωj

2kBT

)
cos ωj (t − t ′). (7)

Here, 〈· · ·〉QS refers to quantum statistical average of bath
degrees of freedom defined as

〈O〉QS = TrO exp(−Hbath/kBT )

Tr exp(−Hbath/kBT )
. (8)

Here,

Hbath = H 1
bath + H 2

bath,

H 1
bath =

N∑
α=1

p2
α

2
+ 1

2

N∑
α=1

kα(qα − x1)2,

H 2
bath =

N∑
β=1

p2
β

2
+ 1

2

N∑
β=1

kβ(qβ − x2)2.

To construct two c-number Langevin equations, we first carry
out the quantum-mechanical average on Eq. (4) as

〈ẍ1,2(t)〉 +
∫ t

0
dt ′γ1,2(t − t ′)〈ẋ1,2(t ′)〉 + 〈V ′(x1,2)〉

= 〈F1,2(t)〉 − K〈x2,1〉, (9)

Let fi(t) = 〈Fi(t)〉. We then have

fi(t) =
∑

j

[{〈qj (t)〉 − 〈xi(0)〉}kj cos ωj t

+〈pj (0)〉k1/2
j sin ωj t

]
. (10)

Thus, we can obtain the c-number equations from
Eq. (9) as

〈ẍ1,2(t)〉 +
∫ t

0
dt ′γ1,2(t − t ′)〈ẋ1,2(t ′)〉 + 〈V ′(x1,2)〉

= f1,2(t) − K〈x2,1〉, (11)

with

〈fi(t)〉s = 0,
(12)

〈fi(t)fi(t
′)〉s = 1

2

∑
j

kjh̄ωj coth

(
h̄ωj

2kBT

)
cos ωj (t − t ′).

Referring to the quantum operators of the system in the
Heisenberg picture, one may write

xi = Xi + δxi, pi = Pi + δpi. (13)

Here, 〈xi〉 = Xi and 〈pi〉 = Pi are the quantum-mechanical
averages, and δxi , δpi are the correction operators. 〈δxi〉 and

〈δpi〉 are zero, and [δxm,δpn] = ih̄δmn. Then we can write
Eq. (11) in the form

Ẋ1,2 = P1,2,

Ṗ1,2 = −
∫ t

0
dt ′γ1,2(t − t ′)P1,2(t ′) − V ′

1,2(X1,2) (14)

+ f1,2(t) + Q1,2(t) − KX2,1,

with

Qi(t) = V ′
i (〈xi〉) − 〈V ′

i (xi)〉. (15)

Here, V ′
i (x) = dV ′

i (x)/dx. Using Eq. (13) in 〈V ′
i (x)〉 and a

Taylor series expansion around 〈xi〉, we can express Qi(t) as

Qi(t) = −
∑
n�2

1

n!
V

(n+1)
i (Xi)

〈
δxn

i (t)
〉
. (16)

Here, V
(n)
i (x) = dV n

i (x)/dxn. Equations (14) are the equa-
tions of motion regarding quantum-mechanical average quan-
tities Xi and Pi . Note that they are c-number equations
governed by c-number quantum noise fi(t) and a quantum
fluctuation term Qi(t).

In the following, we first investigate the quantum correction
from Qi(t). We return to the operator equation, Eq. (4), and
insert Eq. (13) to obtain

δẋ1,2 = δp1,2,

δṗ1,2 +
∫ t

0
γ1,2(t − t ′)δp1,2(t ′)dt ′ + V ′′

1,2(X1,2)δx1,2 (17)

+
∑
n�2

1

n!
V

(n+1)
1,2 (X1,2)δxn

1,2 = F1,2(t) − f1,2(t) − Kδx1,2.

Note that 〈δxn
i (t)〉 in Qi(t) does not include any statistical

averaging and is a dispersion term obtained by pure quantum-
mechanical averaging, which should not be confused with
〈δxi(t)〉s , where the subscript s means the statistical average.
Thus, to obtain 〈δxi(t)〉 we need only to perform a quantum-
mechanical averaging over the initial product separable bath
states �∞

i=1{|ai(0)|} to get rid of the term Fi(t) − fi(t). So, it is
easy to obtain the first- and second-order correction equations
from Qi(t). Second, we discuss how to deal with the quantum
noise fi(t). In the continuous limit, the correlation function
ci(t − t ′) [see Eq. (12)] becomes

ci(t − t ′) = 〈fi(t)fi(t
′)〉s

= 1

2

∫ ∞

0
dωκi(ω)ρi(ω)h̄ω coth

(
h̄ω

2kBT

)

× cos ω(t − t ′). (18)

On the other hand, we can generate a set of exponentially
correlated color noise variables ηm according to

η̇m = −ηm

τm

+ 1

τm

ξm(t), (19)

〈ξm(t)〉 = 0, (20)

〈ξm(0)ξn(0)〉 = 2Dmδmnδ(τ ), (m,n = 1,2,3, . . .).
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The quantum noise ηm is similar to the Ornstein-Uhlenbeck
(OU) [24] process with properties

〈ηm(t)〉 = 0, 〈ηm(t)ηn(t ′)〉 = δmn

Dm

τm

exp

(−|t − t ′|
τm

)
.

(21)

Thus the correlation function can be fitted with a superposition
of several exponentials, namely,

ci(t − t ′) ≈
∑

m=1,2...

Dm

τm

exp

(−|t − t ′|
τm

)
. (22)

The c-number quantum noise fi(t) due to the heat bath is
therefore given by

fi(t) =
∑

m=1,2...

ηm, 〈fi(t)fi(t
′)〉s =

∑
m=1,2...

〈ηm(t)ηm(t ′)〉.

(23)

Thus, the dynamics of the reduced coupled anharmonic
oscillator system can be described with

Ẋ1 = P1,

Ṗ1 = −V ′
1(X1) + Q1(t) +

∑
m=1,2,3...

ηm(t) + Z1 − KX2, (24)

Ż1 = −�1
P1

τc1
− Z1

τc1
, η̇m = −ηm

τ1
+ 1

τ1
ξ1(t),

Ẋ2 = P2,

Ṗ2 = −V ′
2(X2) + Q2(t) +

∑
n=1,2,3...

ηn(t) + Z2 − KX1, (25)

Ż2 = −�2
P2

τc2
− Z2

τc2
, η̇n = −ηn

τ2
+ 1

τ2
ξ2(t),

where Z1,2 = − ∫ t

0 dt ′γ1,2(t − t ′)P1,2(t ′). The values of Q1(t)
and Q2(t) can be obtained from Eqs. (16) and (17), and up
to second order the correction terms are derived from the
following equations:

δẋ1 = δp1,

δṗ1 = −V ′′
1 (X1)δx1 − 1

2
V

(3)
1 (X1)δx2

1 + δZ1 − Kδx2, (26)

δŻ1 = − �1

τc1
δp1 − 1

τc1
δZ1,

δẋ2 = δp2,

δṗ2 = −V ′′
2 (X2)δx2 − 1

2
V

(3)
2 (X2)δx2

2 + δZ2 − Kδx1, (27)

δŻ2 = − �2

τc2
δp2 − 1

τc2
δZ2,

〈
δẋ2

1

〉 = 〈δx1δp1 + δp1δx1〉,
〈δx1δp1+̇δp1δx1〉 = 2

〈
δp2

1

〉 − 2V ′′
1 (X1)

〈
δx2

1

〉
, (28)〈

δṗ2
1

〉 = −V ′′
1 (X1)〈δx1δp1 + δp1δx1〉 − K〈δp1〉〈δx2〉,〈
δẋ2

2

〉 = 〈δx2δp2 + δp2δx2〉,
〈δx2δp2+̇δp2δx2〉 = 2

〈
δp2

2

〉 − 2V ′′
2 (X2)

〈
δx2

2

〉
, (29)〈

δṗ2
2

〉 = −V ′′
2 (X2)〈δx2δp2 + δp2δx2〉 − K〈δp2〉〈δx1〉.

Here, δZ1,2 = − ∫ t

0 γ1,2(t − t ′)δp1,2(t ′)dt ′. Thus, we can in-
vestigate the dynamics of the open coupled anharmonic
oscillators by solving the 20 differential equations above.

III. APPLICATIONS AND DISCUSSION

In the last section we developed the dynamic equations
of the reduced coupled oscillators. The dynamics can be de-
scribed with the differential equations of quantum-mechanical
quantitative averages [Eqs. (24) and (25)] and their quantum
corrections [Eqs. (26) and (29)] with the stochastic driving. In
this section we investigate a fixed model by using the above
theoretical results. Supposing the bath modes in which systems
1 and 2 are embedded are Lorentzian distribution, we then have

κi(ω)ρi(ω) = 2

π

(
�i

1 + ω2τ 2
ci

)
. (30)

Here, �1,2 is the dissipation constant and τc1,2 refers to the
correlation time of the two baths. In the rest of this paper, we
set kBT = 0.025, V1(X) = V2(X) = aX4 − bX2, and �1 =
�2 = 1, τc1 = τc2 = 1. It has been shown that in our case the
correlation function can be modeled with a single exponential
function with D1 = 0.025 and τ1 = τ2 = 1 (see Fig. 1). The
time scale is derived from the forms of Eq. (1).

In order to see the dynamics clearly, we first plot the
evolutions of X1(t) and X2(t) in Fig. 2. Here we set the
parameters a = 0.005, b = 0.1, K = 0.6, and the initial
conditions are X1(0) = −1, X2(0) = 1, P1(0) = 0, P2(0) = 0,
δx1 = 0, δx2 = 0, δp1 = 0, δp2 = 0, 〈δx2

1 〉 = 0.5, 〈δx1δp1 +
δp1δx1〉 = 1, 〈δp2

1〉 = 0.5, 〈δx2
2 〉 = 0.5, 〈δx2δp2 + δp2δx2〉 =

1, and 〈δp2
2〉 = 0.5. It is shown in Fig. 2 that X1(t) and X2(t)

are oscillating with time increase and finally, to their respective
equilibrium positions. In the following, by using the dynamic
results with the DGCZ criterion, we investigate whether the
entanglement existed in the process of evolution for the open
coupled systems. Generally, for the type of EPR-like operators
[25]

u = |α| x1 + 1

α
x2, v = |α| p1 − 1

α
p2, (31)

FIG. 1. (Color online) Correlation functions obtained from
Eqs. (20) and (21), where �1,2 = 1, τc1,2 = 1, D1,2 = 0.025, τ1,2 = 1,

and kBT = 0.025.
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FIG. 2. (Color online) Evolutions of x1(t) and x2(t) vs time t in the
potential V1,2(X) = aX4

1,2 + bX2
1,2, where the coefficient of potential

a = 0.005, b = 0.1, and the initial conditions are given in the text.

where α is an arbitrary (nonzero) real number, it has been
proven that for any separable quantum state ρ, the total
variance of a pair of EPR-like operators defined by Eq. (31)
with commutators [xk,pk′] = iδkk′ (where i is the imaginary
unit, and k, k′ = 1,2) satisfies the inequality

ξ = 〈(�u)2〉ρ + 〈(�v)2〉ρ � 2, (32)

as α = 1. Namely, if ξ − 2 = [(�u)2 + (�v)2] − 2 < 0, the
quantum state is entangled [26]. Here, u = x1 + x2 and v =
p1 − p2 are the two Einstin-Podolsky-Rosen–type operators,
while �u and �v are the corresponding quantum fluctuations.
We plot the evolution of ξ with time in Fig. 3, where the
values of the parameters are the same as Fig. 2, except for
�. It is shown that within a short time the two subsystems
are entangled. As the time increases to some value, the
parameter ξ increases and its minimum value becomes larger
than 2, indicating that the two subsystems are entangled in
the initial process. But we could not get enough information
about the exact degree of entanglement according to the
inequality (32). It can also be shown that as the noise
�1,2 increases, the entanglement time will decrease and vice
versa.

Note that the DGCZ criterion provides a sufficient condition
for inseparability of any two-party continuous variable states.
From the criterion we obtain only that if the quantity ξ < 2 we
can judge the systems entangled, but we cannot say anything
regarding ξ > 2. So for non-Gaussian states, from the quantity
ξ we can judge only if the entanglement exists in a coupling

FIG. 3. (Color online) Evolutions of ξ vs time t, where the values
of the parameters are similar to Fig. 2, except for �.

system. However, as proven in Ref. [22] for all Gaussian states,
this criterion turns out to be a necessary and sufficient condition
for inseparability. At this time we note that if the quantity
ξ < 2, the systems are entangled, and if the quantity ξ > 2 the
systems are separable. It is clear that in our investigated model,
the coupled anharmonic oscillators are in their respective
baths; thus the state cannot evolve to Gaussian state even
from the initial pure Gaussian state. Furthermore, even for the
Gaussian states, from the quantity ξ we can only judge if the
entanglement exists or not in a coupling system. The quantity
ξ cannot measure the degrees of entanglement, because as
a measure of entanglement, the quantity ξ must satisfy four
conditions as given in Ref. [27].

IV. CONCLUSIONS

In this paper we introduce a method to judge whether
entanglement exists by using the QLE and the DGCZ criterion.
As an example, we investigated the model of the two coupled
anharmonic oscillators in their respective baths. This method
does not depend on the Markovian approximation and does not
need any measure of entanglement. It shows that the quantum
Langevin equation with the DGCZ criterion may construct
an excellent scheme for estimating whether the system with
continuous variables is entangled; however, the exact evolution
of the degree of entanglement based on this method needs to
be developed.
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