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Density of defects and the scaling law of the entanglement entropy in quantum phase transition
of one-dimensional spin systems induced by a quench
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We have studied quantum phase transition induced by a quench in different one-dimensional spin systems. Our
analysis is based on the dynamical mechanism which envisages nonadiabaticity in the vicinity of the critical point.
This causes spin fluctuation which leads to the random fluctuation of the Berry phase factor acquired by a spin
state when the ground state of the system evolves in a closed path. The two-point correlation of this phase factor
is associated with the probability of the formation of defects. In this framework, we have estimated the density
of defects produced in several one-dimensional spin chains. At the critical region, the entanglement entropy of
a block of L spins with the rest of the system is also estimated which is found to increase logarithmically with
L. The dependence on the quench time puts a constraint on the block size L. It is also pointed out that the
Lipkin-Meshkov-Glick model in point-splitting regularized form appears as a combination of the XXX model
and Ising model with magnetic field in the negative z axis. This unveils the underlying conformal symmetry at
criticality which is lost in the sharp point limit. Our analysis shows that the density of defects as well as the
scaling behavior of the entanglement entropy follows a universal behavior in all these systems.
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I. INTRODUCTION

Kibble [1] has pointed out that in second-order phase
transitions if the system is driven at a fixed rate characterized
by a quench time its evolution cannot be adiabatic close to
the critical point. The nonadiabatic evolution in the critical
region produces defects such that the system becomes a
mosaic of ordered domains whose finite size depends on the
transition rate. In the cosmological scenario Kibble considered
relativistic causality to set the size of the domains. Later,
Zurek [2] suggested the dynamical mechanism based on the
universality of critical slowing down and predicted that the size
of the ordered domains scales with the transition time τq as τ

χ
q

where χ is a critical exponent. The Kibble-Zurek mechanism
(KZM) in second-order phase transition essentially involves
thermal fluctuation which initiates symmetry breaking. In
recent times, the zero-temperature quantum phase transition
(QPT) has been studied in light of KZM and the formation of
defects in one-dimensional transverse Ising model has been
investigated in detail by several authors [3–5]. In QPT of the
spin chains, apart from the study of the formation of defects it
is also important to examine how entangled various parts of the
system are with each other. Recently, it has been shown that
for a quantum spin system in a mixed state the entanglement of
formation of a pair of nearest neighbor spins, i.e., concurrence
is related to the Berry phase factor acquired by a spin state
when the ground state of the system evolves in a closed
path [6–8]. When a bipartite quantum system is in a pure
state the measure of entanglement between two subsystems is
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given by von Neumann entropy. When the bipartite system
is in a mixed state the entanglement of formation given
by concurrence has the property that it reduces to the von
Neumann entropy in a pure state [9]. It has been observed
that the entanglement entropy of a block of L spins with the
rest of the system at criticality follows a logarithmic scaling
law in one-dimensional spin systems. The basic ingredient
behind this result is that at criticality the correlation length
diverges and the system becomes conformal invariant. This
conformal symmetry leads to the logarithmic scaling law of the
entanglement entropy at criticality [10]. When the criticality
is induced by a quench the scaling behavior changes. The
formation of defects as well as the entanglement entropy of a
block of L spins with the rest of the system in transverse Ising
model, when QPT is induced by a quench, has been studied in
detail by Cincio et al. [5].

The behavior of the geometric phase in an XY spin chain
during a linear quench caused by a gradual turning off of the
magnetic field was studied earlier [11]. In a recent note [12]
we formulated a dynamical mechanism for QPT induced by a
quench based on the fact that spin fluctuation in the vicinity
of the critical point leads to the fluctuation of the Berry phase
acquired by the ground state of the system when it evolves
in a closed path. The probability of the formation of defects
is determined by the two-point correlation of this geometric
phase factor. We have studied the formation of defects in
transverse Ising model during critical slowing down based
on this formalism and the results are found to be identical with
those derived by other authors [3–5]. We have also studied
the scaling law of the entanglement entropy in the transverse
Ising model at criticality induced by a quench and it is shown
that the prefactor now depends on the quench time and there
is a restriction on the block size L [13]. In this paper, we
study the formation of defects as well as the scaling law of
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the entanglement entropy at criticality induced by a quench in
some other one dimensional spin systems on the basis of this
dynamical mechanism of QPT induced by a quench.

The organization of the paper is as follows. In Sec. II
we briefly review of our work [12] related to the isotropic
XY model (transverse Ising model) for comprehension of the
formulation we have adopted. In Secs. III and IV we study
the XX and XXX models, respectively. In Sec. V we deal
with the Lipkin-Meshkov-Glick (LMG) model. We make a
comparative analysis of the results obtained for different spin
systems in Sec. VI. Finally, we discuss results in Sec. VII.

II. THE XY MODEL

The Hamiltonian for the XY model is given by

HXY = −
∑

i

(
1 + γ

2
σx

i σ x
i+1 + 1 − γ

2
σ

y

i σ
y

i+1 + λσ z
i

)
. (1)

Here λ is the external magnetic field, γ is the anisotropy
parameter and σa

i (a = x,y,z) are the Pauli matrices. The XY

model with (γ �= 0) falls into the free fermion universality
class and is critical for λ = 1. The isotropic XY model (γ = 1)
corresponds to the transverse Ising model. We consider the
Hamiltonian for the transverse Ising model

H = −
∑

i

(
σ z

i σ z
i+1 + λσx

i

)
. (2)

For λ � 1 all the spins are aligned along the x axis and the sys-
tem is in the paramagnetic state. In the region λ � 1 the system
is in the ferromagnetic state with all spins either up or down.
During critical slowing down we introduce a linear quench

λ(t < 0) = − t

τq

, (3)

where τq is the quench time. In the vicinity of the critical
region, the nonadiabaticity induces spin fluctuation. This even-
tually causes fluctuation of the Berry phase acquired by a spin
state when the ground state evolves in a closed Path. The Berry
phase acquired by a spin state is given by � = π (1 − cos θ ),
where θ is the angle of deviation of the spin axis from the
quantization axis [14–17]. In the critical region, due to nonadi-
abaticity some spins get excited and defects (kinks) are formed.
The Berry phase factor associated with such a spin is given by

φk0 = �k0

2π
= 1

2

(
1 − cos θk0

)
, (4)

where k0 is the momentum mode of the quasiparticle
corresponding to the spin undergoing excitation and θk0 is the
corresponding angle of deviation of the spin axis from the z

axis. In our formulation it is assumed that during criticality φk0

undergoes stochastic fluctuation and it follows the simplest
stochastic differential equation

dφk0 (t) = −ωk0φk0 (t) dt + dη(t), (5)

where ωk0 is the frequency related to the energy εk0 near
criticality and η(t) is a Gaussian white noise satisfying the
moments

〈dη(t)〉 = 0,

〈dη(t)dη(t ′)〉 = δ(t − t ′) dt ′. (6)

This gives rise to the correlation

〈φk0 (t)〉 = 0, 〈φk0 (t)φk0 (t ′)〉 = 1
2e−ωk0 (t−t ′). (7)

At criticality during the quench time τq , the spin states transit
from the paramagnetic state to the ferromagnetic state so that
the angle of deviation [θk0 (τq)] of a spin axis is π/2. The spin
state undergoing excitation settles down at t = 0 with the
spin axis reversed so that θk0 (0) takes the value π with certain
probability pk0 . This implies that the random variable φk0 (t)
acquires the value 1/2 and 1 at t = τq and t = 0, respectively,
i.e., we have φk0 (τq) = 1

2 , φk0 (0) = 1. This suggests that
the random variable 2φk0 (τq)φk0 (0) attains the value 1 with
probability pk0 . Thus using Eq. (7) the excitation probability
pk0 can be written as

pk0 = 2〈φk0 (τq)φk0 (0)〉 = e−ωk0 τq . (8)

The energy εk0 near the critical point is given by [12]

εk0 = 2(1 − cos k0) = 4 sin2 k0

2
∼ k2

0, (9)

for small k0. This gives

pk0 = e−2πk2
0τq . (10)

The number density of defects is given by

n1 = 1

2π

∫ π

−π

pk0dk0 = 1

2π

∫ π

−π

e−2πτqk2
0 dk0 = 1

2π

1√
2τq

.

(11)

This gives rise to the domain size corresponding to the
Kibble-Zurek (KZ) correlation length ξ̂ ∼ √

τq . This result is
identical with that obtained by other authors [3–5].

At the critical point the ground states are characterized by
the fact that the entanglement entropy SL of a block of L spins
with the rest of the system diverges like log L with a prefactor
determined by the central charge c of the relevant conformal
field theory [10]. In fact,

SL ≈ c

3
log2 L. (12)

For the critical Ising model c = 1/2,

SL ≈ 1
6 log2 L, (13)

and the system falls into the free fermion universality class.
It has been shown that the central charge c is related to the
Berry phase factor φ, the phase being ei2πφ and just like the
central charge c, the Berry phase factor φ also undergoes
a renormalization group (RG) flow [18] such that L

∂φ

∂L
� 0

where L is a length scale. From this we have

|φ|L = a ln L = ā log2 L, (14)

where a(�0) is a parameter.
For a pair of nearest neighbor spins (L = 2), ā = |φ|

which corresponds to the entanglement of formation given
by concurrence in a mixed state [7,8]. So for the entropy of
a block of L spins due to entanglement with the rest of the
system in the pure state we can write

SL ≈ |φ| log2 L. (15)
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At criticality the concurrence for the entanglement of a pair of
nearest neighbor spins in transverse Ising model is given by
|φ| = 0.18 [7] and so we find

SL ≈ 0.18 log2 L. (16)

It is observed that the prefactor in Eq. (13) is very close to the
value 0.18. We may mention here that the entanglement of a
block of L spins with the rest of the system can be considered
to be equivalent to the entanglement between a single spin
representing the block spin with another spin represented by
the rest of the system in block variable RG scheme. In view of
this, SL in Eq. (13) can be considered as the concurrence C for
the entanglement between the pair of this two block variable
renormalized spins in a mixed state. The slight departure of the
prefactor 1

6 in Eq. (13) from the value 0.18 in Eq. (16) may be
associated with the block variable renormalization of the spin
system which induces a change in the coupling constant. The
factor 1/6

0.18 = 0.926 is considered to be the correction factor
associated with the block spin variable.

The introduction of a quench incorporates a new length
scale given by the KZ correlation length ξ̂ ∼ √

τq . So to
evaluate the entanglement entropy immediately after the
dynamical phase transition we have to rescale the Berry phase
factor |φ| in expression (15) corresponding to the entanglement
of a pair of nearest-neighbor spins in terms of that of the block
spins in the domain ξ̂ with the rest of the system. This follows
from the fact that after the formation of defects the system
in the final state represents a kink-antikink chain with lattice
space approximately given by ξ̂ . So we write [13]

S(L,τq) = 2
|φ| log2 L

|φ| log2 ξ̂
× 0.926 ≈ 3.7

ln L

ln τq

. (17)

The factor 0.926 has been introduced as the correction factor
of the block variable renormalization as discussed above.
Equation (17) shows that in the scaling law of the entanglement
entropy there is a prefactor depending on τq . This imposes a
restriction on the maximum value of L,Lmax which is allowed
in the system. As in the final state the system represents a
kink-antikink chain with lattice constant ξ̂ , the maximum
value of the entanglement entropy attained by the system
corresponds to the entanglement of a block ξ̂ spins with the
rest of the system along with the entropy associated with the
entanglement of kink-antikink pair. As we know for a bipartite
spin 1/2 system the maximum value of entanglement entropy
is 1, which at criticality is distributed over the whole chain, we
can write for the entire chain [13]

Smax = 2(0.18 log2 ξ̂ + 1) × 0.926 = 0.12 ln τq + 1.85.

(18)

This suggests the relation S(L,τq )
Smax

� 1 which implies [19]

ln L � 0.03(ln τq)2 + 0.5 ln τq. (19)

This restricts the block size L when QPT is induced by a
quench and suggests that for sufficiently small τq the block size
L � ξ̂ . Thus we find that during critical slowing down due to
the formation of defects, the scaling law for the entanglement
entropy is valid only in a restrictive sense.

We have compared our result with that obtained by Cincio
et al. [5] using the standard technique of density matrix

analysis in [13]. Within the limited range of the block size
L determined by Eq. (19) the result was found to be in good
agreement with that of Cincio et al.

III. THE X X MODEL

The XX model given by the Hamiltonian

H = −
∑

i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1

) + λ
∑

i

σ z
i (20)

has two-limit behavior. At λ = 2 the system corresponds to
a ferromagnetic state while at λ = 0 the system falls into the
free boson universality class. The interval between these two
points corresponds to the critical region. As the system transits
through the point λ = 2 in the vicinity of the critical point we
introduce a quench so that the time dependent magnetic field
is given by

λ(t < 0) = −2t/τq, (21)

τq being the quench time. At t = 0 (λ = 0) the system settles
down in a free bosonic state when the ground state is ordered
in the xy plane and we have pairs of spins with opposite
orientations. However, due to nonadiabaticity in the transition,
this simple bosonic picture is disturbed and the system is
characterized by domains having spins with same orientations,
i.e., defects (kinks) are formed. Following the analysis in
the previous section, in the critical region we consider the
fluctuation of the Berry phase acquired by a spin state when the
ground state evolves in a closed path. Let the system initially
be in the the region λ > 2. As the system transits through
the point λ = 2, the ferromagnetic order is destroyed when
certain spins are flipped. From Eq. (4) we can easily show that
the Berry phase factor φk0 (τq) takes the value 1 corresponding
to the value θk0 (τq) = π where k0 is the momentum mode of
the quasiparticle associated with the flipped spin.

As time evolves, in the vicinity of λ = 0 due to nonadi-
abaticity certain spins get excited with probability pk0 and
their orientations are reversed. Finally at λ = 0, the system
settles down with domains characterized by spins having this
reversed orientation destroying the free bosonic property. This
suggests that the random variable φk0 (0) attains the value 1
corresponding to θk0 = π as follows from Eq. (4). From this
we find that the random variable φk0 (τq)φk0 (0) acquires the
value 1 with probability pk0 . Thus we have

pk0 = 〈φk0 (τq)φk0 (0)〉, (22)

and from Eq. (7) we find

pk0 = 1
2e−ωk0 τq , (23)

ωk0 being the frequency associated with the energy in the
critical region.

Now we note that the energy of the quasiparticle associated
with a spin state having the momentum mode k0 is given
by [20]

εk0 = λ − 2 cos
2πk0

N
, (24)

N being the number of sites. So taking the lattice constant a =
2π
N

= 1, we find at λ = 2, εk0 = 2(1 − cos k0) = 4 sin2 k0
2 ∼ k2

0

032312-3



BASU, BANDYOPADHYAY AND MAJUMDAR PHYSICAL REVIEW A 83, 032312 (2011)

for small k0. This suggests that for pk0 we can write

pk0 = 1
2e−2πτqk2

0 . (25)

The number density of defects (kinks) formed when the system
finally settles down at λ = 0 is given by

n2 = 1

2π

∫ π

−π

pk0dk0 = 1

2π

1

2

∫ π

−π

e−2πτqk2
0 dk0 = 1

4π

1√
2τq

.

(26)

Incidentally it has the same scaling behavior with τq as in
the transverse Ising model and the KZ correlation length is
ξ̂ ∼ √

τq .
To estimate the entanglement entropy at criticality we note

that at λ = 0 the system belongs to the free boson universality
class and the central charge of the relevant conformal field
theory corresponds to c = 1. This gives the scaling law of the
entanglement entropy at λ = 0 of a block of L spins with the
rest of the system as

SL ∼ 1
3 log2 L. (27)

As mentioned earlier the entanglement entropy of a block
of L spins with the rest in a pure state is equivalent to the
entanglement of formation of a pair of nearest neighbor spins
in a mixed state given by concurrence C. As the concurrence
C is associated with the Berry phase factor acquired by a spin
state while evolving in a closed path we write C = |φ| where
the phase is ei2πφ . Thus as in Sec. II using a RG flow equation
we can write for the entanglement entropy of a block of L

spins with the rest of the system

SL ∼ |φ| log2 L. (28)

At the critical point λ = 0, the system belongs to the free
boson universality class, and the Berry phase factor |φ| here is
identical to the concurrence of a pair of nearest-neighbor spins
in an antiferromagnetic system which is given by C = |φ| =
0.386 [7]. Now we take into account the correction factor 0.926
due to the block spin renormalization. In fact the von Neumann
entropy of a block of L spins with the rest of the system in pure
state is here transcribed into the concurrence associated with
the entanglement of a renormalized block spin with another
spin corresponding to the rest of the system in a mixed state.

This gives the effective value of |φ| = 0.386 × 0.926 = 0.35
which is close to the value 1/3 derived from conformal field
theory. Utilizing this result we now estimate the entanglement
entropy of a block of L spins with the rest of the system at
criticality near λ = 0 induced by a quench. Indeed in analogy
to Eq. (17) we write

S(L,τq) = 4
|φ|

|φ| ln τq

ln L × 0.926 = 3.7
ln L

ln τq

. (29)

This result is independent of the prefactor in Eq. (28)
and thus is universal for all one-dimensional spin systems.
However, the maximum value of L, Lmax allowed in the system
is different. Following Eq. (18), the maximum value of the
entanglement entropy at λ = 0 is derived as

Smax = 2(|φ| log2 ξ̂ + 1) × 0.926,

= 0.25 ln τq + 1.85. (30)

Now from the constraint S(L,τq)/Smax � 1 we obtain

ln L � 0.07(ln τq)2 + 0.5 ln τq. (31)

Thus we find that due to generation of defects, the scaling
law for the entanglement entropy is restricted by the maximum
value of the block size allowed in the system. This picture is
in the vicinity of the point λ = 0. However, in the region
2 > λ > 0, the entropy of entanglement gradually decreases
with the increase in the magnetic field following the same
scaling law until at λ = 2, the entanglement vanishes.

It is pointed out by Latorre, Rico, and Vidal [21] that the
maximum entropy is reached at λ = 0. The entropy is fitted
by a logarithmic scaling law as given by Eq. (27) with a
constant term which has been determined analytically by Jin
and Korepin [22]. These results have been obtained without
critical slowing down when nonadiabaticity comes into play. It
is noted from Eq. (29) that when nonadiabaticity near criticality
is introduced the entropy decreases with quench time. In Fig. 1
(left) we have compared our result with the exact value of the
entropy at λ = 0 as reported in [20] (where no quench was
introduced) for τq = 200,400, and 800. As expected we have
found that the entropy increases with decreasing quench time.
At λ = 0 the entropy is maximum and we find that our result
is in reasonable good agreement with the exact value for small
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FIG. 1. (Left) the entanglement entropy of the XX model for various quench time (τq ) is compared with the exact value plotted for λ = 0
from the result as reported in [20]. (Right) shows the variation of S(L,τq )/Smax with L/

√
τq .
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value of τq . Indeed, we find that for τq = 200 it is close to the
exact value and for higher values of τq the entropy decreases.
In Fig. 1 (right) we have plotted S(L,τq)/Smax vs. L/

√
τq .

IV. THE X X X MODEL

The Hamiltonian for the XXX model is given by

HXXX =
∑

i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + σ z
i σ z

i+1

) +
∑

i

λσ z
i . (32)

The critical behavior of this model is analogous to that of the
XX model. It has two-limit behavior. At λ = 2 the system
represents the ferromagnetic state and at λ = 0 the system
corresponds to the antiferromagnetic state. The interval 2 >

λ > 0 is gapless and hence critical. Let us denote the time
evolution of the magnetic field by the relation

λ(t < 0) = −2t/τq, (33)

τq being the quench time and analyze the dynamics of the
system when it transits through the point λ = 2. In the critical
region, there is random fluctuation in the Berry phase and from
the two-point correlation of the Berry phase factor we derive
the excitation probability. Actually, this is given by the same
relation as in Eq. (25) and we write

pk0 = 1
2e−ωk0 τq . (34)

In this case the energy of the quasiparticle in the vicinity of
the critical point is different from that of the XX model.

A generalization of the XXX model is the anisotropic
Heisenberg model which is known as the XXZ model given
by the Hamiltonian

HXXZ =
∑

i

(
σx

i σ x
i+1 + σ

y

i σ
y

i+1 + �σz
i σ z

i+1

) + λ
∑

i

σ z
i .

(35)

It may be mentioned that for λ = 0 the anisotropic system
shows a gapless phase in the interval −1 � � � 1. For � = 1
the system corresponds to the isotropic Heisenberg model.
For λ > 2 the isotropic Heisenberg model corresponds to a
ferromagnetic state. As the magnetic field decreases and passes
through the critical point λ = 2 some spins get flipped. For
an excited state of the Heisenberg model belonging to the
subspace of states where some spins are flipped the energy of
the quasiparticle with momentum mode k0 is given by [23]

εk0 = 4(1 − cos k0) = 8 sin2 k0

2
∼ 2k2

0, (36)

for small k0. Thus from the relation (34) we can write

pk0 = 1
2e−2πεk0 τq = 1

2e−4πτqk2
0 , (37)

and the number density of defects is given by

n3 = 1

2π

∫ π

−π

pk0dk0 = 1

4π

∫ π

−π

e−4πτqk2
0 dk0 = 1

8π

1√
τq

.

(38)

Thus the number density of kinks scales like τ
− 1

2
q and the KZ

correlation length is given by ξ̂ ∼ √
τq .

As the XXX chain at λ = 0 corresponds to the antiferro-
magnetic state, the behavior of the entanglement entropy for a

block of L spins with the rest of the system is identical with
that of the XX model. This is valid for S(L,τq) and Smax also.
Just as in the XX model, in this model also, the entanglement
entropy is maximum for λ = 0 which gradually diminishes as
the magnetic field increases, and finally it vanishes at λ = 2.

V. THE LIPKIN-MESHKOV-GLICK MODEL

The Lipkin-Meshkov-Glick (LMG) model demonstrates
the mechanism of a phase transition for a many-body system
and was introduced almost 45 years ago [24]. In contrast to
the conventional spin models in the LMG model each spin
interacts with all the spins of the system with the same coupling
strength. This highly symmetric interaction pattern introduces
the loss of the notion of geometry as there is no distance
between the spins. This implies that we cannot consider the
notion of a block of spins as a set of contiguous spins here.
The symmetry of the Hamiltonian suggests that the ground
state belongs to a symmetric subspace where all the spins are
indistinguishable and this subspace restricts the entanglement
entropy of a block of L spins with the remaining spins.
Interestingly the scaling behavior shows a similar pattern with
that of the XX model where conformal symmetry plays a
significant role at the critical region. But in the LMG model
the scaling law seems to have nothing to do with any underlying
conformal symmetry.

In this note, we show that in case we introduce point-
splitting regularization the regularized LMG Hamiltonian
in the isotropic case (γ = 1) appears as a combination of
Heisenberg (XXX) model and Ising model with magnetic
field along the negative z axis. In view of this, the regularized
Hamiltonian follows the pattern of the usual spin systems
where we can conceive of the notions of local interactions and
translational invariance. The underlying conformal symmetry
at the critical region of these systems is manifested in the
LMG model and the similarity of the pattern of the scaling
behavior of the entanglement entropy of this system can be
understood. Thus the point-splitting regularization of the LMG
model uncovers the hidden conformal symmetry at criticality
which is lost when we take the sharp point limit.

The Hamiltonian for the LMG model is given by

H = 1

N

∑
i<j

(
σx

i σ x
j + γ σ

y

i σ
y

j

) + λ
∑

i

σ z
i . (39)

N being the total number of spins.
In what follows we shall consider the isotropic case with

γ = 1. The Hamiltonian (39) can be written in terms of the
total spin operator Sα = 1

2

∑
σα

i as

H = 2

N

(

S2 − (Sz)2 − N

2

)
+ 2λSz. (40)

Let us consider that this total spin operator is located at a spatial
point k. Now we introduce the point-splitting regularization so
that we write


S2 = 
Sk · 
Sk′ · δkk′, (41)
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where k and k′ are two adjacent sites with an infinitesimal
distance k′ − k = ε. Thus 
S2 corresponds to the product 
Sk ·

Sk′ in the limit ε → 0. We take

Sα
k = 1

2

∑
i

σ α
i , Sα

k′ = 1

2

∑
j

σ α
j , (42)

where i and j are two adjacent sites with an infinitesimal
distance. Considering only nearest-neighbor interactions we
can write the Hamiltonian (40) in the regularized form

Hreg = 2

N

[
1

4

∑
i,j

(
σx

i σ x
j + σ

y

i σ
y

j + σ z
i σ z

j

)
− 1

4

∑
i,j

σ z
i σ z

j − N

2

]
+ λ

∑
i

σ z
i ,

= 1

2N

∑
i,j

(
σx

i σ x
j + σ

y

i σ
y

j + σ z
i σ z

j

)
(43)

− 1

2N

∑
i,j

σ z
i σ z

j − 1 + λ
∑

i

σ z
i ,

= 1

2N

[ ∑
i,j

(
σx

i σ x
j + σ

y

i σ
y

j + σ z
i σ z

j

) + Nλ
∑

i

σ z
i

]

− 1

2N

( ∑
i,j

σ z
i σ z

j − Nλ
∑

i

σ z
i

)
− 1.

In deriving Eq. (43) we have considered nearest-neighbor
interaction only because of the fact that the introduction of
next nearest-neighbor interaction gives rise to frustration in
the antiferromagnetic phase of the XXX model which is
unsolicited in the LMG model. In fact, this happens when
the spin at the initial site interacts with all odd sites. To avoid
this unwanted feature only the nearest neighbor interaction has
been taken into account.

Now considering 1
2N

as a dimensionless coupling constant
J we write Hreg = H1 + H2 − 1 with

H1 = J

[ ∑
i,j

(
σx

i σ x
j + σ

y

i σ
y

j + σ z
i σ z

j

) + λ

2J

∑
i

σ z
i

]
, (44)

H2 = −J

( ∑
i,j

σ z
i σ z

j − λ

2J

∑
i

σ z
i

)
. (45)

The Hamiltonian given by Eq. (43) can be split into various
other H1 and H2 such that both of them describe critical
systems. The motivation behind this particular choice follows
from the fact that cluster of even (odd) number of interacting
spins represent bosonic (fermionic) systems. As the LMG
model is characterized by the fact that each spin interacts
with every other spin, in the regularized Hamiltonian we have
chosen the critical systems such that one of these represents
bosonic and the other fermionic features. In view of this we
have taken H1 and H2 such that one represents the XXX model
and the other Ising model.

The criticality of this system can be studied by noting that
this is a combination of the XXX model given by H1 and the
Ising model with magnetic field along the negative z direction

given by H2. It is observed that λ
2J

denotes the intensity of
the magnetic field. We know that the XXX model has two
limit behavior. When |λ|

2J
> 2, the XXX system is gapped and

for λ = 0, the magnetization is zero and the system is in an
entangled (antiferromagnetic) state. In the interval 2 >

|λ|
2J

> 0
the system is gapless and this denotes the critical region.
Noting that the dimensionless parameter J corresponds to

1
2N

,N being an integer we find that |λ|
2J

= 2 corresponds to
the value |λ| = 2

N
. Since in an entangled state the minimum

number of spins must be 2, i.e., Nmin = 2, at criticality |λ| lies
in the interval 0 < |λ| < 1. The value of λ is independent of the
real number of sites as we have treated the parameter 1

2N
as the

coupling constant. Now it is observed that in the Ising chain
given by H2 for |λ| > 1 the system is in the ferromagnetic
state when all spins are oriented along the negative z axis.
So in the interval 0 < |λ| < 1 as |λ| is tuned from 1 to 0 the
spin system will undergo a transition when down spins will be
excited and at λ = 0 all spins will settle down with opposite
orientations. Evidently, with the evolution of |λ| the spins
cross a point when these are oriented along the x axis. Hence,
this corresponds to the double ferromagnet transition and in
the interval 0 < |λ| < 1 spins evolve through a paramagnetic
state. Thus during this transition in the interval 0 < |λ| < 1 the
entanglement entropy of the spins evolves through a nonzero
value which is similar to that of the transverse Ising model.
In the regularized Hamiltonian we can consider the time
dependent magnetic field corresponding to the summation of
that given by Eqs. (3) and (33) and so we write

λ(t < 0) = −2t

τq

+ t

τq

= − t

τq

, (46)

τq being the quench time. We have taken t
τq

for the Ising
system with positive sign as the magnetic field here is in the
negative z direction. Finally, when the system settles down at
t = 0 (λ = 0), the number density of defects is estimated and
is given by n4 = n1 + n3 where n1(n3) is given by Eq. (11)
[Eq. (38)] in the thermodynamic limit. From this we obtain

n4 = n1 + n3 = 1

2π

1√
2τq

+ 1

8π

1√
τq

= 2
√

2 + 1

8π
√

τq

. (47)

Thus we note that in LMG model also the number density

of kinks formed scales as τ
− 1

2
q . However, in this model a

correlation length characterizing the typical distance between
defects cannot be introduced though one can estimate the
fraction of flipped spins after the quench.

The entanglement entropy in the LMG model of a block of
L spins with respect to the rest of the spins can be derived in an
analogous way. The entanglement entropy in the critical region
0 < |λ| < 1 is given by the summation of the entanglement
entropy of the XXX model and the transverse Ising model
at criticality. As the entanglement entropy for a block of L

spins with the rest of the system is given by S1(L) ∼ 1
3 log2 L

for the XXX model and that for the transverse Ising model
is given by S2(L) ∼ 1

6 log2 L, the entanglement entropy in the
critical region 0 < |λ| < 1 for the LMG model corresponds to
the scaling law in the thermodynamical limit as

S(L) ∼ 1
3 log2 L + 1

6 log2 L ∼ 1
2 log2 L, (48)
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which is identical with that obtained by Latorre, Orus, Rico,
and Vidal [25]. One should note that for λ � 1, the system rep-
resents a polarized product state. Thus when the LMG model
is recast in the regularized form the critical region manifests
the same logarithmic scaling law as observed in XXX model
and the transverse Ising model which are characterized by
conformal symmetry at the critical region in these systems.
Though the LMG model appears to have nothing to do with
conformal symmetry at the critical region, the point-splitting
regularization reveals an underlying conformal symmetry at
criticality in this system which is lost in the sharp point
limit.

Now we consider that the criticality is induced by a linear
quench (46). As the regularized Hamiltonian suggests that
at the critical region this corresponds to a combination of
the XXX model and the transverse Ising model so following
Eqs. (17) and (29), we write

S(L,τq) = 2|φ̃| log2 L

|φ̃| log2 ξ̂
× 0.926, (49)

where |φ̃| = |φ|XXX + |φ|Ising = 0.386 + 0.18 = 0.566 and
ξ̂ (∼√

τq) is the associated KZ correlation length. The final
result is independent of |φ̃| and we obtain the universal value

S(L,τq) = 3.7
ln L

ln τq

. (50)

Here the maximum value of L, Lmax is different from that of the
XXX and the transverse Ising model. In analogy to Eqs. (18)
and (30) we find that the maximum value of the entanglement
entropy

Smax|LMG = 2(|φ̃| log2 ξ̂ + 1) × 0.926 ≈ 0.36 ln τq + 1.85.

(51)

So from the constraint S(L,τq)/Smax � 1 we find

ln L|LMG � 0.097(ln τq)2 + 0.5 ln τq. (52)

In the sharp point limit the LMG model does not allow any
correlation length. However, we can consider the coherence
number [26] which can be identified with the KZ correlation
length ξ̂ in the regularized formalism. It is noted that in

the critical region 0 < λ < 1 the entanglement entropy is
maximum at λ = 0 and decreases with the increase in the
magnetic field until at λ = 1 it vanishes when the system
represents a product state. However, within this region the
scaling behavior remains the same.

It may be pointed out here that recently the LMG model
has been studied in which the system is dragged adiabatically
through the critical point [27]. Using the Landau-Zener
formula [28] the fraction of the flipped spins has been found

to scale like τ
− 3

2
q , τq being the quench time. The failure of

obtaining the scaling behavior τ
− 1

2
q as derived here may be

related to the definition of the defect density in this formalism.
Indeed, here the degree of adiabaticity is estimated through
the residual energy Eres given by Eres = Ef in − Egs where
Ef in is the average energy in the final time-evolved state and
Egs is the ground-state energy. It is found that the system has
three regions: (i) for fast quenches Eres persists independent

of τq , (ii) for slower quenches Eres persists ∼ τ
− 3

2
q , and (iii)

for further slowing Eres persists ∼ τ−2
q . It is noted that for

fast quench, the transition is nonadiabatic. However, for slow
transitions the adiabatic dynamics is quite different from our
present formalism. In fact, the result we have obtained here
is fully determined by the nonadiabaticity condition in the
vicinity of the critical point.

In Fig. 2 (left) we have compared our result for the
entanglement entropy for the LMG model with the value for
λ = 0 derived in [20] extrapolating it to the thermodynamic
limit. It is noted that when we introduce a quench the entropy
decreases with the increase in the quench time τq . So it is
expected that the value reported in [20] will be in agreement
with our result for small τq . However for very small τq , the
maximum value of the block size L will be very small which
follows from Eq. (52). In view of this we have taken moderate
values of τq = 200,400, and 800 for comparison. It is noted
that for τq = 200 the result is very close to the value derived
from [20].

Caneva et al. [27] have computed the entanglement entropy
at λ = 0 for various values of τq when the system is
adiabatically drugged through the critical point for finite
system size. According to their result, for fast quench τq → 0

10
2

10
3

1.5
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2.5

3

τ
q

S

L=16
L=32
L=64

0 50 100 150 200
0

1

2

3

4
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τ
q
=200

τ
q
=400

τ
q
=800

FIG. 2. (Left) we have compared our result for S(L,τq ) for τq = 200,400, and 800 with the values derived from that reported
in [20] at λ = 0 extrapolating it to the thermodynamic limit. (Right) we have plotted our results for L = 16,32, and 64 in the region
τq > 200.
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FIG. 3. The entanglement entropy S(L,τq ) vs. L/
√

τq .

the entanglement entropy tends to be vanishing and for slow
dynamics τq → ∞ the entropy picks up the value it assumes
in the final ground state Sgs(λ = 0) = 1 independent of the
system size. Between this two limiting behaviors the entropy
reaches a size dependent maximum at τq nearing 10 and then
decreases with the increase in τq . In our formalism we find
that for τq nearing 10, the maximum value of the block size
L will be very small as follows from Eq. (52). In view of
this we have taken moderately large τq > 200 for comparison
with their result. Caneva et al. [27] have computed their result
for block size L = N/2, N being the system size. However
our result has been computed in the thermodynamic limit. In
Fig. 2 (right) we have plotted our results for L = 16,32, and
64 and τq > 200. We find that our result is in reasonable good
agreement with that of Caneva et al. [27]. In Fig. 3 we have
plotted S(L,τq)/Smax vs. L/

√
τq .

VI. DEFECT FORMATION AND MAXIMAL
ENTANGLEMENT ENTROPY IN DIFFERENT ONE

DIMENSIONAL SYSTEMS: A COMPARATIVE STUDY

We have studied here defect formation and the scaling of
entanglement entropy in QPT in different one-dimensional

systems induced by a quench. It is found that they all show a
universal behavior. The number density of defects in all these

systems scales like τ
− 1

2
q with difference only in the prefactors.

Also the entanglement entropy at criticality takes a universal
value having the same scaling pattern with block spin size
L. However, there is a restriction on the maximum value of
L allowed in different systems. The maximum value of the
entropy in all these systems follows the same pattern with
difference only in the coefficients. In all these systems the
constraint on the maximum value of the block size L restricts
the validity of the scaling law for any arbitrary L. In fact,
the main implication of the scaling law for the entanglement
entropy is that with the addition of every spin, entanglement
increases. However, in QPT induced by a quench this is not
valid beyond the upper limit of the value of L allowed in
various systems. Indeed, the nonadiabatic transition due to
quench makes the scaling law a restrictive one and cannot be
treated in the conventional sense.

In Fig. 4 (left) we have plotted the number density of defects
formed during QPT induced by a quench in different spin
systems for different values of τq . The density of defects for
the isotropic XY , XX, XXX, LMG models are denoted by
n1,n2,n3,n4, respectively. In Fig. 4 (right) we have plotted the
maximum value of entanglement entropy Smax for different
values of τq in isotropic XY , XX, and LMG models. Smax is
identical for XX and XXX systems.

VII. DISCUSSION

We have analyzed here the defect formation and the
scaling law of the entanglement entropy in QPT in several
one-dimensional systems at critical slowing down when
nonadiabaticity plays a dominant role. We have argued that
in the vicinity of the critical point nonadiabaticity in QPT
causes spin fluctuation which in turn makes the Berry phase
factor a random one. From the two-point correlation of the
Berry phase factor we have estimated the probability of
the generation of defects. Indeed, in a recent paper [12]
we estimated the number density of defects as well as the
spin-spin correlation at criticality of the transverse Ising
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FIG. 4. (Left) shows the variation of the number density of defects n1,n2,n3,n4 with quench time τq in isotropic XY,XX, XXX and
LMG models respectively for different values of τq . (Right) shows the maximum value of the entanglement entropy Smax for different
values of τq in isotropic XY (Smax1 ), XX (XXX) (Smax2 ) and LMG (Smax3 ) models. It is noted that Smax is identical for XX and XXX

systems.
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model from this dynamical mechanism of QPT induced by
a quench. The results are found to be identical with those
derived from the standard Landau-Zener transition probability
studied by other authors [3–5]. Here we have analyzed

several other one-dimensional spin systems using this dynam-
ical mechanism. Our analysis suggests that this formalism
represents the universal dynamics of QPT induced by a
quench.
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