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Family of continuous-variable entanglement criteria using general entropy functions
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We derive a family of entanglement criteria for continuous-variable systems based on the Rényi entropy of
complementary distributions. We show that these entanglement witnesses can be more sensitive than those based
on second-order moments, as well as previous tests involving the Shannon entropy [Phys. Rev. Lett. 103, 160505
(2009)]. We extend our results to include the case of discrete sampling. We provide several numerical results
which show that our criteria can be used to identify entanglement in a number of experimentally relevant quantum
states.
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I. INTRODUCTION

Quantum entanglement is a fundamental property of quan-
tum systems that can be exploited for quantum computation,
quantum teleportation, and quantum cryptography [1]. As
such, its detection is an essential task in an experimental
setting. Many techniques exist for detecting entanglement
in discrete systems (see [2,3] for review). In continuous-
variable systems, its identification can be more complicated
due to the large Hilbert space structure. However, there
is a considerable amount of work concerning entanglement
detection and characterization of Gaussian states [4,5], where
tests involving only the second-order moments [6–12] are
adequate. However, there is a large interest in non-Gaussian
states, since non-Gaussianity is necessary for some quantum
information tasks, such as quantum computation [13–15] and
entanglement distillation [16,17]. Second-order criteria are
sufficient but not necessary for entanglement in non-Gaussian
states. As such, there has been some work dedicated toward
entanglement detection in non-Gaussian states [18–29]. The
set of criteria derived by Shchukin and Vogel (SV) [19],
for instance, is very powerful and general, but may require
a large number of measurements [30]. We note that the
SV criteria have been applied for the experimental detection
of non-Gaussian entanglement [31].

It has been shown that classical entropy functions can be
used to formulate Bell’s inequalities [32] and entanglement
witnesses for bipartite d × d level systems [33]. These are
examples of nonlinear entanglement witnesses, which provide
improvements in sensibility at little to no extra experimental
effort [34,35]. In Ref. [24], the Shannon entropy of comple-
mentary distributions was used to derive a set of entanglement
witnesses for bipartite continuous-variable quantum systems.
This approach is especially useful in the experimental char-
acterization of entanglement, since it considers only a pair
of joint quadrature measurements. At the same time, these
entropic witnesses are more sensitive than second-order tests
(i.e., those based solely on the elements of the covariance
matrix) [6–10]. In the present work, we extend this approach
by deriving entanglement criteria using more general entropy
functions. For example, we use the classical Rényi entropy,
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characterized by the continuous parameter α, to derive a family
of entropic entanglement witnesses which provides a more
powerful tool for identification of entanglement. We note that
the Wehrl entropy [36], and also quantum versions of the
Shannon [37] and Rényi entropies [38,39], have been used
to identify quantum entanglement. In general, these criteria
require complete knowledge of the density matrix or more
complicated measurement schemes [40].

This paper is organized as follows. In Sec. II we define
our notation and briefly review the criteria of Ref. [24]. In
Sec. III we develop a family of entanglement witnesses for
continuous variables using the classical Rényi entropy. We then
extend these results to include the case of discrete sampling.
We tested the continuous variable Rényi criteria on several
experimentally relevant states. Section V provides numerical
results which show that the generalized Rényi witnesses detect
entanglement in a wider variety of quantum states than second-
order tests or witnesses based solely on Shannon entropy [24].
In Sec. VI we provide concluding remarks.

II. ENTANGLEMENT CRITERIA WITH SHANNON
ENTROPY

First, we review two sets of inequalities which were
developed in Ref. [24]. These inequalities are satisfied for
all separable states, so that the violation of either one indicates
that the bipartite state is entangled.

We will take into account a rotation of the usual canonical
operators x and p, and define a pair of general complementary
operators for systems 1 and 2 as

rj = cosθj xj + sinθj pj , (1a)

sj = cosθj pj − sinθj xj , (1b)

where j = 1,2 refers to each subsystem of the bipartite
state. The commutation relation [xj ,pk] = iδj,k for canonical
operators xj and pk implies [rj ,sk] = iδj,k , j,k = 1,2. Here
x and p are dimensionless continuous variables, such as
quadratures of electromagnetic field modes or dimensionless
position and momentum of a point particle, for example. Let
us define the global operators r± and s± as

r± = r1 ± r2, (2a)
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and
s± = s1 ± s2. (2b)

Since [rj ,sk] = iδj,k , j,k = 1,2, it is easy to see that [rµ,sν] =
2iδµ,ν with µ,ν = ±.

The inequalities in Ref. [24] were developed initially for a
separable pure state |ψ1〉 ⊗ |ψ2〉, corresponding to the wave
function �(r1,r2) = ψ1(r1)ψ2(r2), which can also be written
as

�(r+,r−) = 1√
2
ψ1

(
r+ + r−

2

)
ψ2

(
r+ − r−

2

)
. (3)

For simplicity, we denote the probability distributions asso-
ciated to measurement of r± as simply R±. They are given
by

R± = 1

2

∫
dr∓R1

(
r+ + r−

2

)
R2

(
r+ − r−

2

)
, (4)

which is equivalent to the convolution

R± = R1 ∗ R
(±)
2 , (5)

where Ri(ri) = |ψi(ri)|2, R+
2 ≡ R2(r), and R−

2 ≡ R2(−r). The
Shannon entropy for continuous variables is defined by

H [R] = −
∫

drR(r) ln R(r), (6)

where R(r) is the probability distribution associated to the
measurement of an arbitrary continuous variable r . Similar
expressions are obtained for the probability distribution S of
the complementary variable s.

Two inequalities were introduced in Ref. [24]. Their
violation indicates the presence of entanglement. Using the
probability distributions R± and S± defined above and apply-
ing the entropy power inequality [41], the following criteria
were obtained:

H [R±] + H [S∓] � 1

2
ln

[ ∑
i,j

e(2H [Ri ]+2H [Sj ])

]
. (7)

These criteria are particularly useful only in the case of
pure states. They can be extended to include mixed states as
well, but numerical optimization procedures are required [24].
By further applying an entropic uncertainty relation for the
distributions Rj and Sj [42], a second set of entropic witnesses
were derived:

H [R±] + H [S∓] � ln(2πe). (8)

Although inequality (8) is weaker than inequality (7), it has the
advantage that it is directly applicable to mixed states. It was
shown that these criteria are more sensitive than second-order
tests involving the same operators.

III. GENERALIZATION OF ENTROPIC CRITERIA

A natural attempt to improve the entropic entanglement
witnesses described in Sec. II is the application of a more
general function of information entropy. For this purpose, we
employ the Rényi entropy for continuous variables, defined
by [41,43]

Hα[R] = 1

1 − α
ln

[∫
drRα(r)

]
= α

1 − α
ln ‖R‖α, (9)

where ‖R‖α is theLα norm of the distribution R (see Ref. [41]):

‖R‖α =
[∫

drRα(r)

]1/α

. (10)

As in Sec. II, let us first consider only pure states of the form
|ψ1〉 ⊗ |ψ2〉. In the Appendix, we show that any separable pure
state of this form will satisfy(

α − 1

α

)
Hα[R±] +

(
1 − β

β

)
Hβ[S∓]

�
(

α1 − 1

α1

)
Hα1 [R1] +

(
1 − β1

β1

)
Hβ1 [S1] +

(
α2 − 1

α2

)

×Hα2 [R2] +
(

1 − β2

β2

)
Hβ2 [S2] + ln

[
C(β1,β2)

C(α1,α2)

]
, (11)

where C(α1,α2) is defined in Eq. (A4) and α,α1,α2 (β,β1,β2)
are related through Eq. (A7). Inequality (11) is a generalization
of criteria (7). In order to recover (7) from (11) we first consider
the case α = β and then take the limit α → 1. Violation
of inequality (11) implies that the pure state considered
is entangled. Extension of (11) to include mixed states is
possible, although one must calculate the supremum of the
right-hand side over all possible decompositions of the mixed
state. As in Sec. II, it is possible to arrive at an inequality
which is directly applicable to mixed states and requires no
numerical maximization.

To derive a second inequality that does not depend on
the entropy functions Hαj

[Rj ] and Hβj
[Sj ], we employ the

entropic uncertainty relation for Rényi entropy given by
Ref. [44]:

Hαj
[Rj ] + Hβj

[Sj ] � − 1

2(1 − αj )
ln

αj

π
− 1

2(1 − βj )
ln

βj

π
,

(12)

where it is necessary to include the restriction [44]

1

αj

+ 1

βj

= 2, j = 1,2. (13)

Equation (13), along with Eq. (A7), lead to

1

α
+ 1

β
= 2. (14)

Applying the uncertainty relation (12) to inequality (11) and
performing some algebra we obtain the inequality

Hα[R±] + Hβ[S∓] � − 1

2(1 − α)
ln

α

π
− 1

2(1 − β)
ln

β

π

+ α

α − 1

∑
j=1,2

αj − 1

αj

ln

∣∣∣∣ αj

αj − 1

∣∣∣∣
− ln

∣∣∣∣ α

α − 1

∣∣∣∣ . (15)

The sum of terms in the last two terms of Eq. (15) is
always nonnegative. α1 and α2 are arbitrary parameters within
the restrictions imposed by Eqs. (A7a) and (14), which
guarantee that 1 � 1/α1 + 1/α2 � 2. Within this domain we
can maximize the last two terms on the right-hand side of
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inequality (15), which reach a maximum value of ln 2 when
α1 = α2. This leads directly to the inequality

Hα[R±] + Hβ[S∓] � − 1

2(1 − α)
ln

α

2π
− 1

2(1 − β)
ln

β

2π
.

(16)

Note that our choice α � 1 and 1/2 � β � 1 is arbitrary, and
that these restrictions can be switched with no alteration in the
derivation. Inequality (16) reduces to (8) when α −→ 1.

We will now show that inequality (16) is also valid for mixed
states. Noting that [rµ,sν] = 2iδµ,ν , (µ,ν = ±), then the
uncertainty relation for the Rényi entropy of complementary
distributions R± and S± is

Hα[R±] + Hβ[S±] � − 1

2(1 − α)
ln

α

2π
− 1

2(1 − β)
ln

β

2π
,

(17)

where again 1/α + 1/β = 2. Bialynicki-Birula has shown
that this uncertainty relation is also valid for mixed states
[44], in which case R± and S± are complementary marginal
distributions obtained from the Wigner function associated
to the mixed quantum state. We can now make use of an
alternative way of deriving inequality (16) by means of the
positive partial transpose (PPT) criterion [6,45,46]. For any
continuous-variable quantum state, the transpose operation
is equivalent to a mirror reflection in phase space, taking
(rj ,sj ) −→ (rj , − sj ) [6]. Thus, the partial transpose of a
bipartite state 	12 thus takes the global variables r± −→ r± and
s± −→ s∓, where we take the transpose of subsystem 2. The
marginal probability distributions under partial transposition T

transform as

RT
± = R±, (18a)

ST
± = S∓, (18b)

and we have

Hα[RT
±] + Hβ[ST

±] = Hα[R±] + Hβ[S∓]. (19)

The partial transpose of a separable density operator is a
positive operator, and thus it is still a physical state [6,45,46]
and will satisfy the uncertainty relation (17). Substituting
Eq. (19) into inequality (17) leads directly to inequality (16),
where we have made no assumptions about the purity of the
bipartite state 	12. Thus, criteria (16) is also valid for bipartite
mixed states.

The above argument illustrates that the family of entropic
entanglement witnesses (16) are in fact PPT criteria. This illus-
trates a general method for developing new PPT criteria: apply
any quantum mechanical uncertainty relation to distributions
R± and S± and use Eqs. (18). We note that this was the general
spirit of the procedure used by Simon to develop a criterion
based on second-order moments [6] and has also been used in
Ref. [47].

A. Relationship with second-order criteria

The second-order Mancini-Giovannetti-Vitali-Tombesi
(MGVT) criteria is [8]


r±
s∓ � 1, (20)

where 
2
q is the variance in variable q. Inequality (20) is

verified by any separable state. In Ref. [24], it was shown that
the MGVT criteria can be derived directly from the Shannon
criteria (8) by maximizing the sum H [R±] + H [S∓]. This
leads to the inequalities

ln(2πe
r±
s∓ ) � H [R±] + H [S∓] � ln(2πe). (21)

Note that the MGVT criteria (20) derives from the two
extremes of (21). This upper bound is saturated for Gaussian
probability distributions [48]. Since R± and S± are arbitrary
(although complementary) marginal distributions in phase
space, this implies that the bound is saturated for Gaussian
states. Nevertheless, within the class of non-Gaussian states,
inequalities (21) show that the criteria given in (8) may detect
entanglement in states that the MGVT criteria might not (20).
Several examples were provided in [24].

A natural question to ask is whether we can derive new
entanglement witnesses by maximizing the sum of Rényi
entropies Hα[R±] + Hβ[S∓] in criteria (16). Doing so leads
to an inequality also involving second-order moments, due to
the fact that the Rényi entropy is maximized for the Student-t
and Student-r distributions [49,50], which (for zero mean) are
completely characterized by the variance. More specifically,
we arrive at


r±
s∓ � f (α,β), (22)

where f (α,β) � 1 for all allowed values of α and β. In
the limiting case α,β −→ 1, f (α,β) = 1 and we recover
the MGVT criteria (20). Thus, inequality (22) is not an
improvement over the already-established MGVT criteria.

FIG. 1. (Color online) Entanglement detection of state (27) for
n = 1. The light-blue shaded region is where the Rényi entropic
criteria in (16) identifies entanglement, while the Simon second-
order PPT criterion does not. The dark-blue shaded region shows
its improvement from Shannon entropic criteria. The uppermost and
lowermost areas designate the regions in which the Simon PPT and
Rényi criteria detect entanglement in state (27). In the center hatched
region neither test detect entanglement.
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IV. DISCRETE DISTRIBUTIONS

Inequalities (11) and (16) derived in the above section were
developed for continuous distributions R± and S±. However,
in an experimental setting one typically measures discrete
distributions due to the finite resolution of the measurement
apparatus. Here, we show how to deal with discrete resolution
and we derive an entanglement witness equivalent to (16), but
for discrete distributions. The same procedure can be adopted
for a derivation of inequalities equivalent to (11). Let us call
these discrete distributions Rδ

± and S

± , and suppose that their

elements are

ρδ
k± =

(k+1/2)δ∫
(k−1/2)δ

R±(r) dr, (23a)

and

σ

k± =

(k+1/2)
∫
(k−1/2)


S±(s) ds, (23b)

respectively. Here we assume that r measurements have reso-
lution δ and s measurements are performed with resolution 
.
To apply these inequalities to discrete distributions, one can
write the entropy of the continuous distribution in terms of the
discrete distribution as [41]

Hα[R±] = Hα[Rδ
±] + ln δ, (24a)

Hβ[S±] = Hβ[S

± ] + ln 
, (24b)

provided that δ and 
 are sufficiently small. Here the discrete
Rényi entropy is

Hα[Rδ
±] = 1

1 − α
ln

(∑
k

(
ρδ

k±
)α

)
, (25)

and similarly for Hβ[S

± ]. Inequality (16) can then be written

in terms of the discrete distributions:

Hα[Rδ
±] + Hβ[S


∓ ] � −1

2

(
ln α

1 − α
+ ln β

1 − β

)
+ ln

(
2π

δ


)
.

(26)
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FIG. 2. (Color online) Violation of entanglement criteria as a function of σ− for Hermite-Gaussian states (27) with n = 2,3,4,10 and
σ+ = 1. Negative values correspond to the detection of entanglement. In all plots the solid red line corresponds to the violation of inequality
(16) with α = 1/2, the orange dashed line is the Shannon criteria (8) and the blue dotted line the MGVT criteria (20). The gray shaded region
shows improvement gained from using the Rényi entropy.
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It is also possible to obtain these inequalities by direct
application of the uncertainty relation for the discrete Rényi
entropies, as developed by Bialynicki-Birula [44,51].

V. EXAMPLES

Here we provide some examples which show the utility
of the Rényi entropic criteria presented in Sec. III. We focus
on several examples of continuous-variable states which are
currently of experimental interest. We leave further numerical
investigation to future work.

A. Hermite-Gaussian states

Entropy functions are better quantifiers of information
uncertainty, in particular when the probability distributions
are not Gaussian functions. In light of this, we consider the
general family of states given by

n(r1,r2) = An√
σ+σ−

Hn

(
r1 + r2√

2σ+

)
e

−(r1+r2)2

4σ2+ e

−(r1−r2)2

4σ2− , (27)

where H(x) is the nth-order Hermite polynomial. The index n

and the widths σ+ and σ− characterize the state. For n 	= 0,

state (27) is nonseparable for any value of parameters σ+ and
σ−. For n = 1 this state has been experimentally produced
using spontaneous parametric down-conversion [31] and been
shown to have several interesting properties [52–54]. We
note that it is equivalent to the single-photon entangled state
considered in Ref. [18], when σ+ = σ− = 1.

Let us consider first the case n = 1. The application of the
witness (16), after a lengthy but straightforward calculation,
leads to

σ−
σ+

<

[
π

1
2

�
(
α + 1

2

)(
α

2

)α] 1
1−α

, (28a)

σ−
σ+

>

[
π

1
2

�
(
α + 1

2

)(
α

2

)α]− 1
1−α

, (28b)

where we have included both cases: α � 1 and 1/2 � α � 1.
Thus, only entangled states of the form (27) with n = 1 that
violate one of these inequalities are detected by our entropic
Rényi criteria (16). For α = 1 the limits σ−/σ+ < e1−γ

2 and
σ−/σ+ > 2

e1−γ (γ is the Euler’s constant) obtained in [24] are
recovered. Figure 1 shows the limits of entanglement detection
as a function of α. The graph shows that we improve sensibility

FIG. 3. (Color online) Entanglement detection for NOON state for N = 1 to 6. The surfaces represents the regions where the strong Rényi
entropic criteria (11) detects entanglement as a function of α1 and α2. The criteria were tested for θj = 0. FPR designates the “forbidden
parameter region,” as determined by Eqs. (A7a) and (A7b).
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using the Rényi entropic inequality (16) when α −→ 1/2. For
example, in the particular case of σ−/σ+ = 1.3, entanglement
is not detected by the Shannon entropy criteria of (8), but it is
detected by the more general Rényi entropy criteria (16). At
the same time, there is a large region (1/

√
3 < σ−/σ+ <

√
3)

where the second-order Simon criterion [6] does not detect
entanglement. The Simon criterion is a necessary and sufficient
condition for entanglement in bipartite Gaussian states. So, in
the case where the Simon criterion fails to detect entanglement,
the covariance matrix of the state is “separable,” or in other
words, the bipartite Gaussian state with the same covariance
matrix is separable. Thus, we can guarantee that any second-
order entanglement criterion also fails to detect entanglement
in this region.

Inspired by the results shown in Fig. 1 for n = 1, we
tested the Rényi entanglement criteria (16) with α = 1/2,
the Shannon criteria (8), and the MGVT criteria (20) for
n = 2,3,4,10. Figure 2 shows the numerical results for σ+ = 1
and σ− < 1. For the family of states in (27), the Simon and
MGVT criteria detect entanglement in the same region of
values of σ−, so we include only the MGVT criteria for
comparison. An additional motivation to compare these three
criteria is due to the fact that they can be determined by
knowledge of the marginal probability distributions R+ and
S− (R− and S+) alone, while evaluation of the Simon criterion
is more costly in terms of measurements since it requires
complete reconstruction of the covariance matrix. In all cases
the Rényi criteria with α = 1/2 outperforms both the Shannon
criteria and the second-order MGVT criteria. The gray shaded
regions show the interval where only the Rényi criteria with
α = 1/2 detects entanglement.

B. NOON states

There is a lot of interest in generating entangled “NOON”
states of the form

|ψ〉NOON = 1√
2

(|N〉1|0〉2 + |0〉1|N〉2), (29)

where |n〉 is an n-photon Fock state. NOON states are
particularly useful for quantum metrology [55]. Here we
consider detection of entanglement using continuous-variable
quadrature measurements. For NOON states the inequality
(16) does not detect entanglement for any value of α (tested for
N � 10). However, we have investigated their entanglement
detection with the stronger Rényi criteria (11). The results are
shown in Figure 3. We have studied the violation of inequality
(11) as a function of parameters α1, α2, β1, β2. In order
to simplify the calculations, we have constrained β1 and β2

as functions of α1 and α2, according to restriction (13) (see
Figure 3). The best violations were found for α1 = α2 = 2. In
all cases, we chose quadrature operators (1) with θ = 0. With
this choice of parameters we were able to detect entanglement
up to N = 6, which is an improvement over the Shannon
criteria (7) [24]. Numerical results show that entanglement
in the NOON states goes undetected under any second-order
criterion (tested for N � 10).

C. Dephased cat state

Entangled Schrödinger cat states have been produced
experimentally in quadrature variables of two single-mode
fields using optical parametric amplification [56]. Due to
experimental imperfections these states are mixed. Here we
consider mixed states given by the dephased entangled cat
states,

ρ = N (ν,p){|ν,ν〉〈ν,ν| + | − ν,−ν〉〈−ν,−ν|
− (1 − p)(|ν,ν〉〈−ν,−ν| + | − ν,−ν〉〈ν,ν|)}, (30)

where N (ν,p) is a normalization constant. Parameter p

characterizes the dephasing [1], and ν is the complex amplitude
of the coherent state |ν〉. Entanglement in this state goes
undetected under any second-order criterion for all values of
ν or p. On the other hand, the Shannon criteria (8) identifies

FIG. 4. (Color online) (a) Violation of Rényi entanglement
criteria (α very close to 1/2), given by the difference of the left-hand
side (lhs) and right-hand side (rhs) of (16) for the dephased cat state
(30). (b) Comparison of Shannon criteria and Rényi criteria. The
white region is detected by Shannon and Rényi entropic criteria, the
blue one is detected only by Rényi entropic criteria (α −→ 1/2) and
the hatched area represents the region which remains undetected as
function of ν and p.
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entanglement for a broad range of values of parameters p and
ν [24]. The Rényi entropic criteria (16) with α very close to
1/2 extends entanglement detection in this state, as we can
see in Figure 4(a). Figure 4(b) compares these two results.
Presumably, for small ν there is very little correlation present
in the nonlocal sum or difference variables, as both criteria fail
for small values of ν.

VI. CONCLUSIONS

We have presented a family of entanglement witnesses
using generalized classical entropy functions applied to
marginal probability distributions R± and S± associated with
the measurement of global canonical operators r± and s± in
continuous-variable systems. First, we employed the Rényi
entropy (parameterized by α) for continuous distributions
to arrive at a set of inequalities [see Eq. (11)] which are
satisfied for all pure bipartite separable states. Second, we
introduced a set of inequalities in Eq. (16), using also the
Rényi entropy of continuous distributions, which are satisfied
for all bipartite states (pure or mixed). We have demonstrated
that these criteria offer a greater sensitivity to detection of
entanglement. We illustrated this point with several examples
where the Rényi entropic criteria identify entanglement, while
the Shannon entropic criteria [24] and second-order criteria,
such as the Duan-Giedke-Cirac-Zoller (DGCZ) [7], Simon [6],
and MGVT [8] tests, do not. We also showed that the entropic
criteria given in Eq. (16) are in fact PPT criteria and gave a
general recipe to obtain new PPT criteria based on marginal
probability distributions R± and S± in continuous-variable
systems.

The entanglement witnesses presented here should be very
convenient in an experimental setting, as they involve a
relatively small number of measurements. In particular, fixing
the local rotations involved in the definition of the global
operators r± and s±, it is necessary to determine only the
probability distributions R± and S±. This can be done directly
via measurement of r± and s± or from local measurements
of the joint probability distributions R(r1,r2) and S(s1,s2). In
order to take into account the precision of the measurement
apparatus we extended our Rényi entropy criteria (16) to
include discrete distributions [see Eq. (26)].

In addition to practical relevance, the improvement offered
by the entropic entanglement criteria is interesting from a
theoretical point of view, since there is an entire family
of entropic inequalities parametrized by the order of the
Rényi entropy (a continuous quantity) that could be explored.
Moreover, these results encourage the use of other types of en-
tropy functionals and/or uncertainty relations for entanglement
characterization.
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APPENDIX

Here we derive inequality (11) for separable pure states.
Using the probability distributions (5), the Rényi entropy for
global distributions is

Hα[R±] = α

1 − α
ln ‖R1 ∗ R

(±)
2 ‖α. (A1)

To derive an inequality, we employ Young’s inequality, which
is valid for convolutions of distributions [57]. For 1/α =
1/α1 + 1/α2 − 1, Young’s inequality is

‖R1 ∗ R
(±)
2 ‖α � C(α1,α2)‖R1‖α1‖R2‖α2 , (A2)

with α,α1,α2 � 1 or

‖R1 ∗ R
(±)
2 ‖α � C(α1,α2)‖R1‖α1‖R2‖α2 , (A3)

for α,α1,α2 � 1. The coefficient C(α1,α2) is given by

C(α1,α2) = Cα1Cα2

Cα

, (A4)

where

Ct =
√√√√ t

1
t

|t ′| 1
t ′
, (A5)

with t ′ ≡ t/(t − 1). Without loss of generality, we choose
variables such that α, α1, α2 � 1 and 0 � β, β1, β2 � 1. Then,
from inequalities (A2) and (A3) we can write:

‖R±‖α � C(α1,α2)‖R1‖α1‖R2‖α2 , (A6a)
and

‖S∓‖β � C(β1,β2)‖S1‖β1‖S2‖β2 , (A6b)

where we remember that

1

α
= 1

α1
+ 1

α2
− 1, (A7a)

and
1

β
= 1

β1
+ 1

β2
− 1. (A7b)

Dividing inequality (A6a) by inequality (A6b), we can set up
a new inequality

‖R±‖α

‖S∓‖β

� C(α1,α2)

C(β1,β2)

‖R1‖α1

‖S1‖β1

‖R2‖α2

‖S2‖β2

, (A8)

which will be verified when the pure state is separable,
since the distributions R± and S∓ can be expressed in terms
of convolutions of the probability distributions of the two
subsystems.

We can write the norm in terms of the Rényi entropy. Taking
the logarithm of inequality (A8) and using Eq. (9) results in
an inequality in terms of Rényi entropies:(

α − 1

α

)
Hα[R±] +

(
1 − β

β

)
Hβ[S∓]

�
(
α1 − 1

α1

)
Hα1 [R1] +

(
1 − β1

β1

)
Hβ1 [S1] +

(
α2 − 1

α2

)

× Hα2 [R2] +
(

1 − β2

β2

)
Hβ2 [S2] + ln

[
C(β1,β2)

C(α1,α2)

]
. (A9)
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