
PHYSICAL REVIEW A 83, 032302 (2011)
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In quantum computation every unitary operation can be decomposed into quantum circuits—a series of
single-qubit rotations and a single type entangling two-qubit gates, such as controlled-NOT (CNOT) gates. Two
measures are important when judging the complexity of the circuit: the total number of CNOT gates needed to
implement it and the depth of the circuit, measured by the minimal number of computation steps needed to
perform it. Here we give an explicit and simple quantum circuit scheme for preparation of arbitrary quantum
states, which can directly utilize any decomposition scheme for arbitrary full quantum gates, thus connecting the
two problems. Our circuit reduces the depth of the best currently known circuit by a factor of 2. It also reduces
the total number of CNOT gates from 2n to 23

24 2n in the leading order for even number of qubits. Specifically, the
scheme allows us to decrease the upper bound from 11 CNOT gates to 9 and the depth from 11 to 5 steps for four
qubits. Our results are expected to help in designing and building small-scale quantum circuits using present
technologies.
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I. INTRODUCTION

Quantum information and computation theory ([1] and
references therein) is receiving increased attention in the past
few decades due to its possibility of outperforming information
processing based on classical physics in the areas of secure
communication [2] or efficient implementation of certain
computation tasks, e.g., prime number factorization [3].

Similarly to classical computation, every quantum com-
putation, represented as a unitary operation performed on a
desired state of qubits, can be decomposed into small operation
blocks, where only a subset of qubits is changed nontrivially.
Whereas one-qubit operations cannot be composed to a
general unitary operation, as they never change the degree
of entanglement within the state, a single type of two-qubit
operation (for example, a controlled-NOT, or CNOT [4]) in
combination with arbitrary one-qubit rotations suffices [5].

The complexity of quantum circuits is usually measured
by the number of CNOT gates needed to perform the desired
unitary operation. The reason for counting the number of
two-qubit gates is mainly experimental since their realization
is much more demanding and introduces more imperfections
than the realization of one-qubit gates. Adding every new
CNOT gate to the circuit increases its overall imperfection.
This constitutes the main obstacle preventing realization
of quantum computation within sufficient precision. It is
therefore crucial to design circuits with the least possible
number of entangling gates.

In general, an exponential number of CNOT gates with
respect to the number of qubits involved is needed to
implement a general unitary operation. This can be seen by
simple counting of parameters of an n-qubit unitary operation.
Several attempts have been made to optimize the number of
gates needed for general operations [6–15].

In situations where the input for a quantum computer or a
quantum communication protocol is a known quantum state,
we are not interested in performing a completely defined

unitary transformation. Instead, we aim only to prepare a given
state |φ〉, i.e., to perform a transformation from an initial state
|ψ〉 to a different target state, |ψ〉 → |φ〉, where a whole class
of unitaries U fulfills the condition U |ψ〉 = |φ〉.

It is known that one needs an exponential number of CNOT

gates to prepare a generic quantum state; i.e., in the leading
order this number is NCNOT = c · 2n, where c is a prefactor and
n is the number of qubits. Any optimization can only decrease
the prefactor but cannot beat the exponential dependence. The
best known result so far is c = 1 [9]. Here we give an explicit
quantum circuit reducing the prefactor to c = 23

24 for n even.
Specifically, using our scheme we decrease the known upper
bound from 11 CNOT gates to 9 for four qubits and from 57
CNOT gates down to 46 for six qubits, keeping the existing
bound of 26 CNOT gates for five qubits. The lower bounds are
6, 13, and 29 CNOT gates, respectively (see below).

The reduction of the overall number of CNOT gates might
be, however, not the only aim of the optimization procedure.
In searching for efficient algorithms, the depth of the quantum
circuit, i.e., the minimal number of computation steps required
for accomplishing the computation, is crucial [16]. In a general
case, the depth might be as high as the overall number of CNOT

gates, not allowing us to perform more than one gate in parallel
as is the case in Ref. [9]. In our scheme the depth is at most
half the number of CNOT gates; i.e., at least two gates can be
implemented in parallel in every step.

II. LOWER BOUNDS

A general n-qubit pure state is fully described by 2n+1 − 2
real parameters. During the preparation process, these param-
eters are introduced sequentially by performing single-qubit
rotations (in which each rotation introduces three Euler angles)
along with CNOT gates. CNOT gates as such do not introduce
any parameters, but they are a kind of barriers that separate
one-qubit rotations such that they cannot merge into a resulting
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single rotation for each qubit. Naively, one could expect
that every CNOT gate can be accompanied by two one-qubit
operations—one for the control and one for the target qubit—
applied after every CNOT gate. Due to existing identities [6],
however, only four real parameters can be introduced with
one CNOT gate. This can be understood as follows: Rotation
about the z axis applied on the control qubit commutes with
the CNOT gate. Similarly, rotation about the x axis applied
on the target qubit commutes with the CNOT gate. In this
way, the two types of rotations can be commuted backward
through the CNOT gate and combined with the rotations applied
after the previous CNOT gates acting on the respective qubits.
Thus for every CNOT we can implement four real parameters
of the desired state.

Further parameters can be added by local unitary transfor-
mations on qubits in the beginning of the process. Trivially,
one would expect to introduce three real parameters per qubit,
corresponding to the three Euler angles. However, this is not
the case. By starting in a specific product state (e.g., |0〉⊗N ),
we may only rotate every single qubit into a given direction,
which gives us two parameters per qubit. The third (missing)
parameter is just a phase on every qubit, which sums up through
all qubits and influences only the global phase. Therefore on
n qubits, with k CNOT gates, we may introduce altogether
up to 4k + 2n real parameters. This gives a lower bound on
the number of CNOT gates needed to prepare a state: 6 for
four qubits, 13 for five qubits and 29 for six qubits. For large
numbers of n we get a lower bound on the number of CNOT

gates of k = 1
2 2n in the leading order.

The lower limit for the depth of the circuit also grows expo-
nentially with the number of qubits, with a linear correction.
This can be seen from the fact that in one computation step no
more than n

2 CNOT gates can be performed. The only possible
optimization for the depth is also the reduction of the prefactor
with up to a linear correction, with the lower bound 2n

n
.

III. FOUR QUBITS

The Hilbert space of four qubits can be factorized into
two parts, where each part is associated with two qubits. An
arbitrary pure state |�〉 of four qubits can then be expressed
using the (standard) Schmidt decomposition as

|�〉 =
4∑

i=1

αi |ψ〉i |φ〉i . (1)

Here |ψ〉i , i = 1, . . . ,4, are four normalized orthogonal states
of the first two qubits and similarly |φ〉i are four normalized
orthogonal states of the second two qubits. The states are
given with a nontrivial global phase. The coefficients αi are
real and positive and they obey

∑4
i=1 α2

i = 1. Without loss of
generality we can rewrite the decomposition (1) in such a way
that |ψ〉i and |φ〉i will be defined only up to a global phase.
Their relative phases (with respect to different i’s) will then
be included in the generalized coefficients αi , which become
complex. As we are interested in |�〉 up to its global phase,
we can make the choice of having α1 real and positive.

The pure state |�〉 is specified by 25 − 2 = 30 real
parameters. The four states |ψ〉i are specified by 6, 4, 2,

and 0 parameters (due to the orthogonality condition), and

so are the four states |φ〉i . The four coefficients αi require
six independent real parameters to be determined due to the
normalization condition and the choice of the global phase.
This gives altogether 30 parameters, as expected.

A. Phase 1

To prepare the state |�〉 starting from the initial state |0000〉,
we first generate the state with the generalized (complex)
Schmidt coefficients on the first two qubits:

|0000〉 → (α1|00〉 + α2|01〉 + α3|10〉 + α4|11〉)|00〉. (2)

This operation does not define a unitary operation completely,
but it is a state-preparation operation on two qubits (in which
starting from a known state |00〉 we end in a state specified by
the generalized Schmidt decomposition coefficients). There-
fore, as shown in Ref. [11], it can be realized by one CNOT

operation in combination with suitable one-qubit rotations.

B. Phase 2

We perform two CNOT operations, one with the control on
the first qubit and the target on the third qubit and the other
one with the control on the second qubit and the target on the
fourth qubit. In such a way we can “copy” the basis states of
the first two qubits onto the respective states of the second
two qubits. In this way we obtain a state of four qubits, which
has the same Schmidt decomposition coefficients as the target
state (1):

(α1|00〉 + α2|01〉 + α3|10〉 + α4|11〉)|00〉 (3)

→ (α1|00〉|00〉 + α2|01〉|01〉 + α3|10〉|10〉 + α4|11〉|11〉).
For this phase we obviously only need two CNOT operations;
one-qubit rotations are not necessary.

C. Phase 3

Keeping the Schmidt decomposition form we apply the
unitary operation that transforms the basis states of the first
two qubits into the four states |ψ〉i . We obtain

|00〉 → |ψ〉1, |01〉 → |ψ〉2,
(4)

|10〉 → |ψ〉3, |11〉 → |ψ〉4.

As for any two-qubit unitary operation we do not need more
than three CNOT gates [11].

D. Phase 4

In the final phase of the circuit we perform a unitary
operation on the third and fourth qubits in order to transform
their computational basis states into the Schmidt basis states
of Eq. (1):

|00〉 → |φ〉1, |01〉 → |φ〉2,
(5)

|10〉 → |φ〉3, |11〉 → |φ〉4.

Similarly to the previous phase, we again use three CNOT

operations. We conclude that altogether we have used 1 + 2 +
3 + 3 = 9 CNOT gates for the entire quantum state preparation
circuit (see Fig. 1), which is less than the best result of 11 CNOT
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FIG. 1. Gate sequence for preparation of an arbitrary four-qubit
state. Individual one-qubit rotations (not depicted) need to be applied
between CNOT gates. The four individual phases are described in the
text. The two CNOT gates in phase 2, as well as in phases 3 and 4, can
be performed in parallel, as they address different qubits. Altogether
one needs 9 CNOT gates, 4 pairs of which can be performed in parallel.

gates, which can be deduced from [9]. However, it stays above
the minimum of 6 gates obtained from parameter counting.

The depth of the circuit is 5, where the second phase can be
done in one computation step and the third and fourth phases
can be done in parallel in three computation steps. This is less
than half of the result of Ref. [9] and is optimal for 9 CNOT

gates. The theoretical minimal depth is 3, deduced from the
fact that at least 6 CNOT gates are needed and no more than
two can be performed in one step.

IV. FIVE QUBITS

To illustrate our state preparation procedure for the case of
odd number of qubits—where the entire Hilbert space cannot
be factorized into Hilbert spaces of equal dimensions—we give
an example for five qubits. We first factorize the Hilbert space
into two parts, with one part associated with two qubits and
the other one with three qubits. The Schmidt decomposition of
an arbitrary five-qubit state with respect to such Hilbert space
factorization has almost the same structure as in the case of
four qubits in Eq. (1). One has

|�〉 =
4∑

i=1

αi |ψ〉i |φ〉i . (6)

Again, the summation goes at most over four terms and the only
difference is that states |φ〉i , i = 1, . . . ,4, are now three-qubit
states. We again choose to include the relative phase of the
states into the coefficients αi and proceed with phases 1–3
in the same way as for four qubits. The only difference is
in the fourth phase, where we perform a three-qubit unitary
operation:

|00〉|0〉 → |φ〉1, |01〉|0〉 → |φ〉2, (7)

|10〉|0〉 → |φ〉3, |11〉|0〉 → |φ〉4.

Such unitary can be implemented by no more than 20 CNOT

gates [11]. Moreover, this unitary is not completely defined
(since the third qubit is initially exclusively in the state |0〉)
and thus further reduction of the number of CNOT gates might
be possible. Even without such optimizations, our state prepa-
ration procedure for five qubits requires 1 + 2 + 3 + 20 = 26
CNOT gates, which achieves the result of Ref. [9]. The lover

limit of 13 CNOT gates suggests that further optimization is
possible.

The depth of the procedure is 22 computation steps, with 1
step for phase 1, 1 step for phase 2, and 20 steps for performing
phases 3 and 4 in parallel. This is less than the lowest known
depth of 26 of Ref. [9], but more than the theoretical lower
bound of 7.

V. GENERAL CASE

We will now apply the main idea presented for four and
five qubits to the general case of n qubits. We begin with
factorization of the Hilbert space of n qubits into two parts of
equal dimension for n even, so that each part is associated with
n
2 qubits. For an odd number of qubits we factorize the Hilbert
space into n−1

2 and n+1
2 qubits. On the first part of the qubits

we will prepare a state whose amplitudes in the computational
basis will be defined by the generalized Schmidt coefficients.
Then we will apply a set of CNOT gates between the qubits
in the first and second parts. In the end we will perform two
unitary operations, one on the first part and one on the second
part of the qubits. We will separately treat the case of even and
odd numbers of qubits.

A. Even number of qubits

We write the number of qubits as n = 2k. The qubits are
divided into two parts, each containing k qubits. With respect
to this division the Schmidt decomposition of an arbitrary state
of n qubits has the following form:

|�〉 =
2k∑

i=1

αi |ψ〉i |φ〉i , (8)

where both |ψ〉i and |φ〉i are normalized states of k qubits and
αi are complex coefficients.

The initial state of qubits is assumed to be the product state
|0〉⊗2k in which each qubit is in state |0〉. On the first k qubits
we prepare a superposition state whose amplitudes are the
Schmidt coefficients in the computational basis:

|0〉⊗2k →
⎛
⎝

2k∑
i=1

αi |i〉
⎞
⎠ |0〉⊗k. (9)

The sequence of 0’s and 1’s in the computational basis states
{|00 . . . 0〉,|00 . . . 1〉, . . . ,|11 . . . 1〉} represents the binary
encoding of the index i in the states |i〉: Qubits in state |1〉
stand exactly on those positions where there is a 1 in the
binary notation of i. All other qubits are in the state |0〉. To
prepare a state on k qubits as required in Eq. (9), we can utilize
the existing bound from Ref. [9], which allows us to prepare
it with the help of 2k − k − 1 CNOT gates. We will later return
to a discussion about further optimization possibilities of this
particular phase.

In the second phase, we perform k CNOT gates with qubits
j as the control and qubits j + k as the target for j running
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from 1 to k. This will bring us to the desired Schmidt form of
our state,

⎛
⎝

2k∑
i=1

αi |i〉
⎞
⎠ |0〉⊗k →

2k∑
i=1

αi |i〉|i〉. (10)

Phases 3 and 4 are k-qubit unitary operations performed
on the first and second halves of the qubits, respectively. We
obtain

2k∑
i=1

αi |i〉|i〉 →
2k∑

i=1

αi |ψ〉i |i〉 (11)

→
2k∑

i=1

αi |ψ〉i |φ〉i , (12)

which is the aimed target state (8). Every unitary operation
acting on k qubits can be performed by 23

48 22k − 3
2 2k + 4

3 CNOT

gates [11]. We thus need altogether 2k − k − 1 + k + 23
24 22k −

3
2 2k+1 + 8

3 CNOT gates. This number is bounded from above
by its leading term in k. Taking n = 2k we obtain

N even
CNOT <

23

24
2n. (13)

This is the new lowest number of CNOT gates needed for
construction of a universal circuit for preparation of an
arbitrary state.

In the first phase (9) of the procedure given above we
used a method for state preparation, which requires more
entangling gates than our method. Naturally, we can use
our result recursively to obtain a slightly lower number of
CNOT operations needed to prepare the state of the first k

qubits. However, this part of the process does not contribute
to the leading order of the number of CNOT gates needed
for preparation as calculated in Eq. (13). The first phase
contributes only with the order of 2

n
2 , whereas the phases

3 and 4 contribute with the order of 2n.
The depth of the circuit is, in the leading order, given by

the depth of phases 3 and 4, which is 23
48 2n, less than the best

previous result of 2n, but weaker than the theoretical limit
of 2n

n
.

B. Odd number of qubits

We express the number of qubits as n = 2k + 1. The
first three phases, as described by Eqs. (9)–(11) of the
procedure, remain exactly the same as for the case of even
number of qubits. In the fourth phase (12) we perform a
unitary operation on k + 1 instead of k qubits. Summing
up contributions from all four phases we obtain the overall
number of CNOT gates required: 2k − k − 1 + k + 23

48 22k −
3
2 2k + 4

3 + 23
48 22k+2 − 3

2 2k+1 + 4
3 . Similarly to the previous

case the leading order of this sum bounds the number of the
CNOT gates from above. It can be simplified to Nodd

CNOT < 115
96 2n.

This result is weaker then the bound (13) for an even number
of qubits. However, further optimizations are possible since

in phase 4 the operation required is not a completely defined
unitary and one does not necessarily need the whole number
of CNOT gates as required for a general unitary rotation on
k + 1 qubits. Moreover, even in this case the depth of the
circuit bounded by 115

192 2n is smaller than the best known
result.

VI. CONCLUSIONS

We give an explicit and efficient circuit for preparation
of arbitrary states of n qubits using a gate library consisting
of a single two-qubit gate (CNOT) and one-qubit rotations.
For an even number of qubits we have slightly reduced
the previously known upper bound on the number of CNOT

gates needed. For the special case of four qubits our scheme
requires only 9 CNOT gates (compared to 11 previously known),
which should be within the scope of near-future quantum
technology.

Our quantum state preparation scheme provides also
a lower computational depth than the previously known
results. It can be divided into four phases, where the last
two can be performed in parallel, which leads to roughly
half the computational steps compared to the previous
results. This opens up further optimization possibilities
for experimental implementation of the state preparation.
Our results can help in designing and building small-
scale quantum circuits using present technologies (see, e.g.,
Refs. [17,18]).

Our procedure introduces a conceptually simple utilization
of efficient decomposition of arbitrary quantum gates for the
problem of state preparation. In fact, the efficiency of our
procedure is based on the best results for gate decompositions.
If better results can be obtained in the future, they will
directly lead to lowering of our bounds. Moreover, this
utilization itself is very efficient: A circuit for gate decom-
position reaching the lower bound of 4(n−2) [6] CNOT gates
in leading order would lead to state preparation with 2(n−1)

CNOT gates, reaching the lower bound in the leading order
as well.

Using our scheme one can also efficiently apply operations
that transform any given state |ψ〉 of n qubits to any other
given state |φ〉. We first run the preparation procedure for |ψ〉
in the reversed order, which results in the state |0〉⊗n. Then, we
continue with preparing the aimed state |φ〉. The number of
CNOT gates needed to perform this composite transformation
is just double the number needed to prepare an arbitrary state
from |0〉⊗n. However, the reduction in the depth of the complete
circuit is even greater than a factor of 2, as the last phase of
the reversed process and the first phase of the preparation
process can run on distinct qubits and therefore be performed
in parallel.
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