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Geometry of classical periodic orbits and quantum coherent states in coupled oscillators
with SU(2) transformations
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The geometry of classical dynamics in coupled oscillators with SU(2) transformations is explored and found to
be relevant to a family of continuous-transformation orbits between Lissajous and trochoidal curves. The quantum
wave-packet coherent states are derived analytically to correspond exactly to the transformation geometry of
classical dynamics. By using the quantum wave-packet coherent states derived herein, stationary coherent states
are constructed and are shown to possess spatial patterns identical to the transformation geometry between
Lissajous and trochoidal orbits.
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I. INTRODUCTION

Recently, much research on quantum physics has revealed
that quantum wave functions correlated with classical periodic
orbits play a critical role in explaining striking quantum
phenomena such as shell effects in nuclei and metallic clusters
[1,2], conductance fluctuations in mesoscopic semiconductor
billiards [3,4], and oscillations in photodetachment cross
sections [5,6]. Explicitly, quantum wave functions localized
on classical orbits emerge quite naturally and inevitably
in the quantum-classical transition. Quantum wave-packet
coherent states [7,8] have been verified to be not only the
most representative states related to classical dynamics but
also the most [1] persistent states in the system interacting
with the environment [9]. Therefore, quantum coherent states
localized on classical orbits have been explored in different
branches of physics such as solid-state, nuclear, and atomic
physics [10–13].

Modern laser cavities have been employed extensively to
serve as an analogous system to provide an experimental
visualization in an optical context to confirm many quantum
effects such as quantum chaos phenomena [14,15], disorder-
induced wave localization [16], geometric phases [17], and
quantum tunneling [18]. Spatial structures of laser modes in
broad-area resonators have been of interest for a long time
because they offer much insight into the pattern formation
of natural waves [19–27]. More recently, wave patterns of
high-order coherent laser modes in various cavities have
been generated to manifest the morphologies of quantum
coherent states related to periodic orbits [28–30]. The most
remarkable finding is that the coherent optical waves related
to the Lissajous and trochoidal patterns can be geometrically
connected through SU(2) transformations [31]. The geometric
connection in coherent optics signifies the relevance of
exploring the transformation geometry of quantum coherent
states in the quantum-classical correspondence. Nevertheless,
to the best of the author’s knowledge, there have been
no systematic investigations involving the transformation
geometry of quantum coherent states.

The two-dimensional (2D) coupled harmonic oscillator
is an important model used to describe various physical
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properties such as bosonic realization of SU(2) Lie algebra
[32], generation and evolution of quantum vortex states
[33,34], orbital magnetism in quantum dots [35], charged
particles in external fields [36,37], and shell effects in nuclei
and metallic clusters [38]. In this paper the transformation
geometry of classical dynamics in the 2D coupled harmonic
oscillator related to SU(2) transformations is investigated.
The classical periodic orbits under SU(2) transformations are
found to exhibit a family of continuous transformation orbits
between Lissajous and trochoidal curves. Quantum wave-
packet coherent states corresponding to the transformation
geometry of classical dynamics are derived. These quantum
wave-packet coherent states are exploited to extract stationary
coherent states with spatial morphologies concentrated on
the transformation geometry. Since the quantum coherent
states related to the SU(2) transformation geometry generally
carry angular momenta [1], the present investigation should
be helpful in generating coherent optical waves with spatial
structures for many applications.

II. GENERALIZED HAMILTONIAN RELATED
TO SU(2) TRANSFORMATIONS

By using the dimensionless spatial variables x̃ and ỹ, the
Hamiltonian for the 2D isotropic oscillator is given by

Ĥ0 = ω0

2

(
p̃2

x + p̃2
y + x̃2 + ỹ2). (1)

In terms of the ladder operators, the quantum Hamil-
tonian becomes Ĥ0 = (â†

1â1 + â
†
2â2 + 1)ω0, where â1 =

(x̃ + ip̃x)/
√

2, â
†
1 = (x̃ − ip̃x)/

√
2, â2 = (ỹ + ip̃y)/

√
2, and

a
†
2= (ỹ − ip̃y)/

√
2. Note that h̄ = 1 has been chosen for

the units. The generalized Hamiltonian related to SU(2)
transformations for the coupled oscillator systems can be
modeled as

Ĥ = Ĥ0 +
3∑

i=1

�iL̂i, (2)

where the coupling parameters �i are assumed to be real
constants and the operators L̂1 = 1/2(â†

1â2 + â
†
2â1), L̂2 =

−i/2(â†
1â2 − â

†
2â1), and L̂3 = 1/2(â†

1â1 − â
†
2â2) are derived

by Schwinger [39] to discuss the correspondence between two
linear oscillators and an angular momentum oscillator. The
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operators L̂i satisfy the usual angular momentum commutation
relations, i.e., Lie commutator algebra [L̂i,L̂j ] = iεi,j,kL̂k ,
where the Levi-Civita tensor εi,j,k is equal to +1 and −1 for
even and odd permutations of its indices, respectively, and zero
otherwise. The Hamiltonian in Eq. (2) can represent a host of
entanglement mechanisms [40–42] and can be used to analyze
a single laser-cooled ion confined in a harmonic trap [43].
In wave optics, the operators L̂1, L̂2, and L̂3 are associated
with astigmatism and aberration [44]. Consequently, the
present investigation is also relevant in high-order laser pattern
formations [45].

First we analyze the classical dynamics for the Hamiltonian
Ĥ to acquire background information to study the quantum
wave-packet coherent states. By using the dimensionless
spatial variables, the operators L̂1, L̂2, and L̂3 can be expressed
as L̂1 = 1/2(x̃ỹ + p̃xp̃y), L̂2 = 1/2(x̃p̃y − ỹp̃x), and L̂3 =
1/4(x̃2 + p̃2

x − ỹ2 − p̃2
y). The classical equation of motion for

the Hamiltonian Ĥ is

i
d

dt

[
υ1

υ2

]
=

[
ω0 + (�3/2) (�1 − i�2)/2
(�1 + i�2)/2 ω0 − (�3/2)

] [
υ1

υ2

]
, (3)

where υ1 = x̃ + ip̃x and υ2 = ỹ + ip̃y . Even though Eq. (3)
is the equation of motion for Ĥ in classical mechanics, its
form is the same as the Schrödinger equation for a two-level
system, e.g., spinor states in a magnetic field. By using

the SU(2) algebra, the general solution for Eq. (3) can be
solved as[

υ1(t)
υ2(t)

]
=

[
e−iα/2 cos(β/2) −e−iα/2 sin(β/2)
eiα/2 sin(β/2) eiα/2 cos(β/2)

] [
µ1(t)
µ2(t)

]
,

(4)

where α = tan−1(�2/�1), β = tan−1(
√

�2
1 + �2

2/�3), µ1(t)=
A1e

−i(ω1t−φ1), µ2(t) = A2e
−i(ω2t−φ2), ω1 = ω0 + (�/2), ω2 =

ω0 − (�/2), � =
√

�2
1 + �2

2 + �2
3, and A1, A2, φ1, and φ2 are

related to the initial conditions. Consequently, the generalized
classical orbits for Ĥ are given by

x̃(t) = A1 cos(β/2) cos(ω1t − φ1 − α/2)

−A2 sin(β/2) cos(ω2t − φ2 − α/2),
(5)

ỹ(t) = A1 sin(β/2) cos(ω1t − φ1

+α/2) + A2 cos(β/2) cos(ω2t − φ2 + α/2).

The orbits in Eq. (5) are particularly well known for several
values of α and β. For example, the parametric equations for
α = 0 are given by

x̃(t) = A1 cos(β/2) cos(ω1t − φ1)

−A2 sin(β/2) cos(ω2t − φ2), (6)

ỹ(t) = A1 sin(β/2) cos(ω1t − φ1)

+A2 cos(β/2) cos(ω2t − φ2).

The family of curves in Eq. (6) is represented by Lissajous
figures at an angle of β/2 with respect to the x axis. Figure 1
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FIG. 1. (Color online) Periodic orbits for the case of ω1ω2 = 5/1 for various values of α for the parameters (A1,A2) = (25,120), φ1 = φ2 = 0,
and β = π/2 in Eq. (5).
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FIG. 2. (Color online) Periodic orbits for the case of ω1/ω2 = −5/1 for various values of α for the parameters (A1,A2) = (25,100),
φ1 = φ2 = 0, and β = π/2 in Eq. (5).

depicts the periodic orbits for the case of ω1/ω2 = 5/1 for
various values of α for the parameters (A1,A2) = (25,120),
φ1 = φ2 = 0, and β = π/2 in Eq. (5). It can be seen that the
orbits are associated with a continuous transformation between
Lissajous figures and hypotrochoids for different values of the
parameter α. In contrast, Fig. 2 shows the periodic orbits for
the case of ω1/ω2 = −5/1 for various values of α for the
parameters (A1,A2) = (25,100), φ1 = φ2 = 0, and β = π/2
in Eq. (5). In this case, the orbits are found to be a continuous
transformation between Lissajous figures and epitrochoids
for various values of the parameter α. In brief, the orbit in
Eq. (5) for α = π/2 and β = π/2 can be a hypotrochoid or an
epitrochoid, depending on whether the ratio ω1/ω2 is positive
or negative. Mathematically, a hypotrochoid (epitrochoid) is
a roulette [1] traced by a point attached to a circle at a point
other than the center when the circle rolls without slipping on
the inside (outside) of a fixed circle. Note that a hypocycloid
(epicycloid) is a hypotrochoid (epitrochoid) for which the
tracing point is precisely on the circumference of the rolling
circle. To sum up, by using SU(2) transformations the classical
dynamics of the coupled oscillator in Eq. (2) are shown to
display a wide variety of curves, which are given in Eq. (5).
For convenience these curves are called Lissajous-trochoid
transformed curves since these curves are associated with
a continuous transformation between Lissajous figures and
trochoids for various values of the parameters α and β in
Eq. (5). Note that the Lissajous-trochoid orbits are invariant
with respect to changes in the phases φ1 and φ2 provided the
quantity γ = pφ1 ∓ qφ2 remains [1] modulo 2π .

III. WAVE-PACKET COHERENT STATES RELATED
TO SU(2) TRANSFORMATIONS

The eigenstates of Ĥ0 are the two-mode Fock state
|n1,n2〉Ĥ0

= [(â†
1)n1/

√
n1!] [(â†

2)n2/
√

n2!]|0,0〉Ĥ0
and their

eigenvalues are EĤ0
(n1,n2) = (n1 + n2 + 1)ω0, where n1 and

n2 are positive integers and |0,0〉Ĥ0
represents the ground state.

The normalized spatial representation is given by

〈x̃,ỹ|n1,n2〉Ĥ0
= [2n1+n2 (n1!)(n2!)π ]−1/2

e−(x̃2+ỹ2)/2Hn1 (x̃)Hn2 (ỹ), (7)

where Hn(x̃) are the Hermite polynomials. To find the
eigenstates of the coupled oscillator Ĥ in Eq. (2) we employ
the same SU(2) algebra for classical dynamics to define a new
pair of operators[

â′1
â′2

]
=

[
eiα/2 cos(β/2) e−iα/2 sin(β/2)
−eiα/2 sin(β/2) e−iα/2 cos(β/2)

] [
â1

â2

]
. (8)

By using the operators â′
1 and â′

2 in Eq. (8), the coupled
oscillator Ĥ in Eq. (2) can be transformed into a separable
2D harmonic oscillator:

Ĥ = (
â

′†
1 â′

1 + 1
2

)
ω1 + (

â
′†
2 â′

2 + 1
2

)
ω2. (9)

As a result, the eigenstates and eigenvalues of the
Hamiltonian Ĥ can be found to be |n1,n2〉Ĥ =
[(â†′

1 )n1/
√

n1!] [(â†′
2 )n2/

√
n2!]|0,0〉Ĥ and EĤ (n1,n2) =

(n1 + 1/2)ω1 + (n2 + 1/2)ω2, respectively. Note that
|0,0〉Ĥ = |0,0〉Ĥ0

. In terms of the Wigner d-matrix elements,
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the eigenstates |n1,n2〉Ĥ can be explicitly expressed as a linear
combination of the eigenstates of the uncoupled oscillator:

|n1,n2〉Ĥ = eiNα/2
N∑

m1=0

e−im1α d
N/2
m1−N/2,n1−N/2(β)|m1,m2〉Ĥ0

,

(10)

where N = n1 + n2 = m1 + m2 and

d
N/2
m1−N/2,n1−N/2(β)

=
√

m1!(N − m1)!n1!(N − n1)!
min[N−n1,m1]∑

ν=max[0,m1−n1]

× (−1)ν[cos(β/2)]N−n1+m1−2ν[sin(β/2)]n1−m1+2ν

ν!(N − n1 − ν)!(m1 − ν)!(n1 − m1 + ν)!
. (11)

The eigenstates in Eq. (10) do not directly correspond
to the classical Lissajous-trochoid orbits; it is necessary to
construct quantum wave-packet coherent states to mimic
classical dynamics.

The quantum wave-packet states developed by Schrödinger
for 1D harmonic oscillators are given by

|�(t ; µ)〉 = e−iω0t/2
∞∑

n=0

µn

n!
e−|µ|2/2(â†)n

∣∣0〉, (12)

where µ = Ae−i(ω0t−φ) and A and φ are related to the initial
condition of the trajectory. By using the generating function of
the Hermite polynomials, the probability distributions of the
Schrödinger coherent states can be derived as

P (x̃,t ; µ) = |〈x̃ | �(t ; µ)〉|2 = 1√
π

exp{−[x̃ −
√

2Re(µ)]2}.
(13)

Equation (13) indicates that the center of the coherent
states moves in the path of the harmonic waves x̃(t) =√

2Re[µ(t)] = √
2A cos(ωt − φ). The coupled oscillator Ĥ

in Eq. (2) can be transformed into a separable 2D harmonic
oscillator in terms of the operators â′1 and â′2 in Eq. (9). As a
consequence, the quantum coherent states can be expressed as
the product of two 1D coherent states:

|�(t ; µ1,µ2)〉 = e−i(ω1+ω2)t/2
∞∑

n1=0

×
∞∑

n2=0

e−(|µ1|2+|µ2|2)/2 µ
n1
1

n1!

µ
n2
2

n2!
(â′

1
†)n1 (â′

2
†)n2 |0,0〉Ĥ , (14)

where µ1(t) = A1e
−i(ω1t−φ1) and µ2(t) = A2e

−i(ω2t−φ2). Sub-
stituting Eq. (8) into Eq. (14), after cumbersome algebra,
Eq. (14) can be transformed into

|�(t ; υ1,υ2)〉 = e−iω0t

∞∑
m1=0

×
∞∑

m2=0

e−(|υ1|2+|υ2|2)/2 υ
m1
1

m1!

υ
m2
2

m2!
(â†

1)m1 (â†
2)m2 |0,0〉Ĥ0

, (15)

where the relationship between [υ1(t),υ2(t)] and [µ1(t),µ2(t)]
is exactly the same as in Eq. (4). By using the result in Eq. (13),

the probability distribution of the coherent state |�(t ; υ1,υ2)〉
is

P (x̃,ỹ,t) = |〈x̃,ỹ |�(t ; υ1,υ2)〉|2

= 1

π
exp(−{x̃ −

√
2Re[υ1(t)]}2)

× exp(−{ỹ −
√

2Re[υ2(t)]}2). (16)

Equation (16) indicates that the probability distributions
of the coherent states |�(t ; υ1,υ2)〉 are concentrated ex-
actly on the Lissajous-trochoid transformed curves shown in
Eq. (5).

IV. STATIONARY COHERENT STATES RELATED
TO SU(2) TRANSFORMATIONS

Like quantum elliptical states of the Rydberg hydrogen
atom [10], wave-packet coherent states |�(t ; υ1,υ2)〉 can be
expressed as a superposition of stationary coherent states.
The stationary coherent states are a coherent superposition
of degenerate eigenstates. The wave pattern of the stationary
coherent states is localized on the corresponding classical
periodic orbits. As the number of quanta increases, the local-
ization on the classical invariant structure is more prominent.
These coherent states not only give a useful representation
to which classical and quantum mechanics can be compared
but also constitute a convenient basis in which to study weak
perturbations. To derive a general expression for the stationary
coherent state, we first simplify the wave-packet coherent
state |�(t ; υ1,υ2)〉 as a double finite sum for sufficiently large
values of A1 and A2 (say A1 and A1 > 10). From Eq. (15)
the probability Pn1,n2 of the coherent state |�(t ; υ1,υ2)〉 in
an eigenstate |n1,n2〉Ĥ can be found to be a 2D Poisson
distribution:

Pn1,n2 =
(

n̄
n1
1

n1!
e−n̄1

)(
n̄

n2
2

n2!
e−n̄2

)
, (17)

where the mean values of n̄1 and n̄2 are given by n̄1 =
〈�|â′†

1 â′
1|�〉 = A2

1 and n̄2 = 〈�|â′†
2 â′

2|�〉 = A2
2 [1], respec-

tively. For the central limit theorem, the distribution Pn1,n2

approaches a 2D Gaussian distribution with means n̄1 and n̄2

and standard deviations
√

n̄1 and
√

n̄2. Therefore, the coherent
state |�(t ; υ1,υ2)〉 can be appropriately expressed as a double
finite sum of the dominant [1] eigenstates:

|�(t ; υ1,υ2)〉 = e−iϑ(t)

⎛
⎝ [2

√
n̄1]∑

s1=−[2
√

n̄1]

[2
√

n̄2]∑
s2=−[2

√
n̄2]

e−is1(ω1t−φ1)√√
2πn̄1

×e−s2
1 /4n̄1

e−is2(ω2t−φ2)√√
2πn̄2

e−s2
2 /4n̄2 |n̄1 + s1,n̄2 + s2〉Ĥ

)
, (18)

where e−iϑ(t) = e−i(ω1+ω2)t/2e−in̄1(ω1t−φ1)e−in̄2(ω2t−φ2) and [w]
is the Gaussian bracket (integer closest to w on the lower side).
For convenience we set ω1 = qω and ω2 = ±pω, where p and
q are prime [1], positive integers. For ω1 = qω and ω2 = ±pω,
the set of states with indices (s1,s2) in Eq. (18) can be divided
into subsets characterized by a pair of indices (u1,u2) given by
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FIG. 3. (Color online) Wave patterns of the stationary coherent state |�±p,q
n̄1,n̄2

(γ )〉0,0,0 for the parameters corresponding to the classical orbits
shown in Fig. 1.

s1 ≡ u1(modp) and s2 ≡ u2(modq). In terms of these subsets,
we can rewrite the coherent state in Eq. (18) as

|�(t ; υ1,υ2)〉 = e−iϑ(t)

(
p−1∑
u1=0

e−iu1(qωt−φ1)
q−1∑
u2=0

e−iu2(±pωt−φ2)

×
[2

√
n̄1/p]∑

k1=−[2
√

n̄1/p]

[2
√

n̄2/q]∑
k2=−[2

√
n̄2/q]

e−ipk1(qωt−φ1)√√
2πn̄1

×e−[(pk1+u1)2/4n̄1] e
−iqk2(±pωt−φ2)√√

2πn̄2

e−[(qk2+u2)2/4n̄2]

× |n̄1 + pk1 + u1,n̄2 + qk2 + u2〉Ĥ
)

. (19)

To extract the stationary coherent state, the indices k1 and k2 in
Eq. (19) are replaced by the indices k1 = (s + k)/2 and k2 =
±(s − k)/2, where the sign of the index k corresponds to the
sign of ω2 = ±pω. Consequently, the wave-packet coherent
state in Eq. (19) can be given by

|�(t ; υ1,υ2)〉 = e−iϑ(t)
p−1∑
u1=0

e−iu1(qωt−φ1)
q−1∑
u2=0

e−iu2(±pωt−φ2)

×
S∑

s=−S

e−i2spqωt eis(pφ1±qφ2)|�±p,q
n̄1,n̄2

(γ )〉s,u1,u2 , (20)

where S = [2
√

n̄1p + 2
√

n̄2q] and the stationary coherent
state |�±p,q

n̄1,n̄2
(γ )〉s,u1,u2 is given by

|�±p,q
n̄1,n̄2

(γ )〉s,u1,u2 = 1√
2π

√
n̄1n̄2

×
U (s)∑

k=L(s)

eikγ e−{[p(s+k)+u1]2/4n̄1}e−{[±q(s−K)+u2]2/4n̄2}|

×n̄1 + p(s + k) + u1,n̄2 ± q(s − k) + u2〉Ĥ , (21)

with L(s) = max(−[2
√

n̄1/p] − s, − [2
√

n̄2/q] + s) and
U (s) = min([2

√
n̄1/p] − s,[2

√
n̄2/q] + s). In general, the

spatial properties of the state |�±p,q
n̄1,n̄2

(γ )〉s,u1,u2 weakly
depend on the indices u1 and u2. The amplitude
coefficients in Eq. (21) also reveal that the stationary
coherent state |�±p,q

n̄1,n̄2
(γ )〉s,u1,u2 with index s = 0 has a

dominant contribution in the wave-packet coherent state
|�(t ; υ1,υ2)〉. For s = u1 = u2 = 0, the stationary coherent
state |�±p,q

n̄1,n̄2
(γ )〉0,0,0 can be compactly expressed as

|�±p,q
n̄1,n̄2

(γ )〉0,0,0 = 1√
2π

√
n̄1n̄2

M∑
k=−M

×eikγ e−[(pk)2/4n̄1]e−[(qk)2/4n̄2]|n̄1 + pk,n̄2 ∓ qk〉Ĥ , (22)

where M = min([2
√

n̄1/p],[2
√

n̄2/q]). The state
|�±p,q

n̄1,n̄2
(γ )〉0,0,0 can be regarded as a representative state
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FIG. 4. (Color online) Wave patterns of the stationary coherent state |�±p,q
n̄1,n̄2

(γ )〉0,0,0 for the parameters corresponding to the classical orbits
shown in Fig. 2.

that precisely mimics the spatial morphology of the time
evolution of the wave-packet state |�(t ; υ1,υ2)〉.

Equation (22) was employed to calculate the wave patterns
of the stationary coherent state |�±p,q

n̄1,n̄2
(γ )〉0,0,0 for the param-

eters corresponding to the classical orbits shown in Figs. 1
and 2. The calculated wave patterns are depicted in Fig. 3 for
(p,q) = (1,5) and in Fig. 4 for (p,q) = (−1,5). It can be seen
that the spatial morphologies of the stationary coherent state
|�±p,q

n̄1,n̄2
(γ )〉0,0,0 are in excellent agreement with the Lissajous-

trochoid transformed orbits. The agreement confirms the
accuracy of the theoretical representation of the stationary
coherent states related to the Lissajous-trochoid transformed
orbits. Recently it has been experimentally realized in optics
that various Lissajous coherent waves can be transformed
into trochoidal coherent waves with cylindrical lenses to
perform the SU(2) transformations [46–48]. Therefore, the
present development of stationary coherent states is not only
significant in understanding the quantum-classical connection
to the SU(2) transformations but also useful in generating
optical coherent waves based on the optical devices of mode
converters.

V. CONCLUSION

In summary, the geometry of classical dynamics in the
2D coupled harmonic oscillator with SU(2) transformations
has been investigated. It was found that the classical periodic
orbits under SU(2) transformations are a family of continuous
transformation orbits between Lissajous and trochoidal curves.
The quantum wave-packet coherent states have been derived
analytically to correspond exactly to the transformation geom-
etry of classical dynamics. By using the quantum wave-packet
coherent states derived herein, the stationary coherent states
have been found to display the spatial morphologies related
to the transformation geometries between Lissajous and
trochoidal orbits. It is believed that the present investigation
not only provides useful insight into the emerging field of
quantum information technology but also paves the way for
developing alternative [1] ideas in mathematical geometry.
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