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Information, fidelity, and reversibility in single-qubit measurements
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We explicitly calculate information, fidelity, and reversibility of an arbitrary single-qubit measurement on a
completely unknown state. These quantities are expressed as functions of a single parameter, which is the ratio
of the two singular values of the measurement operator corresponding to the obtained outcome. Thus, our results
give information tradeoff relations to the fidelity and to the reversibility at the level of a single outcome rather
than that of an overall outcome average.
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I. INTRODUCTION

Quantum measurement provides information on a physical
system, while it inevitably changes the state of the system
depending on the obtained outcome. This property is of great
interest in the foundations of quantum mechanics and is
of practical importance in quantum information processing
and communication [1] such as quantum cryptography [2–5].
Therefore, numerous studies [6–15] have discussed tradeoff
relations between the information gain and the state change in
quantum measurement by quantifying them in various ways.
For example, Banaszek [7] has shown an inequality between
two fidelities quantifying the information gain and the state
change.

Interestingly, in connection with such a state change,
quantum measurement was widely believed to have intrinsic
irreversibility [16] because of nonunitary state reduction.
However, it has been shown that quantum measurement is
not necessarily irreversible [17,18] if all the information on
the system is preserved during the measurement process. In
particular, a quantum measurement is said to be physically re-
versible [18,19] if the pre-measurement state can be recovered
from the post-measurement state with a nonzero probability
of success by means of a second measurement, known as
a reversing measurement. Several physically reversible mea-
surements have been proposed with various systems [20–26]
and have been experimentally demonstrated using various
qubits [27,28]. Thus, it would be interesting to involve physical
reversibility while discussing information tradeoff relations. In
fact, in a recent discussion on photodetection processes [29]
the existence of a tradeoff relation between the information
gain and the physical reversibility has been suggested. Such
a tradeoff relation is also expected in view of a different type
of reversible measurement, known as a unitarily reversible
measurement [30,31], in which the pre-measurement state
can be recovered with unit probability by means of a unitary
operation, whereas the measurement provides no information
about the measured system.

Moreover, physically reversible measurements naturally
prompt investigation of the information tradeoff relation at
the level of a single outcome [10] rather than that of an overall
outcome average because the state recovery by a reversing
measurement relies on the postselection of outcomes. That
is, the reversing measurement can recover the state of the
system changed by a physically reversible measurement only
when it yields a preferred outcome. Unfortunately, this state

recovery is always accompanied by the erasure of information
obtained by the physically reversible measurement (see the
Erratum of [21]), implying a tradeoff relation between the
information gain and the state change at the single outcome
level. However, an approximate recovery by the Hermitian
conjugate measurement [32] does not necessarily decrease the
information gain.

In this paper, we derive general formulas for the information
gain, the state change, and the physical reversibility in quantum
measurements, in which the system to be measured is a
two-level system or qubit in a completely unknown state. We
evaluate the amount of information gain by using a decrease in
Shannon entropy [10,32], the degree of state change by using
fidelity [33], and the degree of physical reversibility by using
the maximal successful probability of a reversing measurement
[34]. Because the formulas are written as functions of a single
parameter, they lead to information tradeoff relations to the
state change and the physical reversibility at a single outcome
level. We also consider two efficiencies of the measurement
with respect to the state change and the physical reversibility,
and we show their different behaviors as functions of a single
parameter.

This paper is organized as follows: Section II explains
the procedure to quantify the information gain, the state
change, and the physical reversibility, and it shows their
explicitly calculated formulas in the case of an arbitrary single-
qubit measurement. Section III discusses information tradeoff
relations to the state change and the physical reversibility, and
it defines two efficiencies of the measurement with respect
to the state change and the physical reversibility. Section IV
summarizes our results.

II. FORMULATION

To evaluate the amount of information provided by a single-
qubit measurement, we assume that the pre-measurement state
of the qubit is known to be one of the predefined pure
states {|ψ(a)〉} with equal probability, p(a) = 1/N , where
a = 1, . . . ,N , although the index a of the pre-measurement
state is unknown to us. Since the pre-measurement state is
usually an arbitrary unknown state in quantum measurement,
the set {|ψ(a)〉} actually consists of all possible pure states
of the qubit with N → ∞. The lack of information on the
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state of the qubit can initially be evaluated by the Shannon
entropy as

H0 = −
∑

a

p(a) log2 p(a) = log2 N. (1)

Next, we measure the qubit to obtain information on its
state. In a more general formulation of quantum measurement
[1,35], a quantum measurement is described by a set of
measurement operators {M̂m} that satisfies∑

m

M̂†
mM̂m = Î , (2)

where Î is the identity operator. That is, if the system to be
measured is in a state |ψ〉, the measurement yields an outcome
m with probability

pm = 〈ψ |M̂†
mM̂m|ψ〉, (3)

causing a state reduction of the measured system to

|ψm〉 = 1√
pm

M̂m|ψ〉. (4)

Here, we have assumed that the quantum measurement is
efficient [8] or ideal [31] to ignore classical noise that yields
a mixed post-measurement state, because we are interested in
the quantum nature of measurement. From now on, we focus
on a single measurement process with outcome m described
by a measurement operator M̂m. The measurement operator
M̂m can always be written by singular-value decomposition as

M̂m = κmÛmD̂mV̂m, (5)

where κm is a real number, Ûm and V̂m are unitary operators,
and D̂m is a non-negative operator with diagonal matrix
representation in an orthonormal basis {|0〉,|1〉},

D̂m = |0〉〈0| + λm|1〉〈1| =
(

1 0
0 λm

)
, (6)

with 0 � λm � 1, for the single-qubit measurement. Note that
the diagonal element λm is the ratio of the two singular values
of M̂m. Without loss of generality, we can omit the unitary
operator V̂m as

M̂m = κmÛmD̂m, (7)

by relabeling the index a as |ψ ′(a)〉 = V̂m|ψ(a)〉.
If the pre-measurement state is |ψ(a)〉, measurement (7)

yields the outcome m with probability

p(m|a) = κ2
m〈ψ(a)|D̂2

m|ψ(a)〉 ≡ κ2
mqm(a) (8)

as given in Eq. (3). Since the probability for |ψ(a)〉 is p(a) =
1/N , the total probability for the outcome m is given by

p(m) =
∑

a

p(m|a)p(a) = 1

N

∑
a

κ2
mqm(a) = κ2

mqm, (9)

where the overline denotes the average over a,

f ≡ 1

N

∑
a

f (a). (10)

On the contrary, given the outcome m, we can find the
probability for the pre-measurement state |ψ(a)〉 as

p(a|m) = p(m|a)p(a)

p(m)
= qm(a)

Nqm

(11)

from Bayes’s rule, which means that the lack of information
on the pre-measurement state becomes the Shannon entropy

H (m) = −
∑

a

p(a|m) log2 p(a|m) (12)

after the measurement. Therefore, the information gain by the
measurement with the single outcome m can be defined by the
decrease in Shannon entropy as [10,32]

I (m) ≡ H0 − H (m) = qm log2 qm − qm log2 qm

qm

. (13)

Note that this information gain is positive and is free from
the divergent term log2 N → ∞ in Eq. (1). These results
essentially arise from the assumption that the probability
distribution p(a) is uniform. If averaged over all the outcomes,
the information gain reduces to the mutual information [1] of
the random variables {a} and {m}, namely,

I ≡
∑
m

p(m)I (m) =
∑
m,a

p(a|m)p(m) log2
p(a|m)

p(a)
. (14)

To explicitly calculate the information gain (13), we
parametrize the state of the qubit by two continuous angles
(θ,φ) as

|ψ(a)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (15)

where 0 � θ � π and 0 � φ < 2π . Thus, the summation over
a is replaced with an integral over (θ,φ) as

1

N

∑
a

−→ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ. (16)

Since

qm(a) = cos2 θ

2
+ λ2

m sin2 θ

2
(17)

from Eq. (8), the information gain (13) is calculated to be

I (m) = 1 − 1

2 ln 2
− λ4

m

1 − λ4
m

log2 λ2
m − log2

(
1 + λ2

m

)
, (18)

which depends only on λm. Figure 1 shows the information
gain I (m) as a function of λm. The information gain I (m) has
a maximal value 1 − 1/(2 ln 2) at λm = 0 and a minimal value
0 at λm = 1, while monotonically decreasing as λm increases.
In fact, measurement (7) is a projective measurement when
λm = 0 and is the identity operation when λm = 1, except for
the unitary operation Ûm.

Unfortunately, the measurement changes the state of the
qubit. When the pre-measurement state is |ψ(a)〉 and the
measurement outcome is m, the post-measurement state is
given by

|ψ(m,a)〉 = 1√
p(m|a)

κmÛmD̂m|ψ(a)〉 (19)
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FIG. 1. Information gain I (m), fidelity F (m), and reversibility
R(m) when the measurement yields a single outcome m, as functions
of λm. The parameter λm = 0 corresponds to a projective measure-
ment, and λm = 1 corresponds to the identity operation except for a
unitary operation.

from Eqs. (4) and (7). This state change can be quantified
by the fidelity [1,33] between the pre-measurement and post-
measurement states as

F (m,a) = ∣∣〈ψ(a)|ψ(m,a)〉∣∣. (20)

As the process of measurement changes the state of qubit to
a greater extent, the fidelity becomes smaller. Averaged over
a with the probability (11), the fidelity after the measurement
with the single outcome m is evaluated as

F (m) =
∑

a

p(a|m)[F (m,a)]2 = 1

qm

|〈ψ |ÛmD̂m|ψ〉|2. (21)

Here, we have averaged the squared fidelity rather than the
fidelity for simplicity; this choice does not qualitatively affect
our results. If the fidelity F (m) is averaged over all the
outcomes, it reduces to the mean operation fidelity [7],

F ≡
∑
m

p(m)F (m) =
∑
m

|〈ψ |M̂m|ψ〉|2. (22)

To explicitly calculate the fidelity (21), we must specify
the unitary operator Ûm, in sharp contrast with the case of
the information gain (13). We parametrize it in the matrix
representation as

Ûm = eiαm

(
eiβm cos γm −eiδm sin γm

e−iδm sin γm e−iβm cos γm

)
, (23)

where αm, βm, γm, and δm are real. Therefore, the fidelity is
calculated to be

F (m) = 1

3
+ 1

3

[
1 + 2λm

1 + λ2
m

cos 2βm

]
cos2 γm. (24)

For a given λm, the lower and upper bounds on the fidelity are
given by

1

3
� F (m) � 2

3

[
1 + λm

1 + λ2
m

]
. (25)

The lower bound does not depend on λm and is achieved, e.g., if
Ûm = |0〉〈1| + |1〉〈0|, whereas the upper bound depends on λm

and is achieved, e.g., if Ûm = Î . Because the unitary operator

Ûm causes the state change irrelevant to the information gain
I (m), the upper bound

Fopt(m) ≡ 2

3

[
1 + λm

1 + λ2
m

]
, (26)

which we refer to as optimal fidelity, can be regarded as
a measure of the inevitable state change by the extraction
of information through the measurement operator M̂m. The
fidelity F (m) is also shown in Fig. 1 as a function of λm. In
particular, the optimal fidelity Fopt(m) has a minimal value
2/3 at λm = 0 and a maximal value 1 at λm = 1, while
monotonically increasing as λm increases.

Although the measurement changes the state of the qubit as
mentioned above, if the measurement is physically reversible
[18,19], we can reverse this state change by a reversing
measurement. The reversing measurement is constructed so
that when it yields a preferred outcome (e.g., 0), it applies a
measurement operator

R̂
(m)
0 = ηmM̂−1

m = ηm

κm

D̂−1
m Û †

m (27)

with a complex number ηm to the post-measurement state
|ψ(m,a)〉 of the qubit, thereby canceling the effect of M̂m

owing to

R̂
(m)
0 M̂m = ηmÎ . (28)

That is, when the reversing measurement on |ψ(m,a)〉 yields
the preferred outcome 0, the state of the qubit reverts to the pre-
measurement state |ψ(a)〉 except for an overall phase factor
via the state reduction (4),

|ψrev(m,a)〉 = 1√
prev(m,a)

R̂
(m)
0 |ψ(m,a)〉 ∝ |ψ(a)〉, (29)

where prev(m,a) is the successful probability of the reversing
measurement defined by

prev(m,a) = 〈ψ(m,a)|R̂(m)†

0 R̂
(m)
0 |ψ(m,a)〉 = |ηm|2

p(m|a)
(30)

as given in Eq. (3). Here, we define the physical reversibility
by the maximal successful probability of the reversing mea-
surement [23,34,36]. Since the upper bound on |ηm|2 is given
by [34]

|ηm|2 � inf
|ψ〉

〈ψ |M̂†
mM̂m|ψ〉 = κ2

mλ2
m (31)

to satisfy 〈ψ |R̂(m)†

0 R̂
(m)
0 |ψ〉 � 1 for any |ψ〉, the physical

reversibility becomes

R(m,a) ≡ max
ηm

prev(m,a) = κ2
mλ2

m

p(m|a)
= λ2

m

qm(a)
. (32)

Averaged over a with the probability (11), the reversibility of
the measurement with the single outcome m is evaluated as

R(m) =
∑

a

p(a|m)R(m,a) = λ2
m

qm

= 2λ2
m

1 + λ2
m

, (33)

which depends only on λm. The reversibility R(m) is also
shown in Fig. 1 as a function of λm. It has a minimal value 0 at
λm = 0 and a maximal value 1 at λm = 1, while monotonically
increasing as λm increases. Clearly, measurement (7) is
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physically reversible unless λm = 0. If the reversibility R(m)
is averaged over all the outcomes, it reduces to the degree of
physical reversibility of measurement discussed by Koashi and
Ueda [34],

R ≡
∑
m

p(m)R(m) =
∑
m

inf
|ψ〉

〈ψ |M̂†
mM̂m|ψ〉. (34)

III. TRADEOFF RELATIONS

Since we have written the information gain I (m), the
optimal fidelity Fopt(m), and the reversibility R(m) as
functions of the same single parameter λm, as given in
Eqs. (18), (26), and (33), respectively, it is easy to find
relations among them. In fact, we can plot Fopt(m) and R(m)
as functions of I (m), as in Fig. 2, to show tradeoff relations at
a single outcome level. That is, as the measurement provides
more information about the state of the qubit, the process of
measurement changes the state to a greater extent and makes it
even less reversible. These tradeoff relations derive two types
of measurement efficiencies: the ratio of the information gain
to the optimal fidelity loss,

EF (m) ≡ I (m)

1 − Fopt(m)
, (35)

and the ratio of the information gain to the reversibility loss,

ER(m) ≡ I (m)

1 − R(m)
. (36)

Figure 3 shows the efficiencies EF (m) and ER(m) as functions
of λm. Note that EF (m) is a monotonically increasing function,
whereas ER(m) is a monotonically decreasing function.
Therefore, at λm = 0, EF (m) has a minimal value 3[1 −
1/(2 ln 2)] and ER(m) has a maximal value 1 − 1/(2 ln 2).
This means that the projective measurement, which provides
the most information and causes the largest state change
with no reversibility, is the most efficient with respect to
the reversibility but is the least efficient with respect to the
fidelity. In the limit of λm → 1, we obtain EF (m) → 1/ ln 2
and ER(m) → 0.
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FIG. 2. Optimal fidelity Fopt(m) and reversibility R(m) as func-
tions of the information gain I (m).
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FIG. 3. Efficiencies EF (m) and ER(m) of measurement as func-
tions of λm.

IV. CONCLUSION

In conclusion, we calculated the information gain, fidelity,
and physical reversibility of an arbitrary single-qubit mea-
surement, assuming that the qubit to be measured was in a
completely unknown state. These quantities are expressed as
functions of the same single parameter λm, which is the ratio
of the two singular values of the measurement operator corre-
sponding to the outcome, as shown in Eqs. (18), (26), and (33).
Our results gave information tradeoff relations to the fidelity
and reversibility at the level of a single outcome without
averaging all outcomes. Moreover, two efficiencies of the
measurement were discussed to show their different behaviors:
the ratio of the information gain to the optimal fidelity loss
and the ratio of the information gain to the reversibility loss.
As the information gain decreases by increasing the parameter
λm, the former ratio increases whereas the latter decreases.

Our tradeoff relations are applicable to any efficient mea-
surement on a qubit or two-level system with postselection.
A characteristic feature of our tradeoff relations is that
the information gain is directly related to the fidelity and
reversibility for a given measurement M̂m, because all the
quantities are functions of the single parameter λm. By only
eliminating the parameter λm, we can obtain the tradeoff
curves, as shown in Fig. 2, without optimization problems
[7,9,13]. Unfortunately, this does not apply to more general
situations. For example, in measurements with an overall
outcome average, the information gain (14), fidelity (22),
and reversibility (34) are functions of all {λm} and {κm}
corresponding to possible outcomes because m is summed
over by using the value of the total probability (9),

p(m) = 1
2κ2

m

(
1 + λ2

m

)
. (37)

In measurements on d-level systems such as qudit or multi-
ple qubits, all quantities are functions of d − 1 parameters
{λ(1)

m , . . . ,λ(d−1)
m } as will be shown elsewhere because the

measurement operator is represented by a d × d matrix
in an orthonormal basis. Moreover, in measurements with
classical noise, they are functions of multiple parameters
because a single measurement process is described by a set
of measurement operators. To find tradeoff curves in such
situations, we must optimize measurements by maximizing the
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fidelity or the reversibility with a fixed value of the information
gain by using numerical calculations. Our simple and direct
tradeoff relations are free from such optimization problems;
therefore, they can be regarded as highly fundamental in
quantum measurement.
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