
PHYSICAL REVIEW A 83, 032111 (2011)

Information, fidelity, and reversibility in photodetection processes
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Four types of photon counters are discussed in terms of information, fidelity, and physical reversibility:
conventional photon counter, quantum counter, and their quantum nondemolition (QND) versions. It is shown
that when a photon field to be measured is in an arbitrary superposition of vacuum and one-photon states, the
quantum counter is the most reversible, the QND version of conventional photon counter provides the most
information, and the QND version of the quantum counter causes the smallest state change. Our results suggest
that the physical reversibility of a counter tends to decrease the amount of information obtained by the counter.
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I. INTRODUCTION

When a quantum measurement provides information about
a physical system, it inevitably changes the state of the system
into another state via nonunitary state reduction. This property
is of great interest, not only in the foundations of quantum
mechanics but also in quantum information processing and
communication [1], e.g., in quantum cryptography [2–5].
However, such a state change by measurement is not nec-
essarily irreversible [6,7], despite being widely believed to
be intrinsically irreversible [8]. A quantum measurement is
said to be physically reversible [7,9] if the premeasurement
state can be recovered from the postmeasurement state with
a nonzero probability of success by means of a second
measurement, referred to as reversing measurement. Recently,
physically reversible measurements have been proposed with
various systems [10–16] and discussed in the context of
quantum computation [17,18], and have been experimentally
demonstrated using a superconducting phase qubit [19] and a
photonic qubit [20]. Therefore, it would be worth discussing
the state change by a measurement together with its physical
reversibility.

The necessary and sufficient condition for physical re-
versibility is that the operator M̂ describing the state change
by the measurement has a bounded left inverse M̂−1 [7,9]. In
fact, to recover the premeasurement state, the reversing mea-
surement is constructed so that it applies M̂−1 to the measured
system to cancel the effect of M̂ when a preferred outcome is
obtained. Interestingly, the reversing measurement completely
erases the information provided by the first measurement when
it successfully recovers the premeasurement state (see Erratum
of Ref. [11]), although a physically reversible measurement ac-
tually provides some information about the measured system,
in contrast to the unitarily reversible measurements [21,22].
Therefore, a reversing operation based on M̂†, instead of M̂−1,
has been proposed [23] which can approximately recover the
premeasurement state, especially with increasing, rather than
decreasing, information gain for a weak measurement. Further
discussions of information gain by a physically reversible
measurement can be seen in other studies [24,25].

In this article we investigate four types of photon counters
to compare them in terms of information gain, state change,
and physical reversibility of the photodetection processes.
The first counter is a conventional photon counter that
operates by absorption of photons, and the second counter

is a quantum counter [26,27] that operates by stimulated
emission of photons. The third and fourth counters are the
quantum nondemolition (QND) [28] versions of the first
and second counters, that is, the QND photon and QND
quantum counters, which perform measurements of photon
number without perturbing photon-number states. Among the
four counters, the quantum counter and its QND version are
physically reversible. For each counter we evaluate the amount
of information gain using a decrease in Shannon entropy
[23,25], the degree of state change using fidelity [29], and the
degree of physical reversibility using the maximal successful
probability of reversing measurement [17], assuming that a
photon field to be measured is in an arbitrary superposition of
vacuum and one-photon states.

This article is organized as follows: Section II reviews a
mathematical formulation of quantum measurement and the
physical reversibility in quantum measurement. Sections III,
IV, V, and VI discuss the conventional photon counter,
quantum counter, QND photon counter, and QND quantum
counter, respectively, calculating the information gain, fidelity,
and physical reversibility in a two-state model. Section VII
summarizes our results, compares the four counters, and
discusses an implementation of a QND quantum counter
proposed in this article.

II. QUANTUM MEASUREMENT

Here, we briefly review a mathematical formulation of
quantum measurement together with its physical reversibility.
Let |ψ〉 be an unknown premeasurement state of a system to be
measured. To obtain information about the state, we perform
an indirect measurement using a probe as follows. We first
prepare the probe in a state |i〉p and then turn on an interaction
between the probe and the system via an interaction Hamil-
tonian Ĥint during a time interval �t . After the interaction,
the state of the whole system becomes Ûint|ψ〉|i〉p, where
Ûint = exp(−iĤint�t/h̄). Finally, we perform a projective
measurement on the probe with respect to an orthonormal basis
{|m〉p}. From the outcome m, we can indirectly obtain some
information about the state. Below we show what and how
much information we can obtain in the case of photodetection
processes.

The measurement yields an outcome m with probability

pm = 〈ψ |M̂†
mM̂m|ψ〉, (1)
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where M̂m = p〈m|Ûint|i〉p, and simultaneously changes the
state of the system from |ψ〉 into

|ψm〉 = 1√
pm

M̂m |ψ〉, (2)

depending on the outcome m. In other words, a quantum
measurement is mathematically described by a set of linear
operators {M̂m} [1,30], called measurement operators, that
satisfy the completeness condition

∑
m

M̂†
mM̂m = Î , (3)

where Î is the identity operator. The probability and post-
measurement state are then given for each outcome m

by Eqs. (1) and (2), respectively. Conversely, for a given
set of linear operators {M̂m} satisfying the completeness
condition (3), an indirect measurement described by {M̂m}
can always be constructed by choosing the initial state |i〉p, the
interaction Ûint, and the orthonormal basis {|m〉p} of the probe.

Although the measurement changes the state of the system
as in Eq. (2), this state change is physically reversible if
and only if M̂m has a bounded left inverse [7,9]. In fact, to
undo the state change, consider performing another measure-
ment, called reversing measurement, on the postmeasurement
state (2). The reversing measurement is described by a set of
measurement operators {R̂(m)

ν } that satisfy
∑

ν

R̂(m)†
ν R̂(m)

ν = Î (4)

and for a particular ν0,

R̂(m)
ν0

= ηm M̂−1
m (5)

with a complex constant ηm. The index ν denotes the outcome
of the reversing measurement. Therefore, if the reversing
measurement yields the particular outcome ν0, it restores the
premeasurement state |ψ〉, except for an overall phase factor
from Eq. (2) as

|ψmν0〉 = 1√
pmν0

R̂(m)
ν0

|ψm〉 ∝ |ψ〉, (6)

where

pmν0 = 〈
ψm

∣∣R̂(m)†
ν0

R̂(m)
ν0

∣∣ψm

〉 = |ηm|2
pm

(7)

is the probability for the second outcome ν0 given the first
outcome m, and thus is the successful probability of the
reversing measurement. Since the completeness condition (4)
requires 〈ψ ′|R̂(m)†

ν0
R̂(m)

ν0
|ψ ′〉 � 1 for any state |ψ ′〉, the upper

bound for |ηm|2 becomes [17]

|ηm|2 � inf
|ψ ′〉

〈
ψ ′∣∣M̂†

mM̂m

∣∣ψ ′〉 ≡ bm, (8)

which does not depend on the premeasurement state |ψ〉. The
upper bound bm is called the background of M̂m, implying
that the measurement {M̂m} yields the outcome m with a
probability not less than bm for any state. Combining Eqs. (7)
and (8), we find that if the premeasurement state is |ψ〉 and

the first outcome is m, the maximal successful probability of
the reversing measurement is given by

R(m,|ψ〉) ≡ max
ηm

pmν0 = bm

pm

. (9)

That is, we can, in principle, recover the unknown premea-
surement state |ψ〉 from the postmeasurement state |ψm〉
with the probability (9), even though it would be difficult to
experimentally implement the reversing measurement {R̂(m)

ν }
with |ηm|2 = bm as an indirect measurement.

III. Photon Counter

A photon counter usually detects photons one by one from
a photon field. This means that the photon counter detects at
most one photon during a short time interval. When detecting
one photon (a “one-count” process), the counter annihilates
the detected photon from the photon field. Even in the case
when no photon is detected (a “no-count” process), the counter
changes the state of the photon field due to the obtained
information that no photon was detected during the time
interval. A physical model of the photon counter is described
in accordance with the indirect measurement in Sec. II. In this
case, the probe is a two-level atom having a ground state |g〉p

and an excited state |e〉p, with a raising operator σ̂+ = |e〉p p〈g|
and a lowering operator σ̂− = |g〉p p〈e|. The initial state of the
atom is the ground state |g〉p, and the interaction Hamiltonian
between the atom and the photon field is the Jaynes-Cummings
Hamiltonian

Ĥint = h̄g
(
âσ̂+ + â†σ̂−

)
, (10)

where g is a coupling constant, and â† and â are the creation
and annihilation operators of the photon. The projective mea-
surement on the atom is with respect to the basis {|g〉p,|e〉p}.
As a result of the measurement, if the atom is found to be in
the excited state |e〉p, we recognize that the one-count process
has occurred with the absorption of a photon. On the other
hand, if the atom is found to be still in the ground state
|g〉p, we recognize that the no-count process has occurred with
detecting no photon.

In terms of the measurement operator in Sec. II, the one-
and no-count processes are described by [7,31,32]

M̂1 = γ â, M̂0 � Î − γ 2

2
â†â, (11)

respectively, where γ = g�t is a constant that is assumed to
be so small that we can ignore the fourth and higher order
terms in γ . In fact, the annihilation operator in M̂1 annihilates
a photon from the photon field through the state reduction (2)
in the one-count process. Moreover, combined with M̂1, the
measurement operator M̂0 for the no-count process satisfies
the completeness condition (3), i.e.,

∑
m=0,1

M̂†
mM̂m � Î (12)

up to the order of γ 3. This means that we can regard the
one-count and no-count processes as a mutually exclusive and
exhaustive set of events in the measurement.
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A. General model

To evaluate the amount of information provided by the
photon counter, we assume that the premeasurement state of
the photon field is known to be one of the predefined pure
states {|ψ(a)〉} with equal probability, p(a) = 1/N , where
a = 1, . . . ,N , although the premeasurement state is unknown.
Because in quantum measurement the premeasurement state
is usually an arbitrary unknown state, the set {|ψ(a)〉} is
essentially an infinite set (N → ∞) to cover the Hilbert
space of the photon field. Each state can be expanded by the
eigenstates {|n〉} of the photon-number operator â†â as

|ψ(a)〉 =
∑

n

cn(a) |n〉 (13)

with n = 0,1,2, . . ., and the coefficients {cn(a)} that obey
the normalization condition

∑
n |cn(a)|2 = 1. Our lack of

information about the photon field can be quantified by the
Shannon entropy associated with the probability distribution
{p(a)} as

H0 = −
∑

a

p(a) log2 p(a) = log2 N. (14)

Next, we perform a measurement by the photon counter (11) to
obtain a piece of information about the photon field. According
to Eq. (1), if the premeasurement state is |ψ(a)〉, the one-count
process occurs with probability

pPC(1|a) = 〈ψ(a)|M̂†
1M̂1|ψ(a)〉 = γ 2n1(a), (15)

where

n1(a) ≡
∑

n

n |cn(a)|2 . (16)

Since the probability for |ψ(a)〉 is p(a) = 1/N , the total
probability for the one-count process is given by

pPC(1) =
∑

a

pPC(1|a) p(a) = 1

N

∑
a

γ 2n1(a) = γ 2n1,

(17)

where the overline denotes the average over a,

f ≡ 1

N

∑
a

f (a). (18)

On the contrary, given that the photon counter detects one
photon, we can find the probability for the premeasurement
state |ψ(a)〉 as

pPC(a|1) = pPC(1|a) p(a)

pPC(1)
= n1(a)

Nn1
(19)

from Bayes’ rule. Using this probability distribution, our lack
of information after the one-count process is evaluated by the
Shannon entropy as follows:

H PC(1) = −
∑

a

pPC(a|1) log2 pPC(a|1)

= log2 N − n1 log2 n1 − n1 log2 n1

n1
. (20)

The information gain by the one-count process is then defined
by the decrease in Shannon entropy as

I PC(1) = H0 − H PC(1) = n1 log2 n1 − n1 log2 n1

n1
, (21)

which does not depend on γ (i.e., on the coupling constant
g between the photon counter and the photon field). That
is, this information gain is a measure of how much our
knowledge about the premeasurement state increases when
we revise the probability distribution from p(a) = 1/N to
pPC(a|1) according to the outcome. Note that it results from a
single measurement outcome [23,25] without averaging all the
outcomes, and that it indicates the state of the premeasurement
rather than a value of some observable. Similar to the one-count
process, we obtain the total probability for the no-count process
which is given as pPC(0) � 1 − γ 2n1; this information gain
by the no-count process is I PC(0) � 0 up to the order of γ 3.
Therefore, averaging over the outcomes m = 0,1, we find that
the mean information gain by the measurement is given by

I PC =
∑
m

pPC(m) I PC(m) � γ 2
(
n1 log2 n1 − n1 log2 n1

)
,

(22)

which is identical to the mutual information [1] of the random
variables {a} and {m}:

I PC =
∑
m,a

pPC(a|m) pPC(m) log2
pPC(a|m)

p(a)
. (23)

Unfortunately, the measurement changes the state of the
photon field. The state change can be evaluated by the fidelity
[1,29] between the premeasurement and postmeasurement
states. According to Eq. (2), when the premeasurement state is
|ψ(a)〉, the postmeasurement state after the one-count process
is

|ψ(1,a)〉PC = 1√
pPC(1|a)

M̂1|ψ(a)〉

= 1√
n1(a)

∑
n

√
n + 1 cn+1(a) |n〉, (24)

whose fidelity to |ψ(a)〉 is

F PC(1,a) = ∣∣〈ψ(a)|ψ(1,a)〉PC
∣∣

= 1√
n1(a)

∣∣∣∣∣
∑

n

√
n + 1 c∗

n(a) cn+1(a)

∣∣∣∣∣ . (25)

Since the index a is unknown, we average over a with the
probability (19) to obtain the fidelity after the one-count
process as

F PC(1) =
∑

a

pPC(a|1) F PC(1,a)

=
√

n1

n1

∣∣∣∣∣
∑

n

√
n + 1 c∗

n cn+1

∣∣∣∣∣. (26)
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On the other hand, the fidelity after the no-count process is
F PC(0) � 1 up to the order of γ 3. The mean fidelity after the
measurement is thus given by

F PC =
∑
m

pPC(m) F PC(m) � 1 − γ 2n1

+ γ 2√n1

∣∣∣∣∣
∑

n

√
n + 1 c∗

n cn+1

∣∣∣∣∣. (27)

We can, however, undo this state change of the photon
field if the measurement is physically reversible as described
in Sec. II. The physical reversibility can be evaluated by
the maximal successful probability (9) of the reversing
measurement. If the premeasurement state is |ψ(a)〉 and the
outcome is the one-count process, it becomes

RPC(1,a) = bPC(1)

pPC(1|a)
= n1i

n1(a)
, (28)

where bPC(1) is the background of M̂1 defined in Eq. (8),
namely,

bPC(1) = inf
a′

pPC(1|a′) = γ 2 inf
a′

n1(a′) ≡ γ 2n1i. (29)

Averaging over a with the probability (19), we find the
reversibility of the one-count process as

RPC(1) =
∑

a

pPC(a|1) RPC(1,a) = n1i

n1
. (30)

Similarly, using the background of M̂0,

bPC(0) = inf
a′

pPC(0|a′) � 1 − γ 2 sup
a′

n1(a′) ≡ 1 − γ 2n1s,

(31)

the reversibility of the no-count process is found to be

RPC(0,a) = bPC(0)

pPC(0|a)
� 1 − γ 2n1s

1 − γ 2n1(a)
(32)

if the premeasurement state is |ψ(a)〉, and is

RPC(0) =
∑

a

pPC(a|0) RPC(0,a) � 1 − γ 2n1s

1 − γ 2n1
(33)

if averaged over a. The mean reversibility of the measurement
thus becomes

RPC =
∑
m

pPC(m) RPC(m) � 1 − γ 2 (n1s − n1i) . (34)

It is easy to check from Eqs. (19), (28), and (30) that

RPC =
∑
m

inf
a′

pPC(m|a′). (35)

That is, the quantity (34) is identical to the degree of physical
reversibility of measurement discussed by Koashi and Ueda
[17].

B. Two-state model

As an example, we consider a situation where the photon
field is in an arbitrary superposition of the states |0〉 and |1〉.

That is, the set of predefined states {|ψ(a)〉} consists of all
possible states of the form

|ψ(a)〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (36)

where 0 � θ � π and 0 � φ < 2π . The index a now repre-
sents the two continuous angles (θ,φ). Therefore, the probabil-
ity p(a) = 1/N is replaced with a probability density p(a) =
1/4π using the volume element sin θdθdφ and the summation
over a is replaced with an integral over (θ,φ), namely,

1

N

∑
a

−→ 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ. (37)

If the premeasurement state is |ψ(a)〉, the probability (15)
for the one-count process is

pPC(1|a) = γ 2 sin2 θ

2
, (38)

since for the state |ψ(a)〉 in Eq. (36) we have

n1(a) =
∑
n=0,1

n |cn(a)|2 = |c1(a)|2 = sin2 θ

2
. (39)

The total probability (17) for the one-count process then
becomes

pPC(1) = 1

2
γ 2, (40)

because of

n1 = 1

N

∑
a

n1(a) = 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ × sin2 θ

2

= 1

2
. (41)

On the contrary, given the one-count process, the probability
density (19) for the premeasurement state |ψ(a)〉 is

pPC(a|1) = 1

2π
sin2 θ

2
, (42)

while the corresponding probability density for the no-count
process is

pPC(a|0) � 1

4π

[
1 − γ 2

(
sin2 θ

2
− 1

2

)]
. (43)

These probability densities are the content of information
provided by the photon counter (11). Figure 1 shows these den-
sities as functions of θ when γ = 0.3. Although all the states
were equally probable before the measurement, as shown by
the dotted line, the one-count process increases the possibility
of |1〉 and completely excludes the possibility of |0〉, as shown
by the line pPC(a|1). On the contrary, the no-count process de-
creases the possibility of |1〉 and increases the possibility of |0〉,
as shown by the line pPC(a|0), but so slightly that I PC(0) � 0.

Calculating

n1 log2 n1 = 1

N

∑
a

n1(a) log2 n1(a)

= 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ sin2 θ

2
log2 sin2 θ

2

= − 1

4 ln 2
(44)
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 0.1

 0.15

 0.2

0 π /2 π

θ

pPC(a|1)

pPC(a|0)

|0〉 |1〉

FIG. 1. Probability density for the premeasurement state |ψ(a)〉
conditioned by the one-count process pPC(a|1) and that conditioned
by the no-count process pPC(a|0) as functions of θ when γ = 0.3.
The dotted line indicates the initial probability density p(a) = 1/4π .

with log2 x = ln x/ ln 2, we obtain the information gain (21)
by the one-count process as

I PC(1) = 1 − 1

2 ln 2
� 0.279 (45)

and the mean information gain (22) by the measurement as

I PC �
(

1

2
− 1

4 ln 2

)
γ 2 � 0.139γ 2. (46)

Furthermore, the fidelity (26) after the one-count process
becomes

F PC(1) =
√

n1

n1

∣∣ c∗
0 c1

∣∣ = 1

N

∑
a

√
n1(a)

n1

∣∣ c∗
0(a) c1(a)

∣∣

= 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ 2 sin2 θ

2
cos

θ

2
= 8

15
(47)

and the mean fidelity (27) after the measurement becomes

F PC � 1 − 7

30
γ 2. (48)

Since n1i = infa′ n1(a′) = 0 with |ψ(a′)〉 = |0〉 and n1s =
supa′ n1(a′) = 1 with |ψ(a′)〉 = |1〉, the reversibilities (30) and
(33) of the one-count and no-count processes are given by

RPC(1) = 0, (49)

RPC(0) � 1 − 1

2
γ 2, (50)

respectively. The mean reversibility (34) of the measurement
is thus

RPC � 1 − γ 2. (51)

From Eq. (49), we can see that the one-count process of the
photon counter (11) is not physically reversible. This means
that we can never recover the premeasurement state from the
postmeasurement state unless we know the premeasurement

state. The irreversibility originates from the fact that the photon
counter does not respond to the vacuum state [6], namely,
pPC(1|a) = 0 for |ψ(a)〉 = |0〉.

IV. Quantum Counter

A quantum counter is a photon counter that operates by
stimulated emission, rather than by absorption, of photons. It
was proposed to detect infrared photons [26] or to measure
antinormally ordered correlation functions [27,33] and was
discussed to show reversibility in quantum measurement [6].
A physical model of the quantum counter is the indirect mea-
surement with the two-level atom and the Jaynes-Cummings
Hamiltonian (10) as in the photon counter in Sec. III. However,
in this case, the atom is first prepared in the excited state |e〉p.
After the interaction and the projective measurement, if the
atom is found to be in the ground state |g〉p, we recognize
that the one-count process has occurred with the emission of
a photon. On the other hand, if the atom is found to be still in
the excited state |e〉p, we recognize that the no-count process
has occurred with detecting no photon.

The action of the quantum counter is described by the
measurement operators for one-count and no-count processes
[6,7]

L̂1 = γ â†, L̂0 � Î − γ 2

2
ââ†. (52)

As seen from L̂1, the quantum counter creates a new photon in
the photon field by stimulated or spontaneous emission in the
one-count process through the state reduction (2) as opposed
to the conventional photon counter (11). Similar to M̂1 and
M̂0, the measurement operators L̂1 and L̂0 also satisfy the
completeness condition (3) as∑

m=0,1

L̂†
mL̂m � Î , (53)

up to the order of γ 3.

A. General model

The amount of information provided by the quantum
counter (52) can be evaluated using the predefined states
{|ψ(a)〉} as in Sec. III. If the premeasurement state is |ψ(a)〉,
the probability for the one-count process is

pQC(1|a) = 〈ψ(a)|L̂†
1L̂1|ψ(a)〉 = γ 2 [n1(a) + 1] (54)

from Eq. (1). Note that the one-count process occurs even when
the photon field is in the vacuum state, |ψ(a)〉 = |0〉, owing to
spontaneous emission, unlike the conventional photon counter
[see Eq. (15)]. In this sense, the quantum counter is sensitive
not only to photons but also to the vacuum state. The total
probability for the one-count process is then

pQC(1) =
∑

a

pQC(1|a) p(a) = γ 2 (n1 + 1) . (55)

On the contrary, given the one-count process, the probability
for the premeasurement state |ψ(a)〉 is

pQC(a|1) = pQC(1|a) p(a)

pQC(1)
= n1(a) + 1

N (n1 + 1)
. (56)
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Calculating the Shannon entropy H QC(1) associated with this
probability distribution, we find the information gain by the
one-count process as

IQC(1) = H0 − H QC(1)

= (n1 + 1) log2(n1 + 1) − (n1 + 1) log2(n1 + 1)

n1 + 1
.

(57)

This quantifies the increase in our knowledge about the pre-
measurement state when we revise the probability distribution
from p(a) = 1/N to pQC(a|1) according to the outcome.
Similarly, the total probability for the no-count process is
pQC(0) � 1 − γ 2 (n1 + 1), and the information gain by the
no-count process is IQC(0) � 0 up to the order of γ 3. The
mean information gain by the measurement then becomes

IQC =
∑
m

pQC(m) IQC(m)

� γ 2 [
(n1 + 1) log2(n1 + 1) − (n1 + 1) log2(n1 + 1)

]
.

(58)

On the other hand, the state change due to the measurement
can be evaluated by fidelity. When the premeasurement state is
|ψ(a)〉, the postmeasurement state after the one-count process
is, from Eq. (2),

|ψ(1,a)〉QC = 1√
pQC(1|a)

L̂1|ψ(a)〉

= 1√
n1(a) + 1

∑
n

√
n cn−1(a) |n〉, (59)

whose fidelity to |ψ(a)〉 is

F QC(1,a) = ∣∣〈ψ(a)|ψ(1,a)〉QC
∣∣

= 1√
n1(a) + 1

∣∣∣∣∣
∑

n

√
n c∗

n(a) cn−1(a)

∣∣∣∣∣ . (60)

Averaging over a with the probability (56), we find that the
fidelity after the one-count process is

F QC(1) =
∑

a

pQC(a|1) F QC(1,a)

=
√

n1 + 1

n1 + 1

∣∣∣∣∣
∑

n

√
n c∗

n cn−1

∣∣∣∣∣. (61)

Since the fidelity after the no-count process is F QC(0) � 1 up
to the order of γ 3, the mean fidelity after the measurement is
given by

F QC =
∑
m

pQC(m) F QC(m)

� 1 − γ 2(n1 + 1) + γ 2
√

n1 + 1

∣∣∣∣∣
∑

n

√
n c∗

n cn−1

∣∣∣∣∣. (62)

Moreover, the reversibility of the measurement can be
evaluated by the maximal successful probability (9) of its

reversing measurement. If the premeasurement state is |ψ(a)〉,
the reversibilities of the one-count and no-count processes are

RQC(1,a) = bQC(1)

pQC(1|a)
= n1i + 1

n1(a) + 1
, (63)

RQC(0,a) = bQC(0)

pQC(0|a)
� 1 − γ 2 (n1s + 1)

1 − γ 2 [n1(a) + 1]
, (64)

respectively, from the background bQC(m) = infa′ pQC(m|a′)
in Eq. (8). Averaging over a with the probability (56), we
obtain

RQC(1) =
∑

a

pQC(a|1) RQC(1,a) = n1i + 1

n1 + 1
, (65)

RQC(0) =
∑

a

pQC(a|0) RQC(0,a) � 1 − γ 2 (n1s + 1)

1 − γ 2 (n1 + 1)
. (66)

The mean reversibility of the measurement is thus given by

RQC =
∑
m

pQC(m) RQC(m) � 1 − γ 2 (n1s − n1i) . (67)

B. Two-state model

As an example, we consider the situation discussed in
Sec. III. If the premeasurement state is |ψ(a)〉, the probability
(54) for the one-count process is

pQC(1|a) = γ 2

(
sin2 θ

2
+ 1

)
(68)

from Eq. (39). The total probability (55) for the one-count
process is then

pQC(1) = 3

2
γ 2 (69)

due to Eq. (41). On the contrary, given the one-count process,
the probability density (56) for the premeasurement state
|ψ(a)〉 is

pQC(a|1) = 1

6π

(
sin2 θ

2
+ 1

)
. (70)

Similarly, given the no-count process, the probability density
for |ψ(a)〉 is

pQC(a|0) � 1

4π

[
1 − γ 2

(
sin2 θ

2
− 1

2

)]
. (71)

Figure 2 shows these probability densities as functions of θ

when γ = 0.3. The one-count process of the quantum counter
(52) deforms the probability density to a smoother slope
than that done by the conventional photon counter (11), not
excluding the possibility of |0〉 due to the sensitivity to the
vacuum state.

Using

(n1 + 1) log2(n1 + 1) = 2 − 3

4 ln 2
, (72)

we find the information gain (57) by the one-count process as

IQC(1) = 7

3
− 1

2 ln 2
− log2 3 � 0.0270 (73)
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FIG. 2. Probability density for the premeasurement state |ψ(a)〉
conditioned by the one-count process pQC(a|1) and that conditioned
by the no-count process pQC(a|0) as functions of θ when γ = 0.3.
The dotted line indicates the initial probability density p(a) = 1/4π .

and the mean information gain (58) by the measurement as

IQC �
(

7

2
− 3

4 ln 2
− 3

2
log2 3

)
γ 2 � 0.0405γ 2. (74)

Moreover, the fidelity (61) after the one-count process is

F QC(1) =
√

n1 + 1

n1 + 1

∣∣ c∗
1 c0

∣∣ = 1

3
B

(
3

4
,
3

2

)
� 0.320 (75)

and the mean fidelity (62) after the measurement is

F QC � 1 − 3

2

[
1 − 1

3
B

(
3

4
,
3

2

)]
γ 2 � 1 − 1.02γ 2, (76)

where B(p,q) is the beta function. The reversibilities (65) and
(66) of the one-count and no-count processes are then

RQC(1) = 2

3
, (77)

RQC(0) � 1 − 1

2
γ 2, (78)

respectively. Equation (77) shows that the one-count process
of the quantum counter (52) is physically reversible. That
is, we can, in principle, recover the premeasurement state
from the postmeasurement state with probability 2/3 on
average, even though it would be difficult to experimentally
implement the reversing measurement of the quantum counter.
The reversibility is because of the sensitivity to the vacuum
state, namely, pQC(1|a) > 0 even for |ψ(a)〉 = |0〉. The mean
reversibility (67) of the measurement is then given by

RQC � 1 − γ 2. (79)

V. QND PHOTON COUNTER

Next, we consider a QND version of the conventional
photon counter. Its measurement operators for one-count and
no-count processes are given by [7,34]

N̂1 = γ â†â, N̂0 � Î − γ 2

2
(â†â)2, (80)

respectively. This counter neither absorbs nor emits a photon
in both the one-count and no-count processes through the state
reduction (2), thereby not perturbing the photon-number states
{|n〉} to perform a QND measurement of photon number.
The measurement operators N̂1 and N̂0 also satisfy the
completeness condition (3), namely,∑

m=0,1

N̂ †
mN̂m � Î , (81)

up to the order of γ 3.
A physical model of the QND photon counter is an indirect

measurement described in Sec. II. In this case, the probe is
an atom having two degenerate states |a〉p and |b〉p with a
transition operator σ̂ = |b〉p p〈a|. The initial state of the atom
is the state |a〉p, and the interaction Hamiltonian between the
atom and the photon field is

Ĥint = h̄gâ†â(σ̂ + σ̂ †). (82)

Performing the projective measurement with respect to the
basis {|a〉p,|b〉p}, we recognize that the one-count process has
occurred if the atom is found to be in the state |b〉p, or that the
no-count process has occurred if the atom is found to be still
in the state |a〉p.

A. General model

To evaluate the amount of information provided by the QND
photon counter (80), we consider the set of predefined states
{|ψ(a)〉} described in Sec. III. If the premeasurement state is
|ψ(a)〉, the probability for the one-count process is

pQPC(1|a) = 〈ψ(a)|N̂ †
1N̂1|ψ(a)〉 = γ 2n2(a) (83)

due to Eq. (1), where

n2(a) ≡
∑

n

n2 |cn(a)|2 . (84)

Then, the total probability for the one-count process is given
by

pQPC(1) =
∑

a

pQPC(1|a) p(a) = γ 2n2. (85)

On the contrary, given the one-count process, the probability
for the premeasurement state |ψ(a)〉 is

pQPC(a|1) = pQPC(1|a) p(a)

pQPC(1)
= n2(a)

Nn2
. (86)

Therefore, we obtain the information gain by the one-count
process as

IQPC(1) = H0 − H QPC(1) = n2 log2 n2 − n2 log2 n2

n2
, (87)

032111-7



HIROAKI TERASHIMA PHYSICAL REVIEW A 83, 032111 (2011)

where H QPC(1) is the Shannon entropy associated with the
probability distribution (86). This means that our knowledge
about the premeasurement state increases by IQPC(1) when
we revise the probability distribution from p(a) = 1/N to
pQPC(a|1) according to the outcome. On the other hand, the
total probability for the no-count process is pQPC(0) � 1 −
γ 2n2, and the information gain by the no-count process is
IQPC(0) � 0 up to the order of γ 3. The mean information gain
by the measurement thus becomes

IQPC =
∑
m

pQPC(m) IQPC(m)

� γ 2( n2 log2 n2 − n2 log2 n2 ).

(88)

Then, we evaluate the state change due to the measurement
using fidelity. When the premeasurement state is |ψ(a)〉, the
postmeasurement state after the one-count process is, from
Eq. (2),

|ψ(1,a)〉QPC = 1√
pQPC(1|a)

N̂1|ψ(a)〉

= 1√
n2(a)

∑
n

n cn(a) |n〉, (89)

with the fidelity to |ψ(a)〉 being

F QPC(1,a) = ∣∣〈ψ(a)|ψ(1,a)〉QPC
∣∣ = n1(a)√

n2(a)
. (90)

Averaging over a with the probability (86), we obtain the
fidelity after the one-count process as

F QPC(1) =
∑

a

pQPC(a|1) F QPC(1,a) =
√

n2 n1

n2
. (91)

Since the fidelity after the no-count process is F QPC(0) � 1,
the mean fidelity after the measurement becomes

F QPC =
∑
m

pQPC(m) F QPC(m)

� 1 − γ 2n2 + γ 2√n2 n1. (92)

Furthermore, we evaluate the reversibility of the mea-
surement using the maximal successful probability (9) of
its reversing measurement. From the background in Eq. (8),
bQPC(m) = infa′ pQPC(m|a′), with n2i = infa′ n2(a′) and n2s =
supa′ n2(a′), the reversibilities of the one-count and no-count
processes are

RQPC(1,a) = bQPC(1)

pQPC(1|a)
= n2i

n2(a)
, (93)

RQPC(0,a) = bQPC(0)

pQPC(0|a)
� 1 − γ 2n2s

1 − γ 2n2(a)
, (94)

respectively, if the premeasurement state is |ψ(a)〉. Therefore,
they become

RQPC(1) =
∑

a

pQPC(a|1) RQPC(1,a) = n2i

n2
, (95)

RQPC(0) =
∑

a

pQPC(a|0) RQPC(0,a) � 1 − γ 2n2s

1 − γ 2n2
, (96)

respectively, if averaged over a with probability (86). The
mean reversibility of the measurement is then given by

RQPC =
∑
m

pQPC(m) RQPC(m) � 1 − γ 2 (n2s − n2i) . (97)

B. Two-state model

We again consider the situation discussed in Sec. III as an
example. If the premeasurement state is |ψ(a)〉, the probability
(83) for the one-count process is

pQPC(1|a) = γ 2 sin2 θ

2
, (98)

since using Eq. (36) we have

n2(a) =
∑
n=0,1

n2 |cn(a)|2 = sin2 θ

2
. (99)

Note that n2(a) = n1(a) in this two-state model, since n2 = n

for n = 0,1. Therefore, from Eq. (41) we obtain

n2 = 1

2
. (100)

The total probability (85) for the one-count process is thus
given by

pQPC(1) = 1

2
γ 2. (101)

On the contrary, given the one-count process, the probability
density (86) for |ψ(a)〉 is

pQPC(a|1) = 1

2π
sin2 θ

2
, (102)

and the corresponding probability density for the no-count
process is

pQPC(a|0) � 1

4π

[
1 − γ 2

(
sin2 θ

2
− 1

2

)]
. (103)

These probability densities are shown in Fig. 3, which is the
same form as Fig. 1 because n2(a) = n1(a) in this two-state
model.

Since we have

n2 log2 n2 = − 1

4 ln 2
(104)

as in Eq. (44), the information gain (87) by the one-count
process becomes

IQPC(1) = 1 − 1

2 ln 2
� 0.279 (105)

and the mean information gain (88) by the measurement
becomes

IQPC �
(

1

2
− 1

4 ln 2

)
γ 2 � 0.139γ 2. (106)

On the other hand, the fidelity (91) after the one-count process
is

F QPC(1) =
√

n2 n1

n2
= 4

5
(107)
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FIG. 3. Probability density for the premeasurement state |ψ(a)〉
conditioned by the one-count process pQPC(a|1) and that conditioned
by the no-count process pQPC(a|0) as functions of θ when γ = 0.3.
The dotted line indicates the initial probability density p(a) = 1/4π .

and the mean fidelity (92) after the measurement is

F QPC � 1 − 1
10γ 2. (108)

In addition, since we have n2i = infa′ n2(a′) = 0 with
|ψ(a′)〉 = |0〉 and n2s = supa′ n2(a′) = 1 with |ψ(a′)〉 = |1〉,
the reversibilities (95) and (96) of the one-count and no-count
processes are given by

RQPC(1) = 0, (109)

RQPC(0) � 1 − 1
2γ 2, (110)

respectively. As shown in Eq. (109), the one-count process
of the QND photon counter (80) is not physically reversible.
We cannot recover the premeasurement state from the post-
measurement state as in the case of the conventional photon
counter (11). Note that the QND photon counter is not sensitive
to the vacuum state because pQPC(1|a) = 0 for |ψ(a)〉 = |0〉.
The mean reversibility (97) of the measurement is thus

RQPC � 1 − γ 2. (111)

VI. QND QUANTUM COUNTER

In this section we propose a type of photon counter, that is,
a QND version of the quantum counter, whose measurement
operators for one-count and no-count processes are written as

Q̂1 = γ ââ†, Q̂0 � Î − γ 2

2
(ââ†)2, (112)

respectively. This counter performs a reversible QND mea-
surement of photon number because it is sensitive not only
to photons but also to the vacuum state without perturbing
the photon-number states {|n〉}. Of course, the measurement
operators Q̂1 and Q̂0 satisfy the completeness condition (3),∑

m=0,1

Q̂†
mQ̂m � Î , (113)

up to the order of γ 3. A physical model of the QND
quantum counter is similar to that of the QND photon counter
described in Sec. V. The only difference is that the interaction
Hamiltonian between the atom and the photon field is now

Ĥint = h̄gââ†(σ̂ + σ̂ †), (114)

instead of Eq. (82).

A. General model

The amount of information provided by the QND quantum
counter (112) is evaluated using the set of predefined states
{|ψ(a)〉} as in Sec. III. If the premeasurement state is |ψ(a)〉,
the probability for the one-count process is

pQQC(1|a) = 〈ψ(a)|Q̂†
1Q̂1|ψ(a)〉 = γ 2n3(a), (115)

according to Eq. (1), where

n3(a) ≡
∑

n

(n + 1)2 |cn(a)|2 . (116)

The total probability for the one-count process is thus

pQQC(1) =
∑

a

pQQC(1|a) p(a) = γ 2n3. (117)

On the contrary, given the one-count process, the probability
for the premeasurement state |ψ(a)〉 is

pQQC(a|1) = pQQC(1|a) p(a)

pQQC(1)
= n3(a)

Nn3
. (118)

Calculating the Shannon entropy H QQC(1) associated with the
probability distribution (118), we find the information gain by
the one-count process as

IQQC(1) = H0 − H QQC(1) = n3 log2 n3 − n3 log2 n3

n3
, (119)

which quantifies the increase in our knowledge about the pre-
measurement state when the probability distribution p(a) =
1/N is revised to pQQC(a|1) according to the outcome. In a
similar way, we obtain the total probability for the no-count
process as pQQC(0) � 1 − γ 2n3 and the information gain by
the no-count process as IQQC(0) � 0 up to the order of γ 3. The
mean information gain by the measurement is thus

IQQC =
∑
m

pQQC(m) IQQC(m)

� γ 2( n3 log2 n3 − n3 log2 n3 ). (120)

Furthermore, the state change due to the measurement
is evaluated by fidelity. According to Eq. (2), when the
premeasurement state is |ψ(a)〉, the postmeasurement state
after the one-count process is

|ψ(1,a)〉QQC = 1√
pQQC(1|a)

Q̂1|ψ(a)〉

= 1√
n3(a)

∑
n

(n + 1) cn(a) |n〉. (121)

Therefore, the fidelity to |ψ(a)〉 becomes

F QQC(1,a) = ∣∣〈ψ(a)|ψ(1,a)〉QQC
∣∣ = n1(a) + 1√

n3(a)
(122)
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after the one-count process. Averaging over a with the
probability (118), we obtain the fidelity after the one-count
process as

F QQC(1) =
∑

a

pQQC(a|1) F QQC(1,a) =
√

n3 (n1 + 1)

n3
.

(123)

Since the fidelity after the no-count process is F QQC(0) � 1,
the mean fidelity after the measurement is given by

F QQC =
∑
m

pQQC(m) F QQC(m)

� 1 − γ 2n3 + γ 2√n3 (n1 + 1). (124)

Finally, the reversibility of the measurement is evaluated
by the maximal successful probability (9) of its reversing
measurement. If the premeasurement state is |ψ(a)〉, the
reversibilities of the one-count and no-count processes are
respectively given by

RQQC(1,a) = bQQC(1)

pQQC(1|a)
= n3i

n3(a)
, (125)

RQQC(0,a) = bQQC(0)

pQQC(0|a)
� 1 − γ 2n3s

1 − γ 2n3(a)
, (126)

where we have used the background bQQC(m) =
infa′ pQQC(m|a′) defined in Eq. (8), and n3i = infa′ n3(a′)
and n3s = supa′ n3(a′). Averaged over a with the probability
(118), they become

RQQC(1) =
∑

a

pQQC(a|1) RQQC(1,a) = n3i

n3
, (127)

RQQC(0) =
∑

a

pQQC(a|0) RQQC(0,a) � 1 − γ 2n3s

1 − γ 2n3
. (128)

Thus, the mean reversibility of the measurement is

RQQC =
∑
m

pQQC(m) RQQC(m) � 1 − γ 2 (n3s − n3i) .

(129)

B. Two-state model

We consider the situation discussed in Sec. III as an
example. If the premeasurement state is |ψ(a)〉, the probability
(115) for the one-count process is

pQQC(1|a) = γ 2

(
3 sin2 θ

2
+ 1

)
, (130)

since

n3(a) =
∑
n=0,1

(n + 1)2 |cn(a)|2 = 3 sin2 θ

2
+ 1 (131)

from Eq. (36). Using

n3 = 5

2
, (132)

we find the total probability (117) for the one-count process as

pQQC(1) = 5

2
γ 2. (133)

0

 0.05

 0.1

 0.15

 0.2

0 π/2 π

θ

pQQC(a|1)

pQQC(a|0)

|0〉 |1〉

FIG. 4. Probability density for the premeasurement state |ψ(a)〉
conditioned by the one-count process pQQC(a|1) and that conditioned
by the no-count process pQQC(a|0) as functions of θ when γ = 0.3.
The dotted line indicates the initial probability density p(a) = 1/4π .

On the contrary, given the one-count process, the probability
density (118) for the premeasurement state |ψ(a)〉 is

pQQC(a|1) = 1

10π

(
3 sin2 θ

2
+ 1

)
, (134)

while the corresponding probability density for the no-count
process is

pQQC(a|0) � 1

4π

[
1 − 3γ 2

(
sin2 θ

2
− 1

2

)]
. (135)

These probability densities are shown in Fig. 4. Note that the
possibility of |0〉 is not excluded by the one-count process, but
it is less than that in the case of the quantum counter.

Since

n3 log2 n3 = 16

3
− 5

4 ln 2
, (136)

the information gain (119) by the one-count process is

IQQC(1) = 47

15
− 1

2 ln 2
− log2 5 � 0.0901 (137)

and the mean information gain (120) by the measurement is

IQQC �
(

47

6
− 5

4 ln 2
− 5

2
log2 5

)
γ 2 � 0.225γ 2. (138)

Moreover, the fidelity (123) after the one-count process
becomes

F QQC(1) =
√

n3 (n1 + 1)

n3
= 652

675
(139)

and the mean fidelity (124) after the measurement becomes

F QQC � 1 − 23

270
γ 2. (140)

On the other hand, since we have n3i = infa′ n3(a′) = 1 with
|ψ(a′)〉 = |0〉 and n3s = supa′ n3(a′) = 4 with |ψ(a′)〉 = |1〉,
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the reversibilities (127) and (128) of the one-count and no-
count processes are given by

RQQC(1) = 2

5
, (141)

RQQC(0) � 1 − 3

2
γ 2, (142)

respectively. As in Eq. (141), the one-count process of the QND
quantum counter (112) is physically reversible because of the
sensitivity to the vacuum state, namely, pQQC(1|a) > 0 even
for |ψ(a)〉 = |0〉. Thus, we can recover the premeasurement
state from the postmeasurement state as in the case of the
quantum counter (52). However, in the QND quantum counter,
the successful recovery occurs with probability 2/5 on average,
which is less than that in the quantum counter, Eq. (77). The
mean reversibility (129) of the measurement is then

RQQC � 1 − 3γ 2. (143)

VII. SUMMARY AND DISCUSSION

We investigated four types of photon counters: conventional
photon counter, quantum counter, QND photon counter, and
QND quantum counter. For each counter, we calculated
information gain, fidelity, and physical reversibility, assum-
ing that a photon field to be measured is in an arbitrary
superposition of the vacuum state |0〉 and the one-photon
state |1〉. Figure 5 displays the information gain by the
one-count process of each counter, namely, Eqs. (45), (73),
(105), and (137). The conventional photon counter and the
QND photon counter provide the same amount of information
in the two-state model. However, if the photon field is in an
arbitrary superposition of the three states |0〉, |1〉, and |2〉, a
numerical calculation shows that the QND photon counter
provides more information than the conventional photon
counter. Therefore, the QND photon counter has an advantage
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FIG. 5. Information gain by the one-count process in the two-state
model. PC, QC, QPC, and QQC denote the conventional photon
counter, quantum counter, QND photon counter, and QND quantum
counter, respectively.
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FIG. 6. Fidelity after the one-count process in the two-state
model. PC, QC, QPC, and QQC denote the conventional photon
counter, quantum counter, QND photon counter, and QND quantum
counter, respectively.

in terms of information gain. In contrast, the quantum counter
provides about 10 times less information than the QND photon
counter. On the other hand, Fig. 6 displays the fidelity after the
one-count process for each counter, namely, Eqs. (47), (75),
(107), and (139). The QND versions change the state of the
photon field less than that changed by their original versions.
In particular, the QND quantum counter almost retains the
state of the photon field, compared with the quantum counter.
To emphasize this property, we define an efficiency of counter
by the ratio of information gain to fidelity loss,e.g., for the
conventional photon counter

EPC(1) ≡ I PC(1)

1 − F PC(1)
, (144)

and so on. Then the QND quantum counter has approx-
imately twice the efficiency of the QND photon counter,
as shown in Fig. 7. Figure 8 displays the physical re-
versibility of the one-count process of each counter, namely,
Eqs. (49), (77), (109), and (141). We can see that the
quantum counter is the most reversible counter, while the
conventional photon counter and the QND photon counter are
irreversible.

Our results suggest that the reversibility of a counter tends
to decrease the amount of information obtained by the counter.
A similar result was shown [24] using reversible spin- 1

2
measurement [11]. However, the reversibility of a counter
does not necessarily decrease the state change caused by
the counter. In fact, the quantum counter has the highest
reversibility and provides the smallest amount of information
but changes the state of the photon field most. This is because
of a unitary part of the measurement operator [23,35]. Note
that the measurement operator L̂1 in Eq. (52) could be written
by polar decomposition as

L̂1 = γ Û
√

ââ†, (145)

where Û is a unitary operator and
√

ââ† is a non-negative
operator, as long as the Hilbert space of the photon field is
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FIG. 7. Efficiency of the one-count process in the two-state
model. PC, QC, QPC, and QQC denote the conventional photon
counter, quantum counter, QND photon counter, and QND quantum
counter, respectively.

truncated to finite dimensions [36], as in the two-state model.
The unitary part Û causes an additional state change after
the raw measurement

√
ââ†, leaving the information gain

and physical reversibility invariant. Therefore, the highest
reversibility with the least information does not imply high
fidelity in the quantum counter. Among the other counters,
the conventional photon counter (11) also has such a uni-
tary part, while the remaining two counters do not have
a unitary part. A general theory on the relations among
information, fidelity, and reversibility could be developed
elsewhere.

We could implement the QND quantum counter proposed
in Sec. VI using a joint measurement. Consider performing
the first measurement by the quantum counter and the second
measurement by the conventional photon counter. If both
the counters detect photons, the total process of the joint
measurement is equivalent to the one-count process of the
QND quantum counter because of

M̂1L̂1 ∝ Q̂1 (146)

0

 0.2

 0.4

 0.6

 0.8

1

PC QC QPC QQC

FIG. 8. Physical reversibility of the one-count process in the two-
state model. PC, QC, QPC, and QQC denote the conventional photon
counter, quantum counter, QND photon counter, and QND quantum
counter, respectively.

from Eqs. (11), (52), and (112). The joint measurement
is thus an implementation of the QND quantum counter,
even though there are four possible outcomes. Note that this
implementation is an example of the Hermitian conjugate
measurement scheme [23], since the second measurement
by the conventional photon counter is a Hermitian conju-
gate measurement of the first measurement by the quantum
counter because M̂1 ∝ L̂

†
1. Therefore, the second measurement

cancels the unitary part Û of the measurement operator
L̂1, thereby increasing the fidelity and information gain to
the extent of a single measurement by the QND quantum
counter.
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