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Quantum electromagnetic waves in nonstationary linear media
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We present a quantum description of electromagnetic waves propagating through time-dependent homogeneous
nondispersive conducting and nonconducting linear media without charge sources. Based on the Coulomb gauge
and the quantum invariant method, we find the exact wave functions for this problem. In addition, we construct
coherent and squeezed states for the quantized electromagnetic waves and evaluate the quantum fluctuations in
coordinate and momentum space as well as the uncertainty product for each mode of the electromagnetic field.
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I. INTRODUCTION

The old and fundamental problem of the behavior (classical
and quantum) of electromagnetic waves propagating through
material media has always attracted the attention of physicists.
The story of the solution of this problem is a familiar one. Yet,
the solution of this problem has been very important for the
development of our understanding of nature.

The quantization of electromagnetic waves is tradition-
ally performed in empty cavities or in free space by the
association of a quantum-mechanical harmonic oscillator with
each mode of the electromagnetic field [1,2]. The quantum
behavior of electromagnetic waves is well understood in the
case of electromagnetic fields in empty cavities or in free
space only. In the case of electromagnetic waves interacting
with external currents and other sources the quantum behavior
of these waves is not so clear.

In the past few years, the problem of electromagnetic waves
propagating through dispersive and nondispersive material
media has become an important subject and much activity has
been taking place in this field [3–20]. The great interest in this
subject is motivated partly by the advent of modern optical ma-
terials such as optical fibers and photonic crystal and partly by
the growth of experiments on quantum optics processes taking
place inside material [6,8,9]. Here it is worth remarking that in
dispersive media the inclusion of losses into the system can be
performed either by means of a reservoir having a large number
of degrees of freedom which leads to an energy flow from the
medium to the reservoir [8,9,15] or through a phenomeno-
logical approach in which time-dependent parameters are
introduced ab initio [16,19,20].

In this paper, we present a quantum description for
the problem of electromagnetic waves propagating through
homogeneous nondispersive linear media, in the absence of
sources, with time-dependent electric permittivity and con-
ductivity. We show that this problem can be analyzed in terms
of a damped quantum-mechanical time-dependent harmonic
oscillator. Furthermore, on the basis of the Coulomb gauge,
quadratic invariants, and the quantum invariant method we
solve the time-dependent Schrödinger equation for this prob-
lem. In addition, we construct coherent and squeezed states for
the quantized electromagnetic waves and evaluate the quantum

*iapedrosa@fisica.ufpb.br

fluctuations in coordinate and momentum space as well as the
uncertainty product for each mode of the electromagnetic field.

We organize this paper as follows. In Sec. II we obtain
the classical Hamiltonian for the electromagnetic waves
propagating through time-dependent conducting and noncon-
ducting linear media without charge density from Maxwell’s
equations. In Sec. III, we use quadratic invariants together
with the dynamical invariant method to solve the Schrödinger
equation for the problem. In Sec. IV, we construct coherent and
squeezed states for the quantized electromagnetic waves and
evaluate the quantum fluctuation in coordinate and momentum
space as well as the uncertainty product for each mode of the
electromagnetic field. In Sec. V, we conclude the paper with
a short summary.

II. CLASSICAL ELECTROMAGNETIC WAVES IN
TIME-VARYING MEDIA

The electromagnetic field dynamics in time-dependent ho-
mogeneous conducting linear media, in the absence of charge
sources, is governed by the phenomenological Maxwell’s
equations. Furthermore, the relations between the fields and
currents are given as �D = ε(t) �E, �B = µ0 �H , and �J = σ (t) �E.
Here, ε(t) and σ (t) are heuristically introduced as the time-
dependent electric permittivity and conductivity, respectively,
while µ0 is the magnetic permeability. In general, the electric
permittivity and the magnetic permeability are complex.
However, we will restrict our discussion to materials where
they are real. This is the case [21,22], for instance, of
poor conductors and other materials for frequency below
the resonant frequency. Since Maxwell’s equations are gauge
invariant, we are free to choose the most appropriate gauge
for our problem. For convenience we choose to work in the
Coulomb gauge [1,2]. In this gauge the vector potential is
purely transverse which is convenient for our case since we
are dealing with electromagnetic waves. Furthermore, in the
Coulomb gauge the divergence of the vector potential �A is
zero and the scalar potential is null in the absence of sources.
Consequently, both the electric �E and magnetic �B fields are
determined from the vector potential via the familiar relations

�B = �∇ × �A and �E = −∂ �A
∂t

. (1)
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Therefore, using Maxwell’s equations one can verify that the
vector potential satisfies the equation [23]

∇2 �A − µ0(ε̇ + σ )
∂ �A
∂t

− µ0ε
∂2 �A
∂t2

= 0, (2)

where the dot represents a time derivative. Here we notice
that the time dependence of the electric permittivity gives
rise to the unusual term ε̇ in Eq. (2). This time dependence
which, in principle, may be associated with the internal
response of the localized charges to an external perturbation,
causes an additional attenuation of the electromagnetic field
(for ε̇ > 0). Furthermore, for nondispersive nonconducting di-
electric media, σ (t) = 0, the media become absorbing because
of the time dependence, just as if it were in contact with a
reservoir (time-dependent background medium) or if it were a
conductor [23].

Let us now consider the solutions of Eq. (2). To treat
this equation we consider electromagnetic waves in a certain
volume of space. Then, we write the vector potential in terms
of the mode �ul(�r) and amplitude ql(t) functions of each cavity
mode as [1,2,16,20]

�A(�r,t) =
∑

l

�ul(�r)ql(t). (3)

The substitution of Eq. (3) into the damped wave Eq. (2)
leads to

∇2 �ul(�r) + ω2
l

c2
0

�ul(�r) = 0, (4)

∂2ql

∂t2
+ ε̇ + σ

ε

∂ql

∂t
+ �2

l (t)ql = 0, (5)

where ωl is the natural frequency of the mode l, c0 =
1/

√
µ0ε(0) is the velocity of light inside the medium at

t = 0, and �l(t) is a modified frequency defined as �l =
c(t)ωl/c0, with c(t) = 1/

√
µ0ε(t) being the velocity of the

electromagnetic wave in the time-dependent medium. Now, it
is easy to verify that the equations of motion for the amplitudes
ql(t) given by Eq. (5) can be directly obtained from the classical
Hamiltonian

Hl(t) = e−∧(t) p2
l

2ε0
+ 1

2
e∧(t)ε0�

2
l (t)q2

l , (6)

where ql and pl are canonical conjugated variables, with ∧(t)
given by

∧ (t) =
∫ t

0

ε̇(τ ) + σ (τ )

ε(τ )
dτ. (7)

Hence, the total Hamiltonian of the electromagnetic field is a
sum of individual Hamiltonians corresponding to each mode,
that is,

∑
l Hl .

Next we move our attention to the solutions of Eq. (4).
Considering the electromagnetic field to be contained in a
certain cubic volume V of nonrefracting media, the mode
functions are required to satisfy the transversality condition
�∇ · �ul(�r) = 0 and to form a complete orthonormal set [1,2].
Furthermore, assuming periodic boundary conditions on the
surface, the mode function may be written in terms of plane
waves as [1,2,16,20]

�ulν(�r) = L−3/2e±i�kl ·�r êlν , (8)

where L = V 1/3 is the size of the cube, |�kl| = ωl/c0 is the
wave vector, and êlν are unit vectors in the directions of
polarization (ν = 1,2), which must be perpendicular to the
wave vector because of the transversality condition. With the
spatial mode functions �ul completely determined, we only
need the canonical variable ql(t) in order to obtain the vector
potential and, consequently, a complete classical description
of the electromagnetic field. Then, the electric field confined
in the cubic volume of side L can be written as

�E(�r,t) = e−∧(t)

ε0L3/2

∑
l

∑
ν

êlνe
±i�kl ·�rpl(t). (9)

Here we observe that we have quoted some of the results of
this section in a recent paper [23].

III. QUANTUM ELECTROMAGNETIC WAVES IN
TIME-DEPENDENT CONDUCTING MEDIA

In order to obtain a quantum description of electromagnetic
waves propagating in a conducting linear media with time-
dependent electric permittivity and conductivity we need to
quantize the electromagnetic field. Now as the spatial mode
functions �ul(�r) are completely determined, the amplitude of
each normal mode in Eq. (3) needed to specify a particular
field configuration is ql(t) [1]. Furthermore, for each canonical
operator ql the electromagnetic field is completely specified
since �E and �B field operators may be derived by inserting the
operator �A given by Eq. (3) into Eq. (1). So, we move our
attention to the canonical operator ql(t) in order to obtain
the vector potential. For this purpose, we must solve the
Schrödinger equation associated with the Hamiltonian (6)

Hl(t)�[ql,t] = ih̄
∂

∂t
�[ql,t], (10)

where pl is now the moment operator pl = −ih̄∂/∂q with
[ql,pl] = ih̄. The solutions of Eq. (10) can be obtained with
the aid of the dynamical invariant method devised by Lewis
and Riesenfeld [24,25]. Following this method, we look for a
nontrivial Hermitian operator Il(t) which satisfies the equation

dIl

dt
= 1

ih̄
[Il,Hl] + ∂Il

∂t
= 0. (11)

If the exact invariant Il(t) (constant of motion) does not
contain any time-dependent operator, the Schrödinger equa-
tion solutions are straightforwardly written in terms of the
orthonormalized eigenfunctions φn(ql,t) of Il(t),

Il(t)φn(ql,t) = λnφn(ql,t), (12)

and the phase functions βn(t) as

ψn(ql,t) = eiβn(t)φn(ql,t), (13)

Here, the λn are time-independent eigenvalues and the phase
functions βn(t) are to be determined by the equation

h̄
dβn(t)

dt
= 〈φn|ih̄ ∂

∂t
− Hl|φn〉, (14)

with the orthonormality condition 〈φn′ |φn〉 = δn′n.
Linear invariant operators satisfying Eq. (11) are innumer-

able [26,27]. These operators allow one to derive the wave
function rather directly since they are readily diagonalized.
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However, the wave function obtained is given in terms of
plane waves which varies depending on the choice of an
arbitrary weight function [26–28]. So, it is hard to investigate
classical and quantum correspondence on basis of this wave
function [28]. Furthermore, it is not an easy task to construct
coherent states based on these linear invariants. For these
reasons, in this paper we are interested in dealing with
quadratic Hermitian invariants. In this case the derivation of
the wave function, compared to that obtained through linear
invariants, is lengthier. However, as will be seen later, coherent
states based on quadratic invariants are easily constructed.
Consequently, one can more easily analyze the classical and
quantum correspondence. Now, it is known that a quadratic
invariant satisfying (11) is given by [29,30]

Il(t) = 1

2

[(
ql

ρl

)2

+ (ρlpl − ε0e
∧(t)ρ̇lql)

2

]
, (15)

where ρl(t) is a time-dependent real function satisfying the
Milne-Pinney equation [29,31,32]

ρ̈l(t) + ε̇ + σ

ε
ρ̇l(t) + �2

l (t)ρl = e−2∧(t)

ε2
0ρ

3
l

. (16)

Next, we look for the eigenstates of φn(q,t) of Il(t). For this
purpose, we consider the unitary transformation [29,30]

φ′
n(ql,t) = Uφn(ql,t) (17)

with

U = exp

(
− iε0e

∧(t)ρ̇l

2h̄ρl

q2
l

)
. (18)

Making use of this transformation, we can rewrite the
eigenvalue equation (12) as

I ′
l φ

′
n(ql,t) = λnφ

′
n(ql,t), (19)

where

I ′
l = UIlU

† = −h̄2

2
ρ2 ∂

∂q2
l

+ 1

2

q2
l

ρ2
l

. (20)

If we now define a new variable zl = ql/ρl , we can express
Eq. (19) as (

−h̄2

2

∂2

∂z2
l

+ q2
l

2

)
ϕn(zl) = λnϕn(zl), (21)

where ϕn is related to φ′
n by

ϕn(zl) = ϕn(ql/ρl) = ρ
1/2
l φ′

n(ql,t). (22)

The factor ρ
1/2
l has been introduced to satisfy the normalization

condition. Therefore, the solutions ϕn(zl) of Eq. (21) are the
eigenfunctions

ϕn(zl) =
(

1

π1/2h̄1/2n!2n

)1/2

exp

(
− z2

l

2h̄

)
Hn

[(
1

h̄

)1/2

zl

]
,

(23)

with the respective eigenvalues

λn = h̄

(
n + 1

2

)
. (24)

Here Hn is the Hermite polynomial of order n. So, making use
of Eqs. (17), (18), (22), and (23) we find that

φn(ql,t) =
(

1

π1/2h̄1/2n!2nρl

)1/2

× exp

[
iε0e

∧(t)

2h̄

(
ρ̇l

ρl

+ ie−∧(t)

ε0ρ
2
l

)
q2

l

]

×Hn

[(
1

h̄

)1/2
ql

ρl

]
. (25)

The next step is to find the phase function given by Eq. (14).
After some basic calculations, we get that

βn(t) = −
(

n + 1

2

) ∫ t

0

e−∧(τ )

ε0ρ
2
l (τ )

dτ. (26)

Therefore, we can write the solutions of the Schrödinger
equation (10) as

ψn(ql,t) = exp[iβn(t)]

(
1

π1/2h̄1/2n!2nρl

)1/2

× exp

[
iε0e

∧(t)

2h̄

(
ρ̇l

ρl

+ ie−∧(t)

ε0ρ
2
l

)
q2

l

]

×Hn

[(
1

h̄

)1/2
ql

ρl

]
, (27)

with the phase function βn(t) given by Eq. (26). Equation (27)
represents the exact wave functions for each mode of the
electromagnetic field. Furthermore, the evolution of a general
Schrödinger state can be written as �(ql,t) = ∑

n cnψn(ql,t),
where the cn are time-independent coefficients. Finally, we
observe that for ε and σ constants, the results of this section
coincide with those of Ref. [30].

IV. COHERENT AND SQUEEZED STATES FOR THE
QUANTIZED ELECTROMAGNETIC WAVES

In this section, we construct coherent and squeezed states
for the quantized electromagnetic waves propagating in time-
dependent conducting media. As will be seen later, these
states are indeed equivalent to the squeezed states of the
quantized electromagnetic field. In doing so, we introduce
the annihilation and creation operators defined as

b′
l =

(
1

2h̄

)1/2[
ql

ρl

+ iρlpl

]
, (28)

b
′†
l =

(
1

2h̄

)1/2[
ql

ρl

− iρlpl

]
, (29)

with [b′
l ,b

′†
l ] = 1. In terms of these operators, the invariant I ′

l

given by Eq. (20) can be rewritten as

I ′
l = h̄

(
b

′ †
l b′

l + 1

2

)
, (30)

whose coherent states have the form [29,33,34]

ϕα(zl,t) = exp

(
−|α|2

2

) ∑
n

αn

(n!)1/2
exp [iβn(t)] ϕn(zl), (31)
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where α is an arbitrary complex number. Then, using
Eqs. (17), (18), (22), and (31) we find that the coherent states
for the system described by the Hamiltonian (6) are given by

φα(ql,t) = 1

ρ
1/2
l

exp

(
iε0e

∧(t)ρ̇2
l

2h̄ρl

q2
l

)
ϕα(zl,t). (32)

These states satisfy the eigenvalue equation

blφα(ql,t) = αl(t)φα(ql,t), (33)

with bl and b′
l related by

bl = U †b′
lU =

(
1

2h̄

)1/2 [
ql

ρl

+ i(ρlpl − ε0e
∧(t)ρ̇lql)

]
(34)

and

αl(t) = αl exp[2iβ0(t)], (35)

β0(t) = −1

2

∫ t

0

e−∧(t)

ε0ρ
2
l (τ )

dτ. (36)

Note that, in terms of the operator bl , the invariant in
Eq. (15) can be expressed as Il = h̄(b†l bl + 1

2 ). Now, after a
straightforward calculation we find that the expectation values
of ql and pl in the coherent state φα(ql,t) are given by

〈ql〉 = (2h̄|α|2ρ2
l )1/2sin[−2β0(t) + δl], (37)

〈pl〉 = (2h̄|α|2)1/2

×
{
ε0e

∧(t)ρ̇lsin[−2β0(t) + δl]− 1

ρl

cos[−2β0(t) + δl]

}
,

(38)

where δl is the argument of the complex number α. Here we
note that expression (37) is a solution of Eq. (5). Hence, the
center of the coherent state wave packet follows the motion
of a classical particle. Thus, the above result agrees with
the original idea of Schrödinger about the coherent states,
who was interested in finding quantum mechanical states
which followed the motion of a classical particle in a given
potential [35]. Also, we can use the result (37) to show that
when the electric field (9) is in a state φα(ql,t), its expectation
value looks like a classical field, as it should be. In what follows
we evaluate the quantum fluctuations in ql and pl in the state
φα(ql,t). After some algebra we find that

〈�q〉2 = 〈
q2

l

〉 − 〈ql〉2 = h̄

2
ρ2

l (39)

〈�p〉2 = 〈
p2

l

〉 − 〈pl〉2 = h̄

2

[
1

ρ2
l

+ (ε0e
∧(t)ρ̇l)

2

]
. (40)

Thus, the uncertainty product is expressed as

(�ql)(�pl) = h̄

2
[1 + (εe∧(t)ρlρ̇l)

2]1/2. (41)

Here, we observe that the uncertainty relation (41), in general,
does not attain its minimum value. This occurs, as we have
already mentioned, because the states φα(ql,t) correspond to
the squeezed states. This will be seen more clearly below. It
is also worth mentioning that if the medium is a dielectric
material [σ (t) = 0] with constant permittivity [ε(t) = ε0 =
cte] and if we take the particular solution ρl = (1/ε0ωl)1/2 of
the Milne-Pinney equation (16), the uncertainty product attains

its minimum value. This occurs because, in this case, both the
Hamiltonian (6) and the coherent states φα(ql,t) reduce to the
ordinary harmonic oscillator model. In the following, we show
that the state φα(ql,t) correspond to the squeezed states. For
this purpose, let us introduce the annihilation and creation
operators al and a

†
l of the standard oscillator model given by

al =
(

1

2h̄ε0ωl

)1/2

[ε0ωlql + ipl], (42)

a
†
l =

(
1

2h̄ε0ωl

)1/2

[ε0ωlql − ipl]. (43)

These operators are related to operators bl and b
†
l , which were

defined previously, by the Bogoliubov transformations [36–39]

bl = u(t)al + v(t)a†
l , (44)

b
†
l = u∗(t)a†

l + v∗(t)al, (45)

whose coefficients are expressed as

u(t) =
(

1

4ε0ωl

)1/2 (
1

ρl

− iε0e
∧(t)ρ̇l + ε0ωlρl

)
, (46)

v(t) =
(

1

4ε0ωl

)1/2 (
1

ρl

− iε0e
∧(t)ρ̇l − ε0ωlρl

)
. (47)

A straightforward calculation shows that the Bogoliubov
coefficients u(t) and v(t) satisfy the relation

|u(t)|2 − |v(t)|2 = 1. (48)

Therefore, from Eqs. (33), (44), and (48), we see that the states
φα(ql,t) are, by definition, equal to well-known squeezed states
[30,36,37,39–41]. Furthermore, in terms of the coefficients
u(t) and v(t) the quantum fluctuations in ql(t) and pl(t) for the
squeezed states φα(ql,t) can be written as

(�ql)
2 = h̄

2ε0ωl

|u − v|2, (49)

(�pl)
2 = h̄ε0ωl

2
|u + v|2, (50)

where

(�ql)(�pl) = h̄

2
|u − v||u + v|. (51)

The uncertainty product is minimized if u = γ v for γ

real [37]. Furthermore, note that the relation (51) is equivalent
to Eq. (41), as it should be.

V. SUMMARY

In this work, we have presented a simple and direct
quantum description for the problem of electromagnetic waves
propagating in time-dependent conducting and nonconducting
media without charge sources. We have seen that this problem
can be analyzed by associating a damped quantum-mechanical
oscillator with each mode of the electromagnetic field.
Furthermore, with the aid of the quantum invariant method and
a quadratic invariant we have derived exact waves functions for
this problem. In addition, we have constructed coherent states
for the quantized electromagnetic waves and have calculated
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the quantum fluctuations in coordinate and momentum space
as well as the uncertainty product for each mode of the
electromagnetic field. We have also shown that the expectation
value of the coordinate ql follows the motion of a classical
particle. What is more, we have seen that this uncertainty
product, in general, does not attain its minimum value.Yet,
by employing a direct procedure we have shown that this
latter result occurs because the coherent states constructed
previously correspond to squeezed states. Finally, we expect

that the approach developed in this work can be useful to inves-
tigate subjects related to the quantization of electromagnetic
waves propagating in conducting and nonconducting media
with material properties varying in time.
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