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Recently we have presented a hidden-variable model of measurements for a qubit where the hidden-variable
state-space dimension is one-half the quantum-state manifold dimension. The absence of a short memory
(Markov) dynamics is the price paid for this dimensional reduction. The conflict between having the Markov
property and achieving the dimensional reduction was proved by Montina [A. Montina, Phys. Rev. A 77, 022104
(2008)] using an additional hypothesis of trajectory relaxation. Here we analyze in more detail this hypothesis
introducing the concept of invertible process and report a proof that makes clearer the role played by the topology
of the hidden-variable space. This is accomplished by requiring suitable properties of regularity of the conditional
probability governing the dynamics. In the case of minimal dimension the set of continuous hidden variables is
identified with an object living an N-dimensional Hilbert space whose dynamics is described by the Schrödinger
equation. A method for generating the economical non-Markovian model for the qubit is also presented.
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I. INTRODUCTION

One of the most peculiar features of quantum mechanics
is the exponential growth of resources required to define
the quantum state |ψ〉 of a composite system. It makes the
direct simulation of even a handful of particles impossible
in practice. This growth is due to the fact that |ψ〉 contains
the full statistical information about the probabilities of any
possible event, such as the joint probability ρ(s1, . . . ,sN ) of
obtaining the outcomes {s1, . . . ,sN } by measuring the z-axis
components of N 1/2-spins. The information in ρ(s1, . . . ,sN )
grows exponentially for a given accuracy and considerably
exceeds the classical information required to specify the
actual measurement outcome. Since the quantum state is not
a physically accessible observable, but can be statistically
reconstructed only by performing many measurements on
different replicas [1], it is natural to wonder if this resource
excess is strictly necessary to describe the actual state of
a single realization. The quantum probabilities could be
reproduced by a hidden-variable theory where a single system
carries less information than the quantum state. In such a
theory, the quantum state |ψ〉 is mapped to a probability
distribution on a space X of hidden-variable states, that is,

|ψ〉 → ρ(X|ψ). (1)

It is clear that the sampling space X can have, in principle,
a smaller dimension than the quantum-state manifold. For
example, the space of functions on a one-dimensional domain
is infinite dimensional and any finite-dimensional Hilbert
space can be embedded within it.

In accordance with recent terminology, we will refer to the
actual state X of a quantum system and the corresponding
space as ontic state and ontological space [2], respectively,
and name the dimensional reduction of the ontological space
ontological shrinking. It is interesting to note that, in any
known short memory (Markov) hidden-variable theory, the
dimension of the state space is never smaller than the
quantum-state manifold dimension. As an example, in the de-
Broglie–Bohm model the wave function has the role of a field
of physical quantities and is supplied by additional variables
describing the particle positions.

The ontological shrinking has a connection with the
concept of classical “weak simulation” [3,4] in quantum
information theory. In a classical “strong simulation” of a
quantum computer, the goal is to evaluate the measurement
probabilities with high accuracy. This requirement is stronger
than necessary since in a real quantum computer a single run
does not give the measurement probabilities and the output
is a precise event. The probabilities concern the behavior
of many experimental realizations. The goal of a classical
“weak simulation” is not to compute the probability weights,
but the outcomes in accordance with the weights. There
are examples of quantum circuits that cannot be efficiently
simulated in the strong way, but whose weak simulation is
nevertheless tractable [4]. In a hidden-variable theory with
reduced sampling space, the evaluation of the actual dynamics
of a single realization would require less resources than
the computation of the quantum-state dynamics. Thus, the
ontological shrinking could offer, in a natural way, an efficient
method of “weak simulation” of quantum computers.

In recent years the possibility of a statistical representation
of quantum states on a reduced sampling space was discussed
by various authors [5–10]. The problem of the smallest
dimension of the ontological space was posed in Ref. [6]. It was
subsequently proved that the ontological dimension cannot
be smaller than the quantum-state manifold dimension in the
case of a Markov hidden-variable theory with an additional
hypothesis of trajectory relaxation [7]. We will refer to this
result as the no-shrinking theorem. Recently we reported an
example of hidden-variable model of measurements for a qubit
whose state space is one-dimensional (i.e., smaller than the
two-dimensional Bloch sphere [10]). As a consequence of the
dimensional reduction, the dynamics is not a Markov process.
This counterexample makes evident that the short memory
hypothesis is strictly necessary for the proof of the theorem in
Ref. [7]. In this article, we review the one-dimensional model
providing a method for generating it and analyze in more detail
the hypothesis of trajectory relaxation. We define the concept
of invertible process and show that it is always possible to
find a subregion of a compact ontological space where all
the processes are invertible. Discarding insignificant transient
states and considering only invertible processes, we present
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a different version of the no-shrinking theorem that makes
clearer the role played by the topology of the hidden-variable
space. This is accomplished by requiring reasonable properties
of regularity of the conditional probability governing the
dynamics and explicitly using them in the theorem proof. It is
useful to remind that the dimension is a topological property
and is not defined by the space cardinality.

In Sec. II we introduce the general framework of a hidden-
variable theory. In Sec. III the economical ontological model
in Ref. [10] is reviewed. The properties of regularity and
the concept of invertible process are introduced in Sec. IV,
where we also prove the no-shrinking theorem and discuss its
consequences in terms of resource cost. In the same section we
show that in any Markov hidden-variable theory with minimal
space dimension the set of continuous hidden variables can
be identified with an object, living in an N -dimensional
Hilbert space, whose dynamics is described by the Schrödinger
equation. In the Appendix we report a systematic construction
method to generate the model in Sec. III, starting from a
particular form of the probability distribution.

II. GENERAL FRAMEWORK

In a general hidden-variable theory the quantum state is
translated into a classical language by replacing it with a
probability distribution on a sampling space X of ontic states.
We assume that the ontological space is an M-dimensional
manifold described by an M-tuple �x of continuous variables
and a possible discrete index n. The mapping (1) is not the
most general since the probability distribution could depend
on the preparation context. For example, a 1/2-spin can be
prepared in the up state by merely selecting the beam outgoing
from a Stern-Gerlach apparatus or can be prepared in the state
|↑〉 + |↓〉 and then suitably rotated. To account for this possible
dependence, we add suitable parameters η that identify the
preparation context [11],

|ψ〉 → ρ(�x,n|ψ,η). (2)

The set of ontological variables X = (�x,n) contains the whole
information about a single realization, thus the probability
of any event is conditioned only by it. In particular, for the
measurement of the trace-one projector |φ〉〈φ|, it is assumed
that there exists a conditional probability P for the event |φ〉
given the ontic state X. In general, P also could depend on
the context of the measurement, thus we introduce additional
parameters τ in the conditional probability,

|φ〉 → P (φ|�x,n,τ ). (3)

The probability of the event |φ〉 given |ψ〉 has to be equal to
the quantum mechanical probability∑

n

∫
dMxP (φ|�x,n,τ )ρ(�x,n|ψ,η) = |〈φ|ψ〉|2. (4)

Finally, it is assumed that the dynamics at the ontological
level is Markovian [12]. The ontic state evolves from X1 at
time t1 to X2 at time t2 according to a conditional probability
K(X2,t2|X1,t1). K satisfies the Chapman-Kolmogorov equa-
tion [12] and is a δ distribution for t2 = t1

K(�x2,n2,t1|�x1,n1,t1) = δn1,n2δ(�x2 − �x1). (5)

For a time-homogeneous process the transition probability
depends only on the time difference t2 − t1

K(X2,t2|X1,t1) = K(X2,t2 − t1|X1,0) ≡ K(X2|X1,t2 − t1).

(6)

To link the quantum language with the classical one, we
can label K with the corresponding unitary operator Û . As
for the state preparation and measurement, in general, the
conditional probability can depend on additional parameters
χ , the transformation context,

Û → KÛ,χ (X2|X1). (7)

Indeed, an operator Û can be physically implemented in
different ways. For example, the spin rotation e−it σ̂x can be
performed directly rotating along the x axis or implementing
the three-step rotation e−i π

4 σ̂y e−it σ̂z ei π
4 σ̂y along the z and y axes.

These two schemes are physically different and not necessarily
described by the same conditional probability. It is useful
to note that KÛ,χ (X|X̄) for Û = 1 is not necessarily the δ

distribution δ(X − X̄) for all the contexts. For example, the
identity evolution can correspond to physically performing the
three-step rotation e−i π

4 σ̂y e−it σ̂z ei π
4 σ̂y , followed by the inverse

transformation eitσ̂x . The overall operation is not equal to doing
nothing and does not necessarily correspond to a δ-peaked
conditional probability.

If the quantum state |ψ〉 evolves to Û |ψ〉 ≡ |ψ̄〉, the
associated probability ρ(X|ψ,η) evolves to

ρ(X|ψ̄,η̄) ≡
∫

dYKÛ,χ (X|Y )ρ(Y |ψ,η). (8)

Some regularity properties of KÛ,χ will be discussed in
Sec. IV. Any short memory hidden-variable theory has this
general structure.

III. ECONOMICAL ONTOLOGICAL MODEL
OF MEASUREMENTS

In this section we show that if the Markov condition is
not assumed, then the ontological space can be smaller than
the quantum-state manifold. This goal is achieved by explicitly
providing a one-dimensional hidden-variable model for a qubit
[10]. Its systematic construction is discussed in the Appendix.

For the moment, we introduce a model working only
for a subset of preparation states. The extension to the
whole quantum-state manifold will be discussed later on. The
ontological space is given by a continuous real variable x

and a discrete index n that takes the two values 0 and 1. It is
convenient to represent the quantum state |ψ〉 and the event |φ〉
by means of the Bloch vectors �v ≡ 〈ψ |�σ |ψ〉 and �w ≡ 〈φ|�σ |φ〉,
where �σ = (σ̂x,σ̂y,σ̂z), σ̂i being the Pauli matrices.

The probability distribution associated with the state �v is

ρ(x,n|�v) = sin θδn,0δ(x − ϕ) + (1 − sin θ )δn,1δ(x − θ ),

(9)

where θ and ϕ are, respectively, the zenith and azimuth angles
in the spherical coordinate system

vx = sin θ cos ϕ, vy = sin θ sin ϕ, vz = cos θ. (10)
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FIG. 1. (Color online) One-dimensional ontological space {x,n}
at left. According to Eq. (9), each point of the Bloch sphere is
associated with a probability distribution on {x,n} having two δ peaks.

Thus, when the quantum state �v is prepared, the index n takes
the value 0 or 1 with probability sin θ or 1 − sin θ and the
continuous variable is equal to the zenith or azimuth angle
according to the value of n (see Fig. 1).

The conditional probability P ( �w|x,n) for an event �w with
wz > 0 is defined as follows

P ( �w|x,0) = 1 + wx cos x + wy sin x − √
1 − w2

z

2
, (11)

P ( �w|x,1) = 1 +
√

1 − w2
z sin x + wz cos x − 1

2(1 − sin x)
. (12)

The events �w with wz < 0 correspond simply to the nonoc-
currence of the events − �w with wz > 0 [i.e, P (− �w|x,n) =
1 − P ( �w|x,n)].

It is easy to prove that these probability functions fulfill the
condition (4), that is,

P ( �w|ϕ,0) sin θ + P ( �w|θ,1)(1 − sin θ ) = 1
2 (1 + �w�v). (13)

As shown in Ref. [10], the conditional probabilities P ( �w|x,0)
and P ( �w|x,1) are always smaller than or equal to 1, but
P ( �w|x,1) is positive only if θ < θ0 ≡ arccos( 3

5 ) � 53.13◦.
Thus, the model in this form works only for a set of prepared

states whose Bloch vector lies inside a cone with aperture
2θ0, the z axis being the symmetry axis. Since the positive
region has nonzero measure in the quantum-state manifold,
it is possible to extend the model to the whole Bloch sphere
by covering the manifold with a sufficiently large number of
patch regions with different coordinate systems and enriching
the ontic state with a finite quantity of information. This was
accomplished in Ref. [10] by adding a discrete index m taking
12 possible values, labeling 12 different regions of the Bloch
sphere. See the referred paper for further details.

This is a concrete example of ontological shrinking,
where the ontic state space is smaller than the quantum-state
manifold, which is, in this case, the two-dimensional Bloch
sphere. It is a remarkable fact that a single realization of the
ontic state {x,n} contains less information than the quantum
state. The whole information on |ψ〉 is contained in the
probability distribution ρ.

The absence of a short memory description of the dynamics
is the price paid for the dimensional reduction. Indeed it is
impossible to associate a positive conditional probability with

each unitary evolution, that is, it is impossible to satisfy the
identity

ρ(x,n|Ûψ) =
∑

n̄

∫
dx̄KÛ (x,n|x̄,n̄)ρ(x̄,n̄|ψ), (14)

with the probability distribution in Eq. (9), apart from the
unitary evolution eitσ̂3 . Indeed, in the other cases the dynamical
equation of ρ(x,n|ψ) is, in general, nonlinear. Let us consider
the unitary evolution with the Pauli matrix σ̂y as generator.
The dynamical equations of the Bloch vector are

∂vx

∂t
= vz,

∂vy

∂t
= 0,

∂vz

∂t
= −vx, (15)

which correspond in spherical coordinates to

∂ϕ

∂t
= − cot θ sin ϕ,

∂θ

∂t
= cos ϕ. (16)

Let K(x,n|x̄,n̄,t) be the transition probability associated with
the evolution in Eq. (15), we have from Eq. (14) that

∂ρ(x,n,t)

∂t
=

∑
n̄

∫
dx̄

∂K

∂t
(x,n|x̄,n̄,t)ρ(x̄,n̄), (17)

which becomes by means of Eq. (9)

sin θδn,0
∂δ(x − ϕ)

∂ϕ

∂ϕ

∂t
+ (1 − sin θ )δn,1

∂δ(x − θ )

∂θ

∂θ

∂t

+ cos θ [δn,0δ(x − ϕ) − δn,1δ(x − θ )]
∂θ

∂t

= ∂K

∂t
(x,n|ϕ,0,t) sin θ + ∂K

∂t
(x,n|θ,1,t)(1 − sin θ ). (18)

In particular, for n = 0 and using Eq. (16)

− cos θ
∂δ(x − ϕ)

∂ϕ
sin ϕ + cos θδ(x − ϕ) cos ϕ

= ∂K

∂t
(x,0|ϕ,0,t) sin θ + ∂K

∂t
(x,0|θ,1,t)(1 − sin θ ). (19)

Dividing both sides by sin θ and differentiating with respect to
θ , we obtain that

∂

∂θ

[
− cot θ

∂δ(x − ϕ)

∂ϕ
sin ϕ + cot θδ(x − ϕ) cos ϕ

]

= ∂

∂θ

[
∂K

∂t
(x,0|θ,1,t)

1 − sin θ

sin θ

]
, (20)

This equation is not satisfied by any function K since the left-
hand side is a function of both θ and ϕ, whereas the right-hand
side depends only on θ . Thus, the dynamical equation of the
probability distribution (9) is non-Markovian.

IV. ONTOLOGICAL SHRINKING
AND MARKOV PROCESSES

In this section we will prove that the ontological shrinking
is in contradiction with a Markov dynamics. This purpose is
achieved by means of a very reasonable hypothesis concerning
the support of the conditional probability K(X2|X1,t). It will
be introduced in the following section. In Sec. IV B we will
introduce the concept of invertible process and will show that it
is always possible to find a subregion of a compact ontological
space where all the processes are invertible. Then we prove the
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no-shrinking theorem in Sec. IV C. In Sec. IV D, it is shown
that in the case of minimal ontological dimension it is possible
to identify the set of continuous ontological variables with a
vector of the Hilbert space whose dynamics is given by the
Schrödinger equation. In the last section we discuss the conse-
quences of the no-shrinking theorem in terms of resource cost.

A. Conditional probabilities and associated unitary operators

For the sake of simplicity, from now on we will omit
without loss of generality the discrete index n in the definition
of the ontic state and assume that the ontological space is
a differentiable manifold whose points are identified by the
vector �x. When the local Euclidean structure is not required, we
will use the more generic symbol X to indicate the ontic state.

In order that a transition probability describing a Markov
process physically makes sense, it has to satisfy some
conditions of regularity. For our purpose, it is sufficient to
require a very weak condition. As a reasonable hypothesis,
we assume that there exists a subset of the support of the
conditional probability K(X2|X1,t) that changes smoothly
with respect to the condition X1 and the evolution time t .
Let us refine this statement in a more precise way.

Property 1. Given a time-homogeneous process X1 → X2

with nonzero probability K(�x2|�x1,t), there exist an M × M

matrix λ̂ and a vector �α such that K(�x2 + λ̂δ�x1 + �αδt |�x1 +
δ�x1,t + δt) 
= 0 for any infinitesimal variation δ�x1 and δt . The
matrix λ̂ and the vector �α are functions of t and the process
X1 → X2.

It is important to note that this property is fulfilled for
the very large class of Markov processes that involve drift,
diffusion, and jumps (they are discussed, for example, in
Ref. [12]). Furthermore, the matrix λ̂ and the vector �α are not
necessarily unique. For example, in the case of a stochastic
process any choice of λ̂ and �α is suitable since the conditional
probability is a multidimensional smooth function whose
support is the whole manifold. For a pure deterministic process
both λ̂ and �α are unique. The latter gives the drift velocity of
the ontic state. In the case of pure jumps with finite transition
probability, one choice is �α = 0 and is unique if the jump
distance cannot be arbitrarily small. One can imagine more
complicated cases that involve diffusion in some direction,
drift in the other ones, and jumps, however, also in these
situations the stated property is fulfilled for some λ̂ and �α.

Property 1 strictly depends on the topology of the onto-
logical space since it involves its local Euclidean structure.
Using this structure in the proof of the no-shrinking theorem
is fundamental because the space dimension is not a property
defined merely by the cardinality of the space.

The quantum unitary evolution is a continuous process and
corresponds to a trajectory in a Lie group manifold with the
Hamiltonian as generator. For a time-homogeneous process,
the unitary operator of the evolution has the form e−itĤ , where
Ĥ is the transformation generator and t is the evolution time. In
general, it is not possible to directly implement every generator
of the su(N ) algebra by means of a purely time-homogeneous
process. In practice, only a small set of evolutions (building
blocks) can be directly generated by a physical process. The
other evolutions are obtained by suitably concatenating the
building blocks. Given any generator Ĝ, it will be possible,

in principle, to experimentally implement a unitary evolution
Û1, a physically attainable time-homogeneous process e−itĤ ,
and another unitary evolution Û2 such that

Û2e
−itĤ Û1 = e−itĜ. (21)

The operators Ûi can be constructed by suitably concatenating
physically attainable processes. This allows us to associate
with any unitary operator e−itĜ a conditional probability
K(X2|X1,t) satisfying Property 1. Note that t in K does
not correspond, in general, to the evolution time of a purely
time-homogeneous process. It is the evolution time of only a
part of the overall process involving also the transformations
Ûi . This implies that for t = 0 the conditional probability
K(X2|X1,t) is not necessarily a δ distribution. Furthermore,
we can add a shift time t0 to t and absorb the extra-term
e−it0Ĥ in Eq. (21) into the operators Û1 and Û2. Thus, it is not
necessary to require that t is a positive quantity, as in the case
of stochastic Markov processes where the propagation kernels
are elements of a semi-group. For our purpose, it is sufficient
that K(X2|X1,t) is defined in a neighborhood of t = 0.

Let {Ĝi} with i = 1, . . . ,D be a set of D ≡ N2 − 1
generators of the Lie algebra. The unitary operators e−itĜi

are associated with the conditional probabilities Ki(X2|X1,t).
Any unitary evolution Û in a region around the identity can

be constructed in the following way

Û (t1, . . . ,tD) = e−it1Ĝ1 , . . . ,e−itDĜD =
D∏

i=1

e−iti Ĝi , (22)

where the variables ti parametrize the SU(N ) manifold.
Let the linear operator

ρ(X) →
∫

dYKi(X|Y,t)ρ(Y ),

be denoted by Ki(t). The overall evolution Û (�t) is associated
with the conditional probability

K(X2|X1,t1, . . . ,tD) =
[

D∏
i=1

Ki(ti)

]
(X2|X1), (23)

the product order is such that the sum index grows from left to
right.

It is easy to prove a general property of the conditional
probability K(X2|X1,�t).

Property 2. Suppose that K(�x2|�x1,�t) is different from zero
for some process X1 → X2, then there exists an M × D matrix
η̂ such that, for any small variation of the time parameters

δ�t =

⎛
⎜⎝

δt1
δt2
. . .

δtD

⎞
⎟⎠ ,

the conditional probability K(�x2 + η̂δ�t |�x1,�t + δ�t) is different
from zero. In the following, η̂ will be called the shift matrix
of K(X2|X1,�t). As with the matrix λ̂ and the vector �α, it is a
function of t and the process X1 → X2.

Proof. First, we consider the concatenation K12 of two
conditional probabilities, that is,

K12(X2|X1,t1,t2) ≡
∫

dZK1(X2|Z,t1)K2(Z|X1,t2). (24)
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Let X1 → X2 be a process with nonzero transition probability
K12(X2|X1,t1,t2). There exists a state Z such that K1(X2|Z,t1)
and K2(Z|X1,t2) are different from zero. Property 1 implies
that there exist two vectors �α1 and �α2 and a matrix λ̂1 such that

K1(�y + λ̂1 �α2δt2 + �α1δt1|�z + �α2δt2,t1 + δt1) 
= 0,

K2(�z + �α2δt2|�x,t2 + δt2) 
= 0.

Thus, the conditional probability K12(�x2 + η̂δ�t |�x1,t1 +
δt1,t2 + δt2) is different from zero, where the columns of the
M × 2 matrix η̂ are �α1 and λ̂1 �α2. The property can be proved
by induction for any concatenation of processes Ki .

There is an important direct consequence of this property.
Lemma 1. A process X1 → X2 with nonzero probability

K(X2|X1,�0) is associated with a Ds-dimensional manifold of
unitary transformations Û (δ�t), where Ds � D − M , M being
the ontological space dimension. The manifold is identified by
the M equations

D∑
j=1

ηij δtj = 0, with i = 1, . . . ,M, (25)

where η̂ is the shift matrix of K(X2|X1,�0). In particular, Ds =
D − NI , NI (�M) being the number of independent equations
in the constraints (25).

Proof. Because of Property 2, there exists an M × D matrix
η̂ such that K(�x2 + η̂δ�t |�x1,δ�t) is different from zero [i.e, �x1 →
�x2 + η̂δ�t is a process associated with the unitary evolutions
Û (δ�t)]. In particular, the submanifold of unitary evolutions
with η̂δ�t = 0 is associated with the process X1 → X2. Its
dimension Ds is equal to D − NI , NI being the number of
independent equations in η̂δ�t = 0. Since NI � M , we have
Ds � D − M .

The actual value of Ds depends on the number NI of
independent constraints in the vectorial equation η̂δ�t = 0. For
example, Ds is equal to N2 − 1 for η̂ = 0, which is the case if
Ki(�y|�x,t) are M-dimensional diffusive processes.

B. Set S(X) and its symmetry property

In an ontological model the quantum state is associated with
a probability distribution ρ(X|ψ,η) according to the mapping
(2). It is useful to introduce the following definition of the set
S(X).

Definition 1. A vector |ψ〉 of the Hilbert space is in S(X)
if and only if there exists a context η such that the probability
ρ(X|ψ,η) is different from zero for the state X.

In other words, the set S(X) contains every quantum state
that is compatible with the occurrence of the ontic state
X. As discussed in Ref. [7], the set S cannot lose vectors

along its evolution. More precisely, if X
Û→ Y is a nonzero

probability process associated with the unitary evolution Û ,
then ÛS(X) ⊆ S(Y ). This is a direct consequence of the
definition. Indeed, if |ψ〉 is in S(X), then there exists a
probability distribution associated with |ψ〉 such that X is in its
support. Since X → Y is a nonzero probability process, then Y

is in the support of a probability distribution associated with the
evolved quantum state Û |ψ〉, that is, |ψ〉 ∈ S(X) ⇒ Û |ψ〉 ∈
S(Y ). The opposite implication |ψ〉 ∈ S(X) ⇐ Û |ψ〉 ∈ S(Y )

is not trivially satisfied. Thus, the set S cannot lose vectors,
but, in principle, it could grow acquiring vectors.

The opposite implication can be deduced by assuming that
each process is invertible.

Definition 2. A nonzero probability process X1
Û1→ X2 is

said to be invertible if there exists a unitary operator Û2 such

that X2
Û2→ X1 is a nonzero probability process.

Property 3. Every process is invertible.
Note that the operator Û2 associated with the inverse process

is not required to be necessarily the inverse of Û1. Property 3 is
very reasonable and is satisfied by any known hidden-variable
theory. Indeed, a state connected to other states by means of
a noninvertible process would be only transient and could be
safely eliminated by the theory. The fact that the transient
states are insignificant is made clearer if it is assumed that the
ontological space is compact.

Proposition. If the ontological space is compact, then the

processes in any series X1
Û1→ X2

Û2→ X3
Û3→· · · become closer

and closer to being invertible.
Proof. a metric ontological space is compact if it is closed

and bounded. Let BR(X) be M-dimensional balls with radius
R and center X. Suppose that for any R there exists a series

X1
Û1→ X2

Û2→ X3
Û3→· · · with an infinite number of processes

that take a state X away from its ball BR(X). Then there exists a
subseries Y1 → Y2 → Y3 → · · · where Ym /∈ BR(Yn) for every
m > n, but this is impossible because the space is bounded.
Along the series, the processes connecting an element to the
following ones become, in fact, closer and closer to being
invertible.

Discarding insignificant transient states and taking for
granted Property 3, we can prove the second lemma.

Lemma 2. Assuming Property 3, if X1
Û1→ X2 is a nonzero

probability process, then Û1S(X1) = S(X2).

Proof. The process X1
Û1→ X2 is allowed, thus

Û1S(X1) ⊆ S(X2). (26)

Since there exists an operator Û2 such that X2 →Û2 X1 is a
nonzero probability process, then we have also that

Û2S(X2) ⊆ S(X1). (27)

These two relations imply that

ÛS(X2) ⊆ S(X2), (28)

where Û = Û1Û2. By iteration we obtain that

ÛnS(X2) ⊆ S(X2), (29)

for any integer n. For a finite-dimensional Hilbert space, it is
always possible to find an integer n such that Ûn is very close
to the inverse operator Û−1. Thus, Û−1S(X2) ⊆ S(X2), that
is,

ÛS(X2) ⊇ S(X2). (30)

From inclusions (28) and (30) we have that

ÛS(X2) = S(X2). (31)
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Applying the operator Û1 to both sides of inclusion (27) and
using Eq. (31), the inclusion

S(X2) ⊆ Û1S(X1), (32)

is obtained. This relation and inclusion (26) imply that

Û1S(X1) = S(X2), (33)

and the lemma is proved. �
Note that, for symmetry reasons, a similar equation holds

also for the inverse process, that is,

Û2S(X2) = S(X1). (34)

In Ref. [7] we proved the following property for S(X).
Lemma 3. The set S(X) cannot contain every vector of the

Hilbert space. Equivalently, the set S(X) is not invariant with
respect to the group SU(N ).

Proof by contradiction. Suppose that S(X) contains every
vector of the Hilbert space, then it contains, in particular,
also two orthogonal vectors. This means that there exist
two overlapping distributions associated with two orthogonal
quantum states. But this is impossible because two orthogonal
states can be perfectly discriminated by a measurement [5,11].
Indeed the probability of obtaining |ψ〉 given |ψ〉 is∫

dXP (ψ |X,τ )ρ(X|ψ,η) = |〈ψ |ψ〉|2 = 1. (35)

This implies that P (ψ |X,τ ) is equal to 1 in the support of
ρ(X|ψ,η). However, the probability of |ψ〉 given an orthogonal
state |ψ⊥〉 is∫

dXP (ψ |X,τ )ρ(X|ψ⊥,η̄) = |〈ψ |ψ⊥〉|2 = 0. (36)

This implies that ρ(X|ψ⊥,η̄) cannot be different from zero if
X is in the support of ρ(X|ψ,η), where P (ψ |X,τ ) = 1. �

Finally, we enunciate the last lemma.
Lemma 4. Let G be a Lie subgroup of the group SU(N )

acting on an N -dimensional Hilbert space H and S be a set
of vectors in H. If the manifold dimension of G is larger than
(N − 1)2 and S is invariant with respect to G, then S contains
every vector of the Hilbert space, that is, S is invariant with
respect to SU(N ).

Proof. Any compact Lie group and their linear representa-
tions on CN are well known. One can check that, for N 
= 4,
the proper Lie subgroup of SU(N ) with largest manifold
dimension is SU(N − 1) × U(1). Its dimension is equal to
(N − 1)2. Thus, if the dimension of G is larger than (N − 1)2,
then G is, in fact, SU(N ) and S contains every vector. In
the special case N = 4, the symplectic group Sp(2) is the
subgroup of SU(4) with largest dimension. A set of generators
in the representation space C4 is

σ̂
(1)
i , σ̂

(1)
i σ̂

(2)
1 , σ̂

(1)
i σ̂

(2)
2 , σ̂

(2)
3 , (37)

with i = 1,2,3, σ̂ (k)
i being two sets of Pauli matrices acting on

the tensor space C2 ⊗ C2 = C4. It is easy to check that these
generators form the basis of a Lie algebra with dimension
equal to 10, which is larger than (N − 1)2 = 9. However, also
in this case if the set S is invariant with respect to Sp(2), then it
contains every vector of the Hilbert space. Indeed, it is possible
to show that the only orbit of Sp(2) is the whole Hilbert space,

the orbit of a subgroup being the set of states connected by
means of some subgroup element. It is sufficient to prove that
any vector is connected to |↑〉|↑〉. A generic vector |ψ〉 has the
form

|ψ〉 = cos θ |↑〉|φ1〉 + sin θ |↓〉|φ2〉, (38)

where |φ1〉 and |φ2〉 are two-dimensional vectors. This vector
is connected through the generators σ̂

(1)
i to a vector with the

form

|ψ̃〉 = cos θ |↑〉|↑〉 + sin θ |↓〉|φ̃2〉. (39)

Through the unitary operator e
1̂−σ̂

(1)
3

2 (θ1σ̂
(2)
1 +θ2σ̂

(2)
2 ) and a suitable

choice of θi , it is possible to connect |ψ̃〉 to

|ψ̄〉 = cos θ |↑〉|↑〉 + eiϕ sin θ |↓〉|↓〉. (40)

This last vector is connected to |↑〉|↑〉 through the generators
σ̂

(1)
3 and (σ̂ (1)

1 σ̂
(2)
2 + σ̂

(1)
2 σ̂

(2)
1 )/2 = −iσ̂

(1)
+ σ̂

(2)
+ + iσ̂

(1)
− σ̂

(2)
− , σ̂+

(σ̂−) being the raising (lowering) operators. �
This theorem implies that the minimal number of param-

eters required to define the orientation of a set S cannot be
smaller than 2N − 2, apart from the trivial case of a completely
symmetric set S, which does not have an orientation. This
property was intuitively introduced in Ref. [7], where we
noted that a set with the highest symmetry SU(N − 1) × U(1)
requires 2N − 2 variables to specify the orientation of its
symmetry axis.

C. No-shrinking theorem

At this point we have sufficient tools to prove the no-
shrinking theorem. We will show that if the ontological space
dimension would be smaller than the quantum-state manifold
dimension, then the set S(X) would be invariant with respect
to the group SU(N ), in contradiction with Lemma 3.

Theorem. If the dynamics in a Markov ontological theory
satisfies Property 1 and all the processes are invertible, then
the ontological space dimension M is not smaller than the
quantum-state manifold dimension, that is, M � 2N − 2, N

being the Hilbert space dimension.
Proof by contradiction. Suppose that M < 2N − 2. Let us

consider the unitary evolution Û (�t) defined in Eq. (22) and
the associated conditional probability K given by Eq. (23).
We have from Lemma 1 that a process X → Y with nonzero
probability K(Y |X,�0) is associated with a Ds-dimensional
manifold of unitary evolutions, say U , with

Ds � N2 − 1 − M > N2 − 1 − 2N + 2 = (N − 1)2. (41)

The manifold contains the identity. As a consequence, the set
S(X) evolves, for any unitary evolution inU , to the sameS(Y ).
By means of Lemma 2 we have that

ÛS(X) = S(Y ), ∀Û ∈ U . (42)

Since 1 ∈ U ,

S(X) = S(Y ). (43)

Thus,

ÛS(X) = S(X), ∀Û ∈ U , (44)
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that is, S(X) is symmetric with respect to a group whose
generators are algebraically generated by Ds generators. The
manifold dimension of this group is equal to or larger than
Ds > (N − 1)2. Because of Lemma 4, S(X) is invariant with
respect to SU(N ), but this is in contradiction with Lemma 3.
We conclude that the ontological space dimension M can-
not be smaller than the quantum-state manifold dimension
2N − 2. �

D. Minimal dimension and Schrödinger equation

It is possible to show that, in the case of minimal ontological
dimension, the set of continuous variables can be identified
with a vector living in the Hilbert space whose dynamics is
described by the Schrödinger equation. It does not necessarily
coincide with the quantum state, but moves rigidly with respect
to it.

Suppose that the ontological dimension is minimal, that
is, M = 2(N − 1). From Lemmas 1 through 4 we have that
the set S(X) has to be symmetric with respect to a subgroup
of SU(N ) with manifold dimension equal to N2 − 1 − M =
(N − 1)2. The subgroup is SU(N − 1) × U(1). Thus, the set
has a symmetry axis |φ〉, which is a vector in the Hilbert space
and identifies the orientation of S. Since each ontic state X is
associated with a set S(X), we have the mapping

X → |φ〉. (45)

Because of Lemma 2, in a process associated with the
unitary evolution Û (t), the set S rotates rigidly to Û (t)S. In
particular, its symmetry axis satisfies the Schrödinger equation

i
∂|φ〉
∂t

= Ĥ (t)|φ〉, (46)

where Ĥ (t) is the Hamiltonian that generates Û (t).
The mapping (45) is surjective, but is not necessarily

injective. However, since the number of continuous ontological
variables is just sufficient to label |φ〉 up to a global phase, an
additional discrete index is sufficient to make the mapping
bijective

X ↔ (|φ〉,n). (47)

Thus, the ontic state in a minimal Markov theory is
identified with a vector in the Hilbert space and a possible
additional discrete index. The dynamics of the vector is given
by the Schrödinger equation. |φ〉 is equal to the quantum state
if the set S(X) contains only one state that coincides with the
symmetry axis. This is the case in a wave-pilot theory such as
the de-Broglie–Bohm mechanics.

It is interesting to note that requirements (46) and (47) are
fulfilled by the Kochen-Specker model [13], where the ontic
state is identified by a Bloch vector having the same dynamical
equation of the quantum state.

E. Resource cost with round off error

We have proved that in any hidden-variable theory with
short memory dynamics the dimension of the state space
cannot be smaller than the quantum-state manifold dimension
2N − 2. There is a relation between dimension and resource
cost required to identify an ontic state. By resource cost

we mean the quantity of information required to identify an
ontological state. Obviously the information carried by an ontic
state is infinite since the ontological space is continuous. Thus,
the resource cost as a function of the dimension makes sense
only in the presence of a fixed roundoff error of the continuous
variables.

One can find a scaling law between dimension and resource
cost in the following way. Suppose that the ontic state is
identified by M continuous variables xi , which are defined
in a finite interval. With a suitable rescaling, we can assume
that they run in the interval between 0 and 1. The probability
P (E |�x) of an event E is conditioned by the ontic state �x. It
is assumed that P (E |�x) is a smooth function of �x, but the
discussion could be extended to the case of a finite number of
discontinuities. Let gi be the mean magnitude of

∣∣∂xi
P (E |�x)

∣∣.
Let each continuous variable be discretized by ni points.

This introduces a roundoff error �E in P that scales as√∑M
i=1(gi/ni)2 for sufficiently large values of ni . The number

of bits required to identify the ontic state on the lattice is
proportional to the information

I =
M∑
i=1

log ni. (48)

For a fixed I, using the Lagrange multiplier method we find
that the optimal choice of ni that gives the smallest error is

ni = gie
I
M

ḡ
, (49)

where ḡ ≡ (
∏

i gi)1/M is the log-average of gi . Thus, we have
the scaling law

�E ∼ ḡM
1
2 e− I

M . (50)

The error exponentially decreases with I at a rate inversely
proportional to M . For a fixed error, the information scales as

I ∼ M log
M

1
2 ḡ

�E
. (51)

The no-shrinking theorem states that M is not smaller than
the quantum-state manifold dimension. Thus, in a composite
system, I grows at least exponentially in the number of parts
(for example, the number of qubits in a quantum computer).

It is possible to estimate a lower bound for ḡ. Since the
probability of an event goes from 0 to 1 and xi rambles about
the interval [0:1], it is reasonable to assume that gi cannot be
smaller than a value around 1, that is,

ḡ >∼ 1.

Thus the linear growth of I with respect to M cannot be
mitigated by an exponential decrease of ḡ.

V. CONCLUSION

We have shown that the ontological space dimension in
any hidden-variable theory with a short memory dynamics
cannot be smaller than the quantum-state manifold dimension.
Thus, like the quantum state, the ontic state necessarily carries
for a given accuracy an amount of information that grows
exponentially in the number of subsystems. In comparison
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with Ref. [7], we have provided a better justification of the
relaxation hypothesis, showing that in a compact ontological
space it is possible to find a trajectory along which the
system unavoidably converges toward a region where all the
processes are invertible. Furthermore we have presented a
hidden-variable model of measurement for a qubit whose
ontological space is one-dimensional, which is one-half the
dimension of the Bloch sphere. The corresponding dynamics is
not Markovian, in accordance with the no-shrinking theorem.

This model provides a counterexample making it evident
that the hypotheses of short memory is strictly necessary to
prove the no-shrinking theorem. By dropping it, we have
shown that a single realization can carry less information
than the quantum state. More drastically, we could drop the
causality hypothesis. Indeed the noncausality is implied also
by the Bell theorem and the Lorentz invariance of the hidden-
variable theory. Thus, there are two signs that point to the same
direction, that is, the rejection of causality at the ontological
level. The possibility of an ontological shrinking for a general
N -dimensional Hilbert space in a theory without a Markov
dynamics is an open question whose answer could provide
a deeper understanding of the computational complexity in
quantum mechanics.

ACKNOWLEDGMENTS

I wish to thank J. Wallman and R. W. Spekkens for the
careful reading of the manuscript and useful suggestions.
Research at the Perimeter Institute for Theoretical Physics
is supported, in part, by the Government of Canada through
NSERC and by the Province of Ontario through MRI.

APPENDIX: DERIVING THE ECONOMICAL MODEL
FOR A QUBIT

In this Appendix we will present a systematic method to
generate the model reported in Sec. II. We will consider the
class of probability distributions with the form

ρ(x,n|�v) = r(n|�v)δ[x − fn(�v)], (A1)

where the pair (x ∈ R,n ∈ {0,1}) is the ontic state and �v ≡
〈ψ |�σ |ψ〉 is the Bloch vector corresponding to the quantum
state |ψ〉. The quantities fn(�v) are real functions. The normal-
ization of the distribution gives

r(0|�v) + r(1|�v) = 1. (A2)

When a system is prepared in �v, at the ontological level there
is a probability r(0|�v) [r(1|�v)] that the discrete index takes
the value n = 0 (n = 1). Correspondingly, the continuous
variable takes with certainty the value f0(�v) [f1(�v)]. This class
is the simplest one that fulfils some requirements. As noted
in Sec. IV B, two orthogonal states cannot have overlapping
probability distributions, implying that the support of ρ(x,n|�v)
cannot be the whole ontological space. This rules out the class
of smooth analytical distributions and leads us to consider
the probability distributions with zero-measure support as the
simplest case. In particular, the distributions with a two-point
support are parametrized with three real parameters [the
positions fn(�v) of the points and the relative probability

weight r(0|�v) − r(1|�v)], which are sufficient to cover the
two-dimensional Bloch sphere.

For our purposes, it is convenient to define the variables
xn ≡ fn(�v) and to use them to parametrize the quantum state.
Thus, the probability distribution becomes

ρ(x,n|x0,x1) = r(n|x0,x1)δ (x − xn) . (A3)

Let |φ〉 be the event of some projective measurement. As for the
preparation state, we introduce the Bloch vector �w ≡ 〈φ|�σ |φ〉
to label the event |φ〉. Pn( �w|x) is the conditional probability of
the event �w given the ontic state (x,n). Equation (4) becomes

1∑
n=0

∫
dxPn( �w|x)ρ(x,n|�x) = 1 + �w�v(�x)

2
≡ S, (A4)

where �v(�x) gives the Bloch vector �v as a function of the
parameters (x0,x1) ≡ �x. The quantity 1/2(1 + �w�v) is the Born
probability |〈φ|ψ〉|2 in terms of the Bloch vectors.

Using Eq. (A3), Eq. (A4) becomes after integration

P0( �w|x0)r(0|x0,x1) + P1( �w|x1)r(1|x0,x1) = S. (A5)

Note that the conditional probability Pn( �w|xn) in this equation
depends only on the variable xn. Thus, to find it, we
could consider the four pairs (x0,x1), (x0,y1), (y0,x1), and
(y0,y1). Correspondingly, we have four equations with the
four unknown functions P0( �w|x0), P0( �w|y0), P1( �w|x1), and
P1( �w|y1). These equations are the row elements of the vector
equation

R̂ �P = �S, (A6)

where

R̂ ≡

⎛
⎜⎜⎜⎝

r(0|x0,x1) 0 r(1|x0,x1) 0

r(0|x0,y1) 0 0 r(1|x0,y1)

0 r(0|y0,x1) r(1|y0,x1) 0

0 r(0|y0,y1) 0 r(1|y0,y1)

⎞
⎟⎟⎟⎠ ,

(A7)

�P ≡

⎛
⎜⎜⎜⎝

P0( �w|x0)

P0( �w|y0)

P1( �w|x1)

P1( �w|y1)

⎞
⎟⎟⎟⎠ , (A8)

and

�S ≡ 1

2

⎛
⎜⎜⎜⎝

1 + �w · �v(x0,x1)

1 + �w · �v(x0,y1)

1 + �w · �v(y0,x1)

1 + �w · �v(y0,y1)

⎞
⎟⎟⎟⎠ . (A9)

If R̂ would be invertible, Pn( �w|xn) would be a linear function
of �w, but this is impossible. It can be proved by contradiction.
Suppose that the conditional probabilities are linear functions
of �w, that is, Pn( �w|xn) = Cn(xn) + �dn(xn) �w. They have to
be nonnegative and smaller than or equal to 1. It is clear that
Pn( �w|xn) are equal to 1 at most for only one vector �w, but this is
in contradiction with the fact that the conditional probabilities
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have to be equal to 1 in the one-dimensional manifold of
vectors �w such that fn( �w) = xn. Thus, the equation

det R̂(x0,x1,y0,y1) = 0, (A10)

has to be satisfied for any xn and yn. Its solution is found by
differentiating in y0 and y1

∂2

∂y0∂y1
det R̂(x0,x1,y0,y1)|y0=x0,y1=x1 = 0, (A11)

that is,

r(0|x0,x1)2r(1|x0,x1)2∂x0∂x1 log
r(1|x0,x1)

r(0|x0,x1)
= 0. (A12)

The functions r(n|�x) cannot be identically equal to zero, thus
the only acceptable solution that satisfies also the constraint
(A2) is

r(0|x0,x1) = k1(x1)

k0(x0) + k1(x1)
, (A13)

r(1|x0,x1) = k0(x0)

k0(x0) + k1(x1)
, (A14)

where ki(xi) are positive functions of the variable xi . It is easy
to check that this is also a solution of Eq. (A10). Thus, the fact
that the conditional probabilities Pn( �w|xn) cannot be linear in
�w allows us to find a constraint for the probabilities r(n|�x).

Since the determinant of R̂ is equal to zero, there is a
constraint also for the �S because of Eq. (A6). Let the row
vector �uT be the left eigenvector of R̂ with eigenvalue 0, then
we have from Eq. (A6) that

�uT �S = 0. (A15)

By means of Eqs. (A13) and (A14), after a bit of calculation
we find that the left eigenvector of R̂ with zero eigenvalue is

�u =

⎛
⎜⎜⎜⎝

k0(x0)−1 + k1(x1)−1

−k0(x0)−1 − k1(y1)−1

−k0(y0)−1 − k1(x1)−1

k0(y0)−1 + k1(y1)−1

⎞
⎟⎟⎟⎠ . (A16)

From Eqs. (A9), (A15), and (A16) we obtain by differentiation
the condition

∂y0,y1 (�uT �S)|yn=xn
= 0

(A17)

=⇒ ∂y0,y1

[
1

k0(x0)
+ 1

k1(x1)

]
�v(x0,x1)

∣∣∣∣
yn=xn

= 0,

that is satisfied if

�v(x0,x1) =
[

1

k0(x0)
+ 1

k1(x1)

]−1

[�g0(x0) + �g1(x1)], (A18)

where �g0(x0) and �g1(x1) are generic vectorial functions. This
is the inverse of the equation �x = �f (�v). The functions gn(xn)
and kn(xn) are constrained by the equation �v2 = 1, that is,

[�g0(x0) + �g1(x1)]2 =
[

1

k0(x0)
+ 1

k1(x1)

]2

. (A19)

We will return to it later on.

From Eqs. (A5), (A13), (A14), and (A18) and the identity
S = [1 + �w�v(�x)]/2 we find that

1∑
n=0

{[
Pn( �w|xn) − 1

2

]
k−1
n (xn) − 1

2
�w�gn

}
= 0. (A20)

Note that each term of the summation depends only on one
of the variables x0 and x1. Thus, the conditional probabilities
have the form

P0( �w|x0) = k0(x0)
[

1
2 �w�g0(x0) + H ( �w)

] + 1
2 , (A21)

P1( �w|x1) = k1(x1)
[

1
2 �w�g1(x1) − H ( �w)

] + 1
2 , (A22)

where H ( �w) is an additional function independent of �x. Since
the probability P0( �w|x0) has to be equal to 1 for �w = �v, we
find that

H (�v) = 1

2

[
1

k0(x0)
− �v�g0(x0)

]
, (A23)

where x0 = f0(�v). Similarly, from the condition P0(�v|x0) = 1
we obtain the equation

H (�v) = −1

2

[
1

k1(x1)
− �v�g1(x1)

]
. (A24)

This last equation can be derived by Eqs. (A18) and (A23) and
the constraint �v2 = 1. It is interesting to note that the model
we are constructing works only for a subset of preparation
states �v, as shown in Sec. III, thus the function H ( �w) is not
necessarily given by Eqs. (A23) and (A24) if �w is outside that
subset.

At this point we have almost everything, the last step is
to find the functions kn(xn) and �gn(xn) that solve Eq. (A19).
Differentiating this equation with respect to x0 and x1, we have
that

∂ �g0(x0)

∂x0

∂ �g1(x1)

∂x1
−

(
∂

∂x0

1

k0(x0)

) (
∂

∂x1

1

k1(x1)

)
= 0,

(A25)

that is, the Minkowski inner product between the two four-
vectors

α(x0) ≡
( �g0(x0) + �γ0

1
k0(x0) + χ0

)
; β(x1) ≡

( �g1(x1) + �γ1
1

k1(x1) + χ1

)
,

(A26)

is equal to 0, �γn and χn being constant vectors and scalars,
respectively. Using the Einstein notation, on the index con-
traction, the constraint is

αµ(x0)βµ(x1) = 0. (A27)

It is important to note that α and β depend only on one
of the variables x0 and x1. Using Eq. (A27), Eq. (A19) be-
comes (�g0 − �γ1)2 − ( 1

k0
− χ1)2 − ( �γ0 + �γ1)2 + (χ0 + χ1)2 =

−(�g1 − �γ0)2 + ( 1
k1

− χ0)2. The left-hand and right-hand sides
depend only on x0 and x1, respectively, thus they have to be
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equal to a constant r0

(�g0 − �γ1)2 −
(

1

k0
− χ1

)2

= ( �γ0 + �γ1)2 − (χ0 + χ1)2 + r0,

(�g1 − �γ0)2 −
(

1

k1
− χ0

)2

= −r0. (A28)

These equations and Eq. (A27) are a convenient resettlement
of Eq. (A19).

It is interesting to observe that the conditional probabilities
Pn( �w|xn) and Eqs. (A18) and (A19) are invariant with respect
to the transformation

�g0 → �g0 + �t, �g1 → �g1 − �t, (A29)

for a generic vector �t . This means that the constant vectors �γ0

and �γ1 are redundant and, for example, one could set �γ1 = 0.
To solve Eq. (A27), we have to consider two possibilities:

(a) one of the two four-vectors α and β spans a one-
dimensional vectorial subspace and the other one lives in
the orthogonal subspace; (b) the two vectors span orthogonal
two-dimensional spaces. In the former case no solution exists
such that �v(x0,x1) is locally invertible (only a one-dimensional
subspace of the Bloch sphere is represented). Thus, we con-
sider the latter case. The most general solution up to rotations,
transformation (A29), and variable change xn → Fn(xn) is

�g0(x0) =
⎛
⎝ cos x0

sin x0 sin θ0

0

⎞
⎠ ,

1

k0(x0)
= cos θ0 cos x0 + s,

(A30)

�g1(x1) =
⎛
⎝ cos θ0 csc x1

0
cot x1 sin θ0

⎞
⎠ ,

1

k1(x1)
= csc x1 − s,

where θ0 and s are two free parameters. Only the former is
present in the mapping �x → �v(�x), given by Eq. (A18). We
have that

�v(x0,x1) = 1

1 + cos θ0ux

⎛
⎝ cos θ0 + ux

sin θ0uy

sin θ0uz

⎞
⎠ , (A31)

where

lux = sin x1 cos x0, uy = sin x1 sin x0, uz = cos x1.

(A32)

The mapping is bijective by removing the poles at x1 = 0 and
x1 = π

0 � x0 � 2π, 0 < x1 < π. (A33)

The inverse of the vectorial function �v(�x) in Eq. (A31)
gives the functions fn(�v) = xn, whose trigonometric functions

FIG. 2. (Color online) Two orthogonal coordinate systems for
θ0 = 0.5 rad (left) and θ0 = 1 rad (right).

are

sin x0 = vy sin θ0/�, cos x0 = (vx − cos θ0)/�,
(A34)

sin x1 = �

1 − vx cos θ0
, cos x1 = vz sin θ0

1 − vx cos θ0
,

with � ≡ √
(wx − cos θ0)2 + w2

y sin2 θ0.
Equation (A31) provides a set of orthogonal coordinate

systems of the sphere. The spherical coordinate system is
obtained with θ0 = π/2. Each system is mapped to another one
by means of the Möbius transformation [14]. In Fig. 2 we report
two coordinate systems for θ0 = 0.5, 1. Both of them have two
poles, but with different angular distance that is equal to 2θ0.

From Eqs. (A13), (A14), and (A30) we have that

r(0|�x) = sin x1(s + cos θ0 cos x0)

1 + cos θ0 cos x0 sin x1
, (A35)

r(1|�x) = 1 − s sin x1

1 + cos θ0 cos x0 sin x1
. (A36)

They are positive if

| cos θ0| � s � 1. (A37)

H ( �w) is obtained by Eq. (A23)

H ( �w) = s − �

2
. (A38)

Finally, the conditional probabilities for the events are given
by Eqs. (A21) and (A22)

P0( �w|x) = 1 + (wx − cos θ0) cos x + wy sin x sin θ0 − �

2(s + cos θ0 cos x)
,

(A39)

P1( �w|x) = 1 + (wx cos θ0 − 1) + wz cos x sin θ0 + � sin x

2(1 − s sin x)
.

(A40)

The model in Sec. III is obtained for θ0 = π/2 and s = 1.
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