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Nonlinear Compton scattering in ultrashort laser pulses
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A detailed analysis of the photon emission spectra of an electron scattered by a laser pulse containing only
very few cycles of the carrying electromagnetic field is presented. The analysis is performed in the framework
of strong-field quantum electrodynamics, with the laser field taken into account exactly in the calculations. We
consider different emission regimes depending on the laser intensity, placing special emphasis on the regime
of one-cycle beams and of high laser intensities, where the emission spectra depend nonperturbatively on the
laser intensity. In this regime, we, in particular, present an accurate stationary phase analysis of the integrals
that are shown to determine the computed emission spectra. The emission spectra show significant differences
with respect to those in a long pulsed or monochromatic laser field: The emission lines obtained here are much
broader, and more important, no dressing of the electron mass is observed.
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I. INTRODUCTION

According to classical electrodynamics, an accelerated
charge emits radiation. If the acceleration is due to an incident
laser field, this process of emission may be called inelastic
scattering of the incident laser field by the charge (e.g., an
electron). This process has been thoroughly investigated and
is called either Thomson scattering if quantum effects are
negligible [1–5] or Compton scattering if quantum effects are
important [6–13].

Throughout all of the cited works, the incident laser field
is taken as a plane-wave field with a peak electric field E and
carrier angular frequency ω, and its intensity is characterized
by the relativistically invariant parameter

ξ = |e| E
ω m c

. (1)

Here e < 0 is the electron’s charge, m is its mass, and c is the
speed of light. A pulse in this work is indicated as intense if the
parameter ξ is much larger than unity. An electron in such an
intense laser field is accelerated to relativistic velocities already
in one laser period [14]. The electric field strengths needed
to attain a parameter ξ equal to unity for optical radiation
and for x rays would be E (h̄ω ∼ 1 eV)|ξ=1 ∼ 1010 V/cm and
E (h̄ω ∼ 1 keV)|ξ=1 ∼ 1013 V/cm, respectively. Here h̄ is the
usual Planck constant. These field strengths correspond to laser
intensities of

I (h̄ω ∼ 1 eV)|ξ=1 ≈ 1018 W/cm2,
(2)

I (h̄ω ∼ 1 keV)|ξ=1 ≈ 1024 W/cm2.

In the optical regime (h̄ω ∼ 1 eV), laser intensities of these
orders have already been obtained during the last decade [15].
Among others, these laser systems have been employed to find
extensive experimental proof of nonlinear Thomson scattering
[16–21]. In these experiments, laser systems were employed,
reaching nonlinearity parameters (this choice of language is
explained below) of the order of up to ξ ∼ 1–10. Due to
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lack of sufficiently intense laser systems so far, nonlinear
Compton scattering in a laser field has been verified in only
one experimental setup [22], but with the development of laser
systems to ever higher peak intensities, more experimental
tests for nonlinear Compton scattering seem to be in reach.
The record optical intensity of 2 × 1022 W/cm2, obtained in
2008, corresponds to a parameter ξ of the order of 102 [23].

The parameter ξ is often referred to as the nonlinearity
parameter [9,10]. In fact, for ξ � 1, the interaction of an
electron with the laser is no longer linearly dependent on the
laser intensity. This can be understood classically by observing
that at electron velocities inside the laser field close to c, the
magnetic force on the electron is of comparable strength as the
electric force, and the total interaction is no longer linear in
the external field because the velocity also depends on the field.
Another physical interpretation for the nonlinear dependence
of the scattering rates on the laser intensity can be given in
the photon picture of the laser field. In fact, the intensity of
a radiation field is connected to the photon number density.
For a not too intense laser field, an electron will basically
always scatter only one photon from it. On the other hand, if
the incident radiation is very intense, that is, its photon flux
is very high, the electron likely interacts with many photons
from the laser field. Thus the scattering rate will no longer
depend linearly on the laser intensity but will exhibit a more
complex dependency. In this picture, the parameter ξ gives the
ratio of energy absorbed by the electron �E = |e|EλC in one
Compton wavelength λC = h̄/(mc) in units of the incident
laser photon energy Eω = h̄ω. In this sense, if ξ � 1, the
electron on average absorbs more than one photon from the
laser field during the process, which again yields nonlinear
effects. So in this work, the terms multiphoton and nonlinear
Compton scattering are used interchangeably.

The photon flux in state-of-the-art laser facilities may now
become so high that the electron absorbs a large number of
photons, resulting in the emission of a single high-energetic
photon. If the energy of this photon is of the order of the
electron’s energy, then the recoil effect on the electron motion
has to be taken into account. This is an intrinsically quantum ef-
fect. The strength of nonlinear quantum effects is described by
the dimensionless parameter χ = |e|h̄

√
−(Fµνp

ν)2/(c3m3),
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where pµ = (ε, pc) = (mγc2, pc) is the electron’s initial four-
momentum, where Fµν = kµaν − kνaµ is the electromagnetic
field strength tensor [kµ is the laser photon four-momentum
and aµ = (0,a) is the laser four-potential strength, with a2 =
−m2ξ 2/e2] and the metric gµν = diag(+1, − 1, − 1, − 1) is
used in this article. It is always possible to consider the
scattering of an electron by a plane wave in a reference
frame in which the electron and the laser field are initially
counterpropagating, and in that frame, the expression of χ

simplifies to

χ = (kp)

mcω

E
Ecr

= Erf

Ecr
, (3)

where for two four-vectors aµ and bµ we introduced the
notation (ab) = aµbµ, and Ecr = m2 c3/h̄|e| is the critical field
of QED. This allows the interpretation of χ as the laser’s
electric field amplitude evaluated in the reference frame in
which the electron initially is at rest, in units of Ecr. The critical
field transfers an energy �E = mc2 to an electron over one
electron Compton wavelength. Creating an electric field of that
amplitude would demand a laser intensity of

Icr = c

8π
E2

cr = 2.3 × 1029 W

cm2
. (4)

All laser fields available today fall short of reaching the
critical field strength by at least 3 or 4 orders of magnitude.
The physical relevance of this quantity is that in a constant
and uniform electric field of the critical field strength, the
probability of creating electron-positron pairs from a vacuum
becomes nonnegligible [24]. So if the parameter χ approaches
unity, the electron will feel an electric field strength at which
there are nonlinear QED effects expected to happen. It has
been pointed out that for small intensity parameters ξ � 1,

quantum effects scale with the laser photon energy (in the
initial rest frame of the electron), that is, with the parameter


 = h̄(kp)

m2c2
, (5)

while for the opposite case ξ � 1, they scale with the
parameter χ , that is, rather with the electric field strength [10].
So in the case ξ � 1, which we put particular emphasis on,
we expect, for χ ∼ 1, quantum effects to become important.

Most of the theoretical works done so far on nonlinear
Compton scattering considered a monochromatic laser wave
[7–12]. In fact, there has been some work on electron scattering
from a laser pulse of duration τ and frequency ω [13], but there
the authors considered a pulse fulfilling the condition

τ ω � 1, (6)

that is, a pulse containing many cycles of the carrier field.
However, in order to generate high laser peak intensities and
correspondingly high ξ parameters, laser pulses are com-
pressed spatially as well as temporally. Spatial compression
is usually neglected in theoretical works, assuming to deal
with laser beams which are not tightly focused and which
can be safely approximated by a plane wave. This is also the
case of the present article. Concerning temporal compression,
there have been works on nonlinear Compton scattering not
relying on the condition (6) [25–27]. The resulting structure of
the general scattering matrix element obtained by the authors

agrees with the one found in this article. On the other hand,
in [25–27], the authors perform a more exploratory analysis of
the scattering process in the regime ξ � 1, while in this article,
we present a detailed analytical analysis of high-intensity
(ξ � 1) nonlinear Compton scattering. In this work, next to
the analytical part, particular emphasis is put on the effect
on the spectra of varying the laser intensity and the incident
electron energy. Also, in [25], the authors consider effects of
the absolute phase [the so-called carrier envelope phase (CEP)]
of few-cycle pulses and its impact on the emitted photon energy
spectra. Here we also consider the effect of CEP on the angular
distribution of the emitted radiation (see also [36]).

Laser pulses lasting only one or two cycles, as investigated
in the present work, have become available in different
frequency ranges such as in the mid-infrared [28], in the
near-infrared [29], in the optical [30], and in the extreme
ultraviolet regimes [31,32]. Moreover, we point out that
all high-field laser facilities operating or under construction
employ short pulse durations to generate high field strengths.
For instance, the Petawatt field synthesizer laser system
under construction in Garching (Germany) aims at optical
laser intensities of the order of 1022 W/cm2 (ξ ≈ 102) by
compressing an energy of 5 J to only 5 fs, corresponding
to less than two laser cycles [33]. At the Extreme Light
Infrastructure [34] and the High Power Laser Energy Research
[35] facilities, which aim at unprecedented laser intensities
of the order of 1025–1026 W/cm2, pulse durations of about
10 fs are envisaged. This shows the close linking between
the generation of large values of ξ and short pulse durations.
Additionally, since all high-field facilities referenced here
operate at optical wavelengths, we will also focus on the energy
regime ω ∼ 1 eV for the incident laser. Put in quantitative
terms, short pulses containing one or only a few cycles of the
electric field will be distinguished by the condition

τ ω ∼ 1, (7)

in contrast to Eq. (6). For optical lasers, this corresponds
to pulse durations on the order of τ ≈ 5 fs. We will label
laser pulses fulfilling the condition (7) as ultrashort. As it will
turn out later, the connection between few-cycle pulses and
nonlinear Compton scattering is twofold. Not only does one
have to incorporate Eq. (7) into the framework of Compton
scattering, but also, nonlinear Compton scattering offers a
thorough way of determining the precise temporal shape of
few-cycle laser pulses [36].

The main purpose of this article, however, is to inves-
tigate nonlinear Compton scattering in ultrashort pulses in
the framework of strong-field QED. A visualization of the
scattering process we are going to consider in the language of
Feynman diagrams looks like as shown on the left-hand side
of Fig. 1. The electron enters the laser field with an incoming
four-momentum pµ = (ε, pc). During the interaction with the
laser pulse, it may absorb or reemit n photons from or into
the laser’s photon field, all sharing the same wave vector kµ,
and at some point, the electron emits a single final photon with
wave vector k′ µ. In Fig. 1, n may be an arbitrarily large natural
number (the case n = 0 is absent because energy-momentum
conservation cannot be fulfilled), what we represent by the dots
inserted into the electron line. After the scattering, the electron
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FIG. 1. Feynman diagrams of multiphoton Compton scattering drawn in a conventional QED picture (left) and in the Furry picture (right).

will propagate with a changed four-momentum which, after
exiting the laser field, is given by p′µ = (ε′, p′c). In order
to take into account exactly the ultrastrong laser field, which
cannot be treated perturbatively, one would have to sum over
all n in the process depicted on the left-hand side of Fig. 1.
Instead of doing so, we perform the calculations in the Furry
picture of quantum dynamics, intrinsically taking the external
field into account exactly. Here the electron states employed for
computing the process amplitude are obtained by solving the
Dirac equation in the plane-wave field. The resulting states are
known as Volkov states, and they are indicated as a double solid
line in the right-hand side of Fig. 1. We will restrict to values
of the parameter χ smaller or of the order of 1. Therefore
the main contribution to radiation comes from the diagram
on the right-hand side of Fig. 1, and two-photon emission is
roughly αQED = e2/h̄c ≈ 1/137 times smaller than the process
considered here [10].

The article is organized as follows: In Sec. II, we are going
to work out the theory of the considered process. We will find
that the scattering amplitude is determined by three integrals
of functions of the laser pulse and of the electron parameters.
These integrals are explicitly evaluated in different parameters
regimes. In Sec. III, we present emission spectra of an electron
scattered from two model pulses, which we choose to model
different temporal shapes of a single-cycle pulse. Finally, the
summarizing discussion of Sec. IV concludes the article. Units
with h̄ = c = 1 are used.

II. THEORY

The multiphoton Compton scattering process diagrammat-
ically shown in Fig. 1 is described by the matrix element

Sfi = −i e

∫
ψ̄ p′σ ′ γµ ψ pσ

√
4π

ε′ µ
√

2ωV
ei k′

µxµ

d4x. (8)

Here γ µ are the usual Dirac matrices, the functions ψ pσ

and ψ̄ pσ are the spinor wave functions of the electron in
the background plane-wave field and its Dirac conjugate,
respectively, V is a normalization volume and i is the
imaginary unit. The electron has four-momenta pµ and p′ µ
before and after scattering, respectively. The four-vector ε′ µ
gives the emitted photon’s polarization, while k′µ = (ω′,k′) is
its four-momentum.

The states ψ pσ are found as solutions of the Dirac equation:

{γµ[i∂µ − eAµ(φ)] − m}ψ pσ = 0, (9)

where the vector potential Aµ(φ) describes the background
plane wave and depends only on the phase φ = kx, with kµ

being the wave vector of the laser field. The solutions of the
above equation were found by Volkov already in 1935 [37]
and can be found, for example, in [38]:

ψ pσ (x) = 1√
2ε V

[
1 + e �k �A

2(kp)

]
u pσ ei S, (10)

with the classical action

S = −(px) −
∫ φ

−∞
dφ′
{
e

[pA(φ′)]
(kp)

− e2A2(φ′)
2 (kp)

}
(11)

and a free electron spinor u pσ . The Feynman slash notation
/a = γµaµ is used as throughout this article. For the vector
potential Aµ(φ) we choose the gauge in which Aµ = ψA(φ)aµ

with aµ = (0,A n), where the shape function ψA(φ) gives the
temporal shape of the pulse and n is a unit vector pointing along
the laser’s polarization axis. The electric field of the wave has
an amplitude E = Aω and can be written as E(φ) = EψE (φ) n,
with the electric field’s shape function ψE = −∂φψA(φ).

We are going to investigate the scattering process in a
coordinate frame where the laser pulse propagates along
the positive z axis, that is, is described by the wave vector
kµ = ω(1,0,0,1), and where the electron before the scattering
process propagates along the negative z axis with the initial
four-momentum pµ = (ε,0,0,−p). The laser is modeled to
be linearly polarized along the x direction. This choice of
coordinates is visualized in Fig. 2.

Whenever a particular shape function is needed to obtain
definite results for emission spectra, we will model the laser’s
four-potential by a specific choice. One possible choice used
in this work is

ψA = sech(φ), (12)

corresponding to the electric field’s shape function (see Fig. 3):

ψE = − 1

ω

∂

∂t
ψA(φ) = sech(φ)tanh(φ). (13)
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FIG. 2. (Color online) General setup of the considered process.

The former choice models a single-cycle pulse of the electric
field corresponding in the optical domain to a pulse duration of
roughly 5 fs for ω = 1 eV. Also, it corresponds to a sine-shaped
laser pulse; that is, the maximum of the electric field’s envelope
coincides with a minimum of the oscillating function [39]. To
also model a cosine-shaped pulse, we consider as a second
choice of four-potential

ψA = sech(φ)tanh(φ), (14)

corresponding to the electric field’s shape function

ψE = sech(φ) − 2sech3(φ). (15)

The shape functions are show in Fig. 4, and the temporal
pulse duration is similar to that for choice (13). The above
expressions of the pulse shape functions describe well a single-
cycle laser pulse and have the advantage that a number of exact
analytical results can be obtained.

In order to investigate closer the two choices for the shape
functions (12) and (14), the Fourier transforms of the two
electric fields are shown in Fig. 5. It is clear that the two
choices lead to different frequency distributions with central
angular frequencies of ω∗

sech ≈ 0.76 eV and ω∗
sech tanh ≈ 1.3 eV,

respectively. Even though for the computation of emission
spectra we need specific ψA, many of our findings below will
be valid for arbitrary shape functions.

Plugging now the solutions (10) into Eq. (8), we end up
with the expression

Sf i = (2π )3δ(2)( p′
⊥ + k′

⊥ − p⊥)δ(ε′ + ω′ − ε

− (p′
3 + k′

3 + p))Mf i (16)

of the matrix element Sf i , where the notation a⊥ = (
ax,ay

)
is

used and

Mf i = −i
e
√

2π

ω
√

ω′ ε′ ε V 3
ū p′σ ′

FIG. 3. (Color online) Shape functions according to Eq. (12): ψA
(solid red line) and ψE (dashed blue line).

FIG. 4. (Color online) Shape functions according to Eq. (14): ψA
(solid red line) and ψE (dashed blue line).

×
[
�ε′∗ f0 + e

( �a �k �ε′∗
2(kp′)

+ �ε′∗ �k �a
2(kp)

)
f1

− e2 a2 (kε′∗) �k
2(kp)(kp′)

f2

]
u pσ , (17)

where ε′∗ µ is the complex conjugate of the polarization vector
of the outgoing photon and where the functions

fi =
∫ ∞

−∞
dηψi

A(η)ei
∫ η

−∞ dη′[αψA(η′)−βψ2
A(η′)+ζ ], i ∈ {0,1,2},

(18)

contain all the relevant dynamical information of the process.
Thus analyzing the scattering process amounts essentially to
evaluating the functions (18). There we have introduced the
important parameters

α = −mξk′
x

(kp′)
,

β = − m2ξ 2(kk′)
2(kp)(kp′)

, (19)

ζ = ω′ ε + p cos ϑ

(kp′)
,

with ϑ and ϕ being the spherical angular coordinates of the
emitted photon, assuming the positive z axis as the polar axis.

It is convenient to introduce the notation

g(η) =
∫ η

−∞
dη′[αψA(η′) − βψ2

A(η′) + ζ
]

(20)

1 2 3 4 5
ω(eV)

|E
(ω

)|2
(a

rb
.u

n
it

s)

FIG. 5. (Color online) Electric fields in frequency space for ψA =
sech(φ) (solid red line) and for ψA = sech(φ)tanh(φ) (dashed blue
line).

032106-4



NONLINEAR COMPTON SCATTERING IN ULTRASHORT . . . PHYSICAL REVIEW A 83, 032106 (2011)

for the exponent in Eq. (18). Also, we mention that the
first parameter function f0 is divergent because the complex
exponential factor is not tending to zero for η → ±∞. This
problem, however, can be circumvented by expressing f0 as

a linear combination of the other two parameter functions,
which are well defined due to the preexponential function ψA,
which goes to zero in the considered case of a pulsed laser
field. In fact,

∫ ∞

−∞
dg(η)eig(η) =

∫ 0

−∞
dg(η)eig(η) +

∫ ∞

0
dg(η)eig(η) =

∫ 0

−∞
dg(η) lim

ε→0
eig(η)(1−iε) +

∫ ∞

0
dg(η) lim

ε→0
eig(η)(1+iε)

= lim
ε→0

(
ieig(η)(1−iε)

1 − iε

∣∣∣∣
0

−∞
+ ieig(η)(1+iε)

1 + iε

∣∣∣∣
∞

0

)
= 0. (21)

On the other hand, it is∫ ∞

−∞
dg(η)eig(η) =

∫ ∞

−∞
dη

dg(η)

dη
eig(η) = αf1 − βf2 + ζf0;

(22)

then

f0 = −αf1 − βf2

ζ
. (23)

It is interesting to note that the δ functions in Eq. (16) state
the energy-momentum conservation in the considered process.
We have here a deep difference between the scattering of an
electron off a monochromatic laser wave and off an ultrashort
laser pulse. In the former case, it is possible to expand the
transition matrix element (16) into a Fourier series in which
the sth term contains a four-dimensional energy momentum–
conserving δ function of the form δ(4)(skµ + qµ − q ′

µ − k′
µ).

These δ functions can be interpreted as energy-momentum
conservation laws for an electron absorbing s photons from
the laser field and emitting a single photon of wave vector k′µ.
The quantities qµ and q ′

µ appearing in the energy-momentum
conservation laws are defined as qµ = pµ + e2A2/[4(kp)]kµ

and q ′
µ = p′

µ + e2A2/[4(kp′)]kµ and are the so-called quasi-
momentum of the electron before and after scattering (see
[10]). The square of this quasimomentum is equal to the square

of the so-called dressed mass m∗ = m

√
1 + ξ 2

2 . From the fact
that in our conservation laws, there occurs no quasimomentum,
we conclude that an electron scattering off an ultrashort
laser pulse inside this pulse will not behave as if it had a
dressed mass, unlike in the scattering off a long pulse. This
observation was just recently put into a quantitative frame
considering electron-positron pair creation in ultrastrong laser
pulses by Heinzl et al. [40]. There the authors make the
interesting suggestion to recover information on the mass
dressing by investigating the positions of resonance peaks

in pair production spectra which are affected by an electron
mass shift. From their theoretical investigations, a reduction
of the effective mass inside a few-cycle pulse of an order of
magnitude is obtained as compared to the monochromatic case
of the same intensity. The question if an electron acquires
a mass dressing could also be investigated experimentally
by utilizing nonlinear Compton scattering. In fact, from the
second energy momentum–conserving δ function in Eq. (16),
we obtain

ω′ = ε + p − (ε′ − p′
3)

1 − cos(ϑ)
. (24)

Measuring now not only the final photon’s but also the
electron’s momentum after scattering, this equation could be
tested.

Furthermore, from Eq. (24), one can easily determine the
maximum energy which can be emitted at an angle ϑ :

ω′
max = ε + p

1 − cos(ϑ)
. (25)

If, in addition to the above conservation law, we consider that
ε′ =

√
m2 + p′2, we find an explicit formula to determine the

energy of the electron after the scattering:

ε′ = ε − ω′ + ω′[ε + p cos(ϑ)]

ε + p − ω′[1 − cos(ϑ)]
. (26)

The first energy momentum–conserving δ function in Eq. (16)
simply states that if the electron is initially counterpropagating
with the laser field, then it holds that

p′
⊥ = −k′

⊥. (27)

Starting from the above S-matrix element Sf i , one can
calculate the emitted energy spectrum dE/dω′d� (average
energy emitted between ω′ and ω′ + dω′, in the solid angle
d� = sin ϑdϑdϕ) by averaging over the initial electron spin
and by summing over the final electron spin and the photon
polarization. The final result reads as follows:

dE

dω′d�
= ω′2 e2

ω2π2 εε′

〈
(εε′ + p{ε′ + ω′[1 − cos(ϑ)] − ε − p} − 2m2)|f0|2 − mξ

ω′ 2 sin(ϑ) [1 − cos(ϑ)] cos (ϕ)

ε + p − ω′[1 − cos(ϑ)]
Re(f0f

∗
1 )

−m2 ξ 2Re(f0f
∗
2 ) +m2ξ 2

2

{
ε + p − ω′[1 − cos(ϑ)]

ε + p
+ ε + p

ε + p − ω′[1 − cos(ϑ)]

}
|f1|2

〉
, (28)
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where the expression of ε′ from Eq. (26) has to be substituted.
The parameter functions fi given above in general are

not analytically integrable. However, their properties can be
investigated in limiting cases. For instance, in the low-intensity
regime ξ � 1, it is possible in Eq. (18) to expand the parameter
functions as perturbation series in the small parameter ξ , which
makes them integrable. By noting that ζ ∼ ξ 0, α ∼ ξ, and
β ∼ ξ 2, and after expanding around ξ = 0, one obtains the
textbook result of single-photon Compton scattering [38].

A. High intensities

We consider here the case of a highly relativistic electron
scattered by a relativistically intense laser pulse, that is, ξ,γ �
1. In this case, since the electron is always ultrarelativistic, one
expects from classical considerations that it radiates mostly
along its instantaneous velocity [14], that is, close to polar
angles π − ϑ ∼ ξ/γ for γ � ξ , ϑ ∼ γ /ξ for ξ � γ, or
essentially within the whole interval ϑ ∈ [0,π ] for γ ∼ ξ .
On the other hand, the expected azimuthal angle range is
|ϕ| ∼ min{γ /ξ 2,1/γ } � 1 or |π − ϕ| ∼ min{γ /ξ 2,1/γ } �
1. As we will see, these classical considerations also hold
in the quantum case. The reason is that the motion of an
ultrarelativistic electron is essentially quasiclassical in the
presence of undercritical electromagnetic fields, and quantum
effects amount to the recoil due to photon emission [41]. Then,
at large values of ξ and γ , as we are considering here, we can
focus our analysis on the plane of polarization. Moreover, the
above estimations on the emission region together with the
fact that ω′ ∼ max{ξ 3,γ 2ξ}ω [14] help in concluding that in
the present regime, the parameters defined in Eq. (19) scale as

α,β,ζ ∼ ξ 3. (29)

Here it is important to note that the asymptotic relation for
ζ does not hold if 1 + cos(ϑ) � ξ−1. Thus we will have to
restrict our calculations to angles ϑ not too close to π .

From these relations and from Eq. (18), it can be seen that
the exponential factor of the parameter functions is very large
and the integrand is rapidly oscillating. This allows for an
evaluation of the integrals by means of the stationary-phase
method. The condition for finding a stationary point η0 of the
phase is given by

αψA(η0) − βψ2
A(η0) + ζ

!= 0, (30)

which gives

ψA(η0) = α

2β
±
√(

α

2 β

)2

+ ζ

2 β
. (31)

From the expressions in Eq. (19) of the parameters α, β, and
ζ, it can easily be shown that the expression under the root is
given by(

α

2 β

)2

+ ζ

2 β
= − 1

(m ξ )2

[
m2 + k′ 2

2

(
ε + p

ω′ − k′
3

)2]
≡ −κ2,

(32)

which is always negative and scales as 1/ξ 2 � 1. This fact
allows in some circumstances to neglect the imaginary part of
the stationary point η0 and to treat it as a real number. Note

that the above equations hold for an arbitrary shape function
ψA.

The choice of the sign in Eq. (31) depends on the specific
shape function of the four-potential, and it has to provide
that the resulting expression of the integral is not diverging.
For example, we will show later that for ψA = sech(η), we
have to choose the minus sign in front of the square root. For
the four-potential in Eq. (14), on the other hand, the choice
of the sign depends on the specific stationary point we are
considering.

Since, in the limit ξ → ∞, it holds that α and β are of the
same order, then

ψA(η0)|ξ→∞ = α

2 β
= cot

(
ϑ

2

)
cos(ϕ)

γ +
√

γ 2 − 1

ξ
, (33)

and η0 is real only for

ψA,min � α

2 β
� ψA,max, (34)

where ψA,min/max are the minimum and maximum value
which the function ψA(η) takes for real η, respectively.
The condition (34) is important because if the stationary
point has an imaginary part, the corresponding integral in
Eq. (18) contains an exponentially damping factor, which in
turn implies that the emission is suppressed (note that the
possibility that the integral shows an exponentially amplifying
term is excluded from physical considerations). Consequently,
we consider only such situations in which the condition (34)
is fulfilled. Once the process parameters such as the laser
intensity and the incoming electron energy are fixed according
to a specific experimental setup, the condition (34) turns into a
boundary condition for the observation angles ϑ and ϕ. In the
case under consideration here, the emission will be detectable
only in a narrow cone around the azimuthal angles ϕ = 0 and
ϕ = π . Thus, fixing ϕ to one of these values, the condition in
Eq. (34) provides two values ϑmin and ϑmax, confining the polar
angle range within which significant radiation is expected.
Considering that for the choice (12), we have ψA,min = 0
and ψA,max = 1, one, for instance, finds from Eq. (34) that at
ϕ = π, there is no emission expected. Furthermore, it is found
that to observe emission at ϑmin � 90◦, it must be ξ � 2γ . For
the choice (14), on the other hand, we have ψA,min = −0.5 and
ψA,max = 0.5, and consequently, emission into the half space
ϑmin � 90◦ is observed only for ξ � 4γ . On this respect, we
observe that, based on the relation (34), we have proposed
in [36] a method for determining the CEP of laser pulses with
ξ � 1.

Now, following the method of stationary phase, we expand
the exponential function as well as the preexponentials in
the integrals (18) in a perturbation series in (η − η0) since
for values of η far away from the stationary point, the rapid
oscillations of the integrand will suppress any contribution to
the integral’s value:

fi =̇
∫ ∞

−∞
dη

N∑
n=0

(η − η0)n

n!

(
∂

∂η

)n [
ψi

A(η)
]∣∣∣∣

η=η0

× exp

[
i

M∑
m=0

(η − η0)m

m!

(
∂

∂η

)m

g(η)

∣∣∣∣
η=η0

]
, (35)
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with g(η) being given in Eq. (20) and N and M being the orders
up to which the preexponential and the exponential functions
are expanded, respectively. Due to cancellations in the squared
matrix element, the preexponential perturbation series needs
to be taken into account up to second order. The exponential
series, on the other hand, needs to be considered up to third
order. In fact, from the above expression of the function g(η),
we have

g′′(η) = αψ ′
A − 2β ψ ′

AψA,
(36)

g′′′(η) = αψ ′′
A − 2β

(
ψ ′′

AψA + ψ ′ 2
A
)
.

From Eq. (31) we obtain g′′(η0) = ∓i 2βκψ ′
A ∼ ξ 2 and

g′′′(η0) = 2βψ ′ 2
A ∼ ξ 3. Therefore the values of η around

η0 contributing to the integrals are such that (η − η0) ∼
1/ξ and the second- and the third-order terms in the
exponential give contributions of the same order of
magnitude.

From the above considerations, Eq. (35) takes the form

fi ∼
∑

l

G
(0)
i,l I0,l + G

(1)
i,l I1,l + 1

2
G

(2)
i,l I2,l , (37)

where l is an index running over all stationary points η0,l found
from solving Eq. (33). For reasons of convenience, we defined
G

(0)
i,l := Gi(η0,l), G

(1)
i,l := G′

i(η0,l) and G
(2)
i,l := G′′

i (η0,l) and the
integrals

Ii,l =
∫ ∞

−∞
dη (η − η0,l)

i exp

[
i

(
g0,l + g

(2)
0,l

(η − η0,l)2

2
+ g

(3)
0,l

(η − η0,l)3

6

)]

= exp

[
i

(
g0,l + 1

3

g
(2)3

0,l

g
(3)2

0,l

)]∫ ∞

−∞
dyl yi

l exp

[
i

(
g

(3)
0,l

6
y3

l − 1

2

g
(2)2

0,l

g
(3)
0,l

yl

)]
, (38)

where we have introduced the quantities g0,l := g(η0,l), g
(2)
0,l :=

g′′(η0,l) and g
(3)
0,l := g′′′(η0,l) and where yl = η − η0,l − bl with

bl = −g
(2)
0,l /g

(3)
0,l � 1. In order to work out the exponential

factor outside of the integral in Eq. (38), we note that

g
(2)3

0,l

g
(3)2

0,l

= −i
2(±κ3)β

ψ ′
A(η0,l)

, (39)

where the freedom to choose the sign of κ is written
explicitly. Thus this term gives a purely real contribution to the
exponential in Eq. (38). If we next expand g0,l as a function
of κ � 1, around zero up to third order, we can easily show
that the imaginary part of g0,l exactly cancels the quantity

g
(2)3

0,l /g
(3)2

0,l in such a way that

g0,l + 1

3

g
(2)3

0,l

g
(3)2

0,l

≈ Re(g0,l). (40)

Finally, if i = 0 in Eq. (37), then the integration in yl in Eq. (38)
can be performed analytically, and the result is

I0,l ∼ 2 eiRe(g0,l )

(
− 2 π3

g
(3)
0,l

) 1
3

Ai (λl) , (41)

where Ai(x) is the Airy function of first kind [42] and its
argument λl is defined as

λl =
(

2κ3β

ψ ′
A(η0,l)

) 2
3

. (42)

Now, from the first line in Eq. (38), we obtain

I2,l = 2
∂

∂ g
(2)
0,l

I0,l ∼ 4eiRe(g0,l )

(
2iπ3

g
(3)
0,l g

(2)3

0,l

) 1
3

× [
λ

3
2
l Ai(λl) + λl Ai′(λl)

]
. (43)

Finally, in order to compute the last integral I1,l , we employ
the same technique as in Eq. (21) and obtain

I1 = − g
(3)
0,l

2 g
(2)
0,l

I2. (44)

In conclusion, Eqs. (37), (41), (43), and (44) provide us with
the asymptotic expansion of the fi in the ultrarelativistic
regime.

To illustrate the above techniques, we apply them to the
shape functions (12) and (14). In the former case we note that
by virtue of symmetry considerations, the parameter functions
fi need to be evaluated only in the interval η ∈ [0,∞]. Thus
Eq. (33) provides as a unique stationary point the positive
solution of the equation

η0 = arcsech

(
α

2β

)
. (45)

The exponential function in this case is given by

g(η) = 2 α arctan

[
tanh

(
η

2

)]
− β tanh(η) + γ η, (46)

where an unimportant constant phase was dropped. According
to Eqs. (36) and the discussion following it, the second and
third derivatives of Eq. (46) at the stationary point are

g
(2)
0 = ∓i κ

α2

2β

√
1 −

(
α

2β

)2

,

(47)

g
(3)
0 = 2β

(
α

2β

)2[
1 −

(
α

2β

)2]
.

Since it must be ig(2)
0 < 0 to obtain convergent integrals Ii,l ,

and noting that β < 0, we find that for the choice (12) in
Eq. (31), one has to choose the negative sign of κ . Finally, by
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plugging now the solutions (47) into the above equations, we
immediately find the asymptotic transition amplitude.

Next, for the cosine-shaped pulse arising from the choice
(14), we meet a different situation. Since in this case the
integrals fi do not feature symmetry properties, we have
to integrate the whole range η ∈ [−∞,∞]. Then, however,
Eq. (33) gives two real solutions η0,i :

η0,1 = sgn

(
α

2β

)
arcsech

⎡
⎢⎢⎣
√√√√1 +

√
1 − (

α
β

)2

2

⎤
⎥⎥⎦ ,

(48)

η0,2 = sgn

(
α

2β

)
arcsech

⎡
⎢⎣
√√√√√ 2

(
α

2β

)2

1 +
√

1 − (
α
β

)2

⎤
⎥⎦ .

It is easy to obtain g
(2)
0,l and g

(3)
0,l by plugging these latter

expressions into Eqs. (36), but the resulting expressions are
cumbersome and thus not reported. The asymptotic expansion
of the fi is then simply obtained by summing up the
contributions from the two stationary points.

B. Classical limit

In electron-laser scattering, there are essentially two types
of quantum effects. First is the fact that the motion of the
electron is quantum. However, due to the fact that at ξ,γ � 1,

the electron is highly relativistic and its typical de Broglie
wavelength is very small, this effect may be neglected. On
the other hand, if an electron emits a photon whose energy
is comparable to the electron’s energy, it will feel a recoil.
Since, for the incident laser pulse, we are considering optical
frequencies, the only energy which can possibly be comparable
to the electron’s initial energy is the outgoing photon’s energy.
The classical limit is therefore defined by the condition [10]

(kk′)
(kp)

� 1. (49)

This allows for some major simplifications in the emission
probability [Eq. (28)]:

dE

dω′d�

(kk′)�(kp)≈ ω′2 e2

ω2π2 γ 2
{ξ 2[|f1|2 − Re(f0f

∗
2 )] − |f0|2},

(50)

with the functions fi still given by Eq. (18) but with
the parameters α, β, and ζ given by Eq. (19) with the

substitution (kp′) → (kp). In this way, one exactly recovers the
classical expression of the energy spectrum calculated from
the trajectory of the electron in a plane wave and from the
Liénard-Wiechert potentials [14].

III. NUMERICAL SPECTRA

The analytical results obtained in the previous section
give the differential photon energy spectrum of nonlinear
Compton scattering in ultrashort laser pulses. We are going
to show low-intensity emission spectra for the choice (12)
only. For high intensities ξ � 1, however, we aim to show
the applicability of the stationary phase analysis to arbitrary
shape functions and show emission spectra for the choice (14)
as well. All spectra are plotted at the observation angle ϕ = 0,

unless otherwise mentioned. This choice is justified by the
fact that an ultrarelativistic electron mainly emits in the plane
determined by the laser polarization and propagation direction.

A. Low-intensity regime

We characterize the low-intensity regime by either ξ � 1 or
ξ ∼ 1. According to the arguments given in the introduction,
the regime in which ξ � 1 corresponds to scattering domi-
nated by the single-photon processes as depicted in Fig. 6.

In this linear regime of Compton scattering, the parameter
χ is not appropriate to distinguish the importance of quantum
effects since it does not give an estimate for the importance
of linear quantum effects. As we have mentioned in the intro-
duction, an appropriate parameter to quantify their importance
is [10]


 = (kp)

m2
= χ

ξ
= ω(ε + p)

m2
, (51)

with the last equality holding in the special coordinate frame
introduced in the last paragraph. From Eq. (51) it follows that
in the regime ξ � 1, we have 
 � χ, and quantum effects can
affect the spectra even for χ � 1 as soon as 
 ∼ 1; however,
in this case they are linear.

In this section we will plot emission spectra only for
ϑ = π because at small values of ξ an initially ultrarela-
tivistic electron experiences only a little deviation from its
initial propagation direction upon scattering from the laser
pulse.

Following the procedure outlined in the theory section, we
computed perturbative energy spectra. To this purpose, we
chose a small nonlinearity parameter ξ = 0.05 corresponding

FIG. 6. Diagrams contributing to single-photon Compton scattering. Note that, as it is known, two diagrams contribute to the lowest order
Compton scattering. By working in the Furry picture, both diagrams are automatically taken into account.

032106-8



NONLINEAR COMPTON SCATTERING IN ULTRASHORT . . . PHYSICAL REVIEW A 83, 032106 (2011)

FIG. 7. (Color online) Energy emission spectra for ξ = 0.05 and
(a) γ = 10 (
 ≈ 4 × 10−5) and (b) γ = 2 × 105 (
 ≈ 0.8). The blue
crosses in both spectra have been obtained by a classical calculation.

to an optical intensity of I ≈ 4.4 × 1015 W/cm2 (here and
in the following, the laser photon energy is assumed to
be 1 eV). In Fig. 7(a), we show the classical (crosses)
and the quantum (solid red line) emission spectra for an
electron with a moderate initial Lorentz factor of γ = 10.
The above parameters correspond to a quantum parameter of

 ≈ 4 × 10−5 � 1, and in fact, we observe that the two spectra
are identical. The classical spectrum was obtained by first
solving the Lorentz equation and then plugging the resulting
trajectory into the Liénard-Wiechert potentials [see Eq. (66.9)
in [14]]. In Fig. 7(b), however, we consider an increased
Lorentz factor for the incoming electron of γ = 2 × 105,
leading to 
 ≈ 0.8. Thus quantum effects are important in
this case. In fact, the spectrum shows two clear differences
with respect to the classical spectrum of Fig. 7(a), only the
first of which can be explained classically. The first difference
is that in Fig. 7(b), considerably higher photon frequencies
are emitted. This can be explained through a blueshift of the
incoming laser’s photons. In fact, since ξ � 1, the observed
peak corresponds to the absorption of one laser photon. In
the electron’s average rest frame, the central laser photon
frequency ω∗ is blueshifted to

ω∗′ = γω∗(1 + βD). (52)

In this expression, βD is the electron’s drift velocity, that is, the
velocity of the reference frame in which the electron would be
on average at rest during the scattering process if the scattering
laser field were periodic [4]. In this frame the electron emits
a photon with the same frequency as the incident ones. Then
the energy of the emitted photon at an angle ϑ is obtained by
going back to the laboratory frame. After some algebra, one

finds as the theoretically predicted frequency of the spectrum’s
maximum

ω′
Theo = ω∗ 1 + βD

1 + βD cos(ϑ)
. (53)

The maximum of the spectrum in Fig. 7(a) agrees very well
with the frequency ω′

Theo ≈ 300 eV computed via Eq. (53).
However, for the parameters of Fig. 7(b), this equation predicts
a peak at ω′

Theo ≈ 1011 eV, what is indeed reproduced by the
crosses but strongly disagrees with the quantum result. In fact,
at very large γ � ξ and at ϑ = π, we have, for Eq. (53),

ω′
Theo ≈ ω∗ 1 + βD

1 − βD

≈ 4ω∗ γ 2; (54)

that is, ω′
Theo grows quadratically with γ . Now, looking back at

Eq. (25), we see that there exists a maximally allowed emission
frequency, which for large γ and ϑ = π reads as

ω′
max = m γ, (55)

which grows linearly with γ . Thus, by comparing the latter
two equalities, we already infer that at some value of γ, the
blueshifted center frequency of the incident laser pulse will
exceed the maximally allowed emission frequency. At these
values of γ, the spectra will change their shapes, and the
radiation will pile up toward the cutoff energy ω′

max [43]. These
considerations can be put in a more mathematical form by
observing that classically, the spectra at small values of ξ are
essentially given by the Fourier transform of the laser field (in
this regime, the parameters α, β, and ζ are proportional to
ω′). On the other hand, in the quantum regime, the parameters
α, β, and ζ have a nonlinear dependence on ω′, and they
diverge in the limit ω′ → ω′

max. In this way, the resulting strong
oscillations damp the spectrum in the same limit.

By increasing the value of the nonlinearity parameter to
ξ � 1, new features arise in the energy emission spectra, and
if 
 � 1, they can also be interpreted classically. In Fig. 8 we
show the emission spectrum for ξ = 2 and an initial γ factor
of the electron of γ = 2500.

This choice corresponds to a quantum parameter of

 = 10−2, and the crosses again give the results of a classical
computation. Although there are slight discrepancies between
classical and quantum results toward higher emission frequen-
cies, which actually hint at upcoming quantum effects, up
to around the first minimum, they still match very well. The
appearance of several minima and maxima in the spectrum

3500

3000

2500

2000

1500

1000

500

0 1×107 2×107 3×107 4×107 5×107 6×107
0

dE
dω dΩ

ω (eV)

FIG. 8. (Color online) Energy emission spectrum for ξ = 2 and
γ = 2500 (
 = 10−2). The crosses have been obtained by a classical
calculation.
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E (φ ) ϑ0
e−

FIG. 9. (Color online) Classical electron trajectory (solid line)
inside a field given by Eq. (13) (dashed blue line).

is the main difference to the previous case in which ξ � 1.
The position of the minima can be interpreted both classically
and in terms of a quantized photon field. The quantum picture
is easily established, reminding us that the parameter ξ is
interpretable as the average number of photons absorbed by the
electron over one Compton wavelength. Then the additional
peaks in the spectra can be viewed as multiphoton peaks.
The positions of these maxima are the integer multiples of
the blueshifted ground frequency predicted by Eq. (53). By
computing the blueshifted ground frequency ω′

Theo for ξ = 2
and γ = 2500, as in Fig. 8, we find

ω′
Theo ≈ 6 × 106 eV, (56)

which indeed agrees well with the first maximum of Fig. 8.
Classically the pattern is interpreted as interferences

between the field emitted by the electron in different parts
of its trajectory. In fact, it can be seen that the electron emits
twice into every angle ϑ0. To clarify this, we show in Fig. 9
the trajectory of an electron (solid curve) moving in a field
corresponding to Eq. (13) (dashed blue curve). The two red
parts of the trajectory correspond to the emission angle ϑ0.
Furthermore, we note that as visualized in Fig. 9, a classical
electron covers only a certain angle range deviating from its
initial direction of propagation when moving in the given
electric field. Since its velocity vector will only point into
this confined angular region, the electron will also only emit
into this region, provided it is ultrarelativistic.

This is the classical analog to the boundary angles found
from Eq. (34). In order to quantitatively investigate the
interferences from these two trajectory segments, we employ
a classical calculation. Now, classically the differential energy
spectrum dE/dω′d� can be calculated via, for example,
Eq. (14.65) in [44]. In this formula we can replace the
integral over all times by a sum over the two time instants
when the electron emits into direction n. These instants can
be distinguished by the phase values φ1 = t1 − n · r(t1) and
φ2 = t2 − n · r(t2). We then end up with a formula for the
differential energy spectrum:

dE

dω′d�
≈ e2

4 π2

∣∣∣∣
{

n × [(n − β1) × β̇1]

(1 − β1 · n)2
ei ω′[t1−n·r(t1)]

+ n × [(n − β2) × β̇2]

(1 − β2 · n)2
ei ω′[t2−n·r(t2)]

}
�t

∣∣∣∣
2

,

(57)

with β1/2 := β(t1/2) being the electron’s velocity, β̇1/2 its
acceleration at the two time instants, and �t the discretized
time interval.

The approximation of only two space-time points con-
tributing to the radiation detected under ϑ0 is better fulfilled
the larger the electron’s Lorentz factor at the instant of
emission is, that is, the narrower its emission cone becomes.
In order to evaluate Eq. (57), we note that the points φ1

and φ2 by construction satisfy that β1 = β2 =: β, that the
direction of observation is n = [sin(ϑ0),0, cos(ϑ0)], and that,
since the electric field from Eq. (13) is antisymmetric around
its zero point, the forces acting on the electron at the two
points are exactly opposite: β̇1 = −β̇2 =: β̇. Following these
considerations, we have

d2E

dω′ d�
≈ e2(�t)2

4 π2

∣∣∣∣n × [(n − β) × β̇]

(1 − β · n)2

×{ei ω′[t1−n·r(t1)] − ei ω′[t2−n·r(t2)]}
∣∣∣∣
2

. (58)

So we note that we will have dE/dω′d� = 0, that is,
destructive interference at the frequencies ω′

n, where it
holds that

ω′
n = 2π n

[t1 − n · r(t1)] − [t2 − n · r(t2)]
. (59)

The method described above, of course, is not rigorously
applicable at the polar angle ϑ = π because many points of the
electron’s trajectory contribute to the emission in that direction.
However, the frequencies at which destructive interference
occur can be found by computing the ω′

n at a polar angle
ϑ = π − ε and then considering the limit ε → 0. Now, by
solving Eq. (34) for the minimal polar angle where radiation
is expected for the choice (12) of ψA, we find

ϑmin = 2 arccot

⎛
⎝ ξ

γ
(
1 +

√
1 − 1

γ 2

)
⎞
⎠ ≈ π − ξ

γ
. (60)

Accordingly, by numerically analyzing the electron trajectory,
one obtains from Eq. (59) that

ω′
1|ϑ→π = 1.1 × 107 eV, (61)

matching the observed first frequency of destructive inter-
ference from Fig. 8 well. It is noteworthy that in the above
derivation, the ultrashort duration of the scattering laser pulse
did not enter. Thus, in the realm of classical electrodynamics,
the position of the multiphoton peaks could equally have
been recovered in an analysis of a long pulse. In this
case, however, the peaks would have been much narrower
going in the limit of a monochromatic wave to delta spikes.
On the other hand, in Fig. 9 and in all other emission
spectra we show, we observe significant broadening of the
multiphoton peaks. This is the second essential difference in
the scattering of an electron from a long and an ultrashort
laser pulse apart from the absence of a mass dressing in the
latter case.

It is interesting to note in Eq. (59) that the value of
ω′

1 is inversely proportional to the difference (t1 − t2) −
n · [r(t1) − r(t2)]. Now, at ϑ ≈ π, it is dt − n · dr = (1 +
βz) dφ/(1 − βz). From the analytical solution of the Lorentz
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FIG. 10. (Color online) Energy emission spectra for ξ = 5 and
(a) γ = 2500 (
 ≈ 2.5 × 10−2) and (b) γ = 2 × 105 (
 ≈ 0.8). The
crosses in (a) have been obtained by a classical calculation.

equation in a plane wave, it can be seen that at a given
γ , the difference (t1 − t2) − n · [r(t1) − r(t2)] increases at
increasing ξ . Consequently, the first frequency of destructive
interference will be smaller. This assertion is fully consistent
with the quantum multiphoton picture. In order to confirm
it, we show in Fig. 10 the energy emission spectra again at
γ = 2500, as in Fig. 8, but with a nonlinearity parameter of
ξ = 5 [Fig. 10(a)]. In Fig. 10(a), 
 = 2.5 × 10−2 � 1 and
the spectrum is classical (the crosses again give the results
of a classical calculation). Comparison with Fig. 8 clearly
shows the appearance of many peaks. Computing for the
parameters of Fig. 10(a), the frequencies of the first maximum
and minimum according to Eq. (53) (multiphoton picture) and
Eq. (59) (interference picture), respectively, we find that

ω′
maximum ≈ 1.4 × 106 eV,

(62)
ω′

minimum ≈ 2.2 × 106 eV.

This is in good agreement with the numerical result. On the
other hand, in Fig. 10(b), it is 
 ≈ 0.8, and quantum effects
dominate the spectrum’s structure. This is manifest from the
fact that the distance between two next peaks decreases as the
emission frequency tends to ω′

max.
We finally observe that deviations from Eq. (59) may also

arise for not very large γ and ξ . In this case the electron is
not ultrarelativistic, and its emission cone will be relatively
wide. The wider the emission cone is, however, the poorer
is the assumption that the emission detectable at a certain ϑ0

originates from only two distinct space points, which was an
essential assumption to arrive at Eq. (59).

B. High-intensity regime

In order to calculate the spectra in the high-intensity regime
(ξ � 1), we substitute the asymptotic expansions (37) into the
general formula (28). Since the spectra would show numerous
maxima and minima, it is clearer to plot only the envelope
of the spectra. Furthermore, we show that in fact, in this
regime, the parameter χ is fit to quantify the onset of quantum
parameters. Finally, apart from the last two examples (Figs. 14
and 15), we will employ the sine-shaped pulse in Eq. (12).

We begin by presenting the energy emission spectrum
for the parameters γ = ξ = 100. According to Eq. (3), this
corresponds to a quantum nonlinearity parameter of χ ≈ 0.04.
From Eq. (34), we find that with this choice, the minimal angle
where radiation is expected is ϑmin ≈ 127◦, and in Fig. 11, we
plot this as the smallest scattering angle.

At ϑmin, the energy spectrum covers only substantially
smaller emission frequencies than at larger angles. The
maximal polar observation angle the emission spectrum is
plotted for is ϑ ≈ 167◦. The reason for this is that, as discussed
[Eq. (29)], for larger ϑ, the approximation α ∼ β ∼ ζ does not
hold any more. At ϑ ≈ 164◦, for example, we find |β/ζ | ≈ 9,

and for growing angles, this ratio quickly exceeds 10.
Since for the above parameter choice the quantum nonlin-

earity parameter χ is rather small, a classical calculation gives
emission spectra comparable to those in Fig. 11. If, according
to Eq. (25), we calculate the maximum frequency that may be
emitted from an electron under the given process parameters,
we find that

ω′
max(γ = 100) =

{
63.8 MeV for ϑ = 127◦,
52.2 MeV for ϑ = 167◦,

(63)

and the maximum frequencies at all other angles in the
range ϑ ∈ [ϑmin,ϑmax] lie between these two frequencies.
The frequencies actually emitted in the spectra in Fig. 11
are approximately 1 order of magnitude smaller than the
maximally allowed emission frequency, implying that we are
in fact in the classical regime.

In order to observe backscattering, that is, ϑmin � 90◦, we
have to consider ξ � 2γ . We thus consider a lower value of
γ and plot the emission spectra in the case of ξ = 100 and
γ = 50 such that we expect emission into a large polar angle

0 2 106 4 106 6 106 8 106 1 107

40
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0
0 2×106 4×106 6×106 8×106 107
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FIG. 11. (Color online) Envelopes of the energy emission spectra
for γ = ξ = 100 for the emission angles ϑ = 127◦ (solid red line),
ϑ = 147◦ (dashed blue line), and ϑ = 167◦ (dotted green line).
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FIG. 12. (Color online) Envelopes of the energy emission spectra
for γ = 50 and ξ = 100 for the emission angles ϑ = 91◦ (solid red
line), ϑ = 122◦ (dashed blue line), and ϑ = 154◦ (dotted green line).

regime. The quantum parameter in this scenario is χ ≈ 0.02,

and the resulting spectra are shown in Fig. 12.
The general shape of these spectra is similar to those

previously shown in Fig. 11, albeit with different axis scales.
The emission range indeed is found to extend down to
emission angles close to ϑ = 90◦. Due to its lower initial
energy as compared to the laser intensity, the deviation of the
electron’s direction of propagation from its initial orientation
is increased. We have ensured that the emission is strongly
suppressed at ϑ < 90◦.

In order to study a case where quantum effects become
important, we choose ξ = 100 and γ = 104, which gives a
quantum parameter of approximately χ ≈ 4. The resulting
spectra are presented in Fig. 13.

In the spectra plotted we find clear differences with respect
to those in Figs. 11 and 12. Not only do the scales of emitted
frequencies and of the spectra’s amplitudes differ by several
orders of magnitude, but also the shapes of the spectra look
distinctly different. So in Fig. 13, we find a fast decay of
the emitted energy when the emitted frequencies approach
the maximally emitted photon energy, while in Fig. 11, the
spectra exhibited a much more moderate decrease. This again
is evidence for the effect of kinematic pile up as described in
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FIG. 13. (Color online) Envelopes of the energy emission spectra
for γ = 104 and ξ = 100 for the emission angles ϑ = 179.5◦ (solid
red line), ϑ = 179.6◦ (dashed blue line), and ϑ = 179.8◦ (dotted
green line).
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FIG. 14. (Color online) (a) Envelopes of the energy emission
spectra for γ = ξ = 100 at the emission angles ϑ = 152◦ (solid red
line), ϑ = 160◦ (dashed blue line), and ϑ = 167◦ (dotted green line).
(b) Envelopes of the energy emission spectra for γ = 50, ξ = 200 at
the emission angles ϑ = 90◦ (solid red line), ϑ = 110◦ (dashed blue
line), and ϑ = 131◦ (dotted green line).

Sec. III A. Computing again the maximally allowed emitted
photon frequency according to Eq. (25), we find that

ω′
max(γ = 104,ϑ = 179.5◦) = 5.11 × 109 eV, (64)

which is close to the frequency where the fast dropoff in
Fig. 13 occurs. So we conclude that in the regime ξ � 1,

as soon as the quantum parameter χ becomes of order unity,
the emitted photons will approach their maximally allowed
frequencies. This interpretation of the spectra’s distortions
found in Fig. 13 clearly hints at quantum effects which, due
to energy-momentum conservation, prevent the emission of
higher energetic photons.

Up to now, all emission spectra were obtained for the
choice of ψA corresponding to a sine-shaped electric field
[Eq. (12)]. To investigate the scattering off a cosine-shaped
pulse, we computed emission spectra for the choice (14). For
this choice from Eq. (34) we do not only expect emission
into the azimuthal angle regime around ϕ = 0 but also to
ϕ = π . We begin in Fig. 14(a) by showing the spectra for
ξ = γ = 100, which makes it easy to compare the results to
those shown in Fig. 11. We have ensured that the spectra at
ϕ = π are the same as those at ϕ = 0, and we show only the
case ϕ = 0.

We note that in Eq. (34), the values ψA,min/max are changed.
Thus the angular range where emission is predicted changes
with respect to the spectra in Fig. 11 for an unchanged ratio
ξ/γ . In Fig. 14, we accordingly plotted the spectrum at
ϑ = 152◦ as the smallest polar angle because it is found from
Eq. (34) that the emission extends only to larger angles.
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FIG. 15. (Color online) Envelope of the energy emission spec-
trum for γ = 104 and ξ = 100 for the emission angle ϑ = 179.8◦.
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In Fig. 14(b), we show the emission spectra for γ = 50
and ξ = 200. In these spectra we find the minimal emission
angle to be ϑmin = 90◦. So it becomes obvious that for
the choice (14), in order to observe radiation in the space
region ϑmin < 90◦, a nonlinearity parameter ξ � 4γ must be
employed. This is a clear difference to the sine-shaped pulse
where, for backscattering to occur, it had to be satisfied that
ξ � 2γ .

Finally we show a spectrum for the cosine-shaped pulse
where quantum effects become important. For this purpose we
choose the parameter set ξ = 100 and γ = 104, corresponding
to a quantum parameter χ = 4. The resulting spectrum is
shown in Fig. 15. As for the case of the sine-shaped pulse,
we observe in this spectrum the typical quantum pile-up of the
radiation toward ω′

max.

IV. CONCLUSIONS

As we mentioned in the introduction, there has already
been a lot of work on Thomson and Compton scattering from
monochromatic [7–10] or long-pulsed [13] laser fields. In
the present article we have considered the opposite situation,
in which the pulse contains only one or a few cycles.
Comparing our results to the previous work, we find some
agreement as well as some differences. We obtain analogous
qualitative behavior in our emission spectra concerning the
rise of nonlinear quantum effects in the scattering process.
Specifically we could show that in the regime ξ � 1, the
parameter χ also in the case of ultrashort laser pulses is

suitable to characterize the onset of quantum effects. However,
we could unveil two major differences between these earlier
treatments and our analysis.

First of all, we found the momentum conserving δ functions
contained in the transition matrix element to differ from those
obtained for scattering off monochromatic laser waves or long
pulses. We interpreted this as the absence of a dressed mass
effect, in particular for ultrashort pulses containing only one
laser cycle. Additionally we pointed out that this prediction
could be tested by not only detecting the photons emitted in
the scattering process but also the scattered electrons. Then, by
measuring the momenta of the outgoing particles, one could
judge if the electron propagated with a dressed mass inside
the pulse or not. Second, we found a different structure of
the energy emission spectra. Even though the multiphoton
peaks are still present, they are significantly broadened with
respect to the case of a monochromatic laser beam. This can
be understood such that for ultrashort durations a laser pulse
can no longer be viewed as composed of many photons with
the same energy. These two features are the effects we find to
be expected when considering ultrashort pulses in an electron-
laser scattering event.

Moreover, we have shown analytically that when classical
electrodynamics apply, a classical interference picture and
a quantum mechanical multiphoton description both consis-
tently describe the position of the minima and maxima in the
emission spectra. Finally, by means of a careful application
of the saddle-point method, we have been able to calculate
analytically the spectra at large values of ξ also for ultrashort
laser pulses.
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