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Time operators in stroboscopic wave-packet basis and the time scales in tunneling
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We demonstrate that the time operator that measures the time of arrival of a quantum particle into a chosen
state can be defined as a self-adjoint quantum-mechanical operator using periodic boundary conditions and
applied to wave functions in energy representation. The time becomes quantized into discrete eigenvalues; and
the eigenstates of the time operator, i.e., the stroboscopic wave packets introduced recently [Phys. Rev. Lett. 101,
046402 (2008)], form an orthogonal system of states. The formalism provides simple physical interpretation of
the time-measurement process and direct construction of normalized, positive definite probability distribution for
the quantized values of the arrival time. The average value of the time is equal to the phase time but in general
depends on the choice of zero time eigenstate, whereas the uncertainty of the average is related to the traversal
time and is independent of this choice. The general formalism is applied to a particle tunneling through a resonant
tunneling barrier in one dimension.
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I. INTRODUCTION

The concept of a time operator in quantum mechanics is
a difficult and confusing one [1–3]. Heisenberg formulated
the time-energy uncertainty principle in the early days of
quantum theory, indicating through analogy with the position-
momentum uncertainty principle, that some time operator
should exist. However, shortly after this, Pauli argued that no
such self-adjoint operator can exist [4]. Further development
in scattering theory pursued the search for an estimate of time
scales associated with the quantum processes, establishing the
phase time, i.e., the time delay seen in the motion of the
maximum of a wave packet, as the relevant quantity [5,6].
This, however, turned out to be unsatisfactory due to the
inherent ambiguity in the preparation of the wave packets
or identification of its maxima or other features. Several
imaginative approaches, like the so-called Larmor clock time
[2,7–10] or the traversal time [1,11,12], were suggested to
identify the relevant time scales. However, no final formulation
of the problem has been established nor a consensus reached
if such a formalism should exist. Nonetheless, the time scale
related to tunneling is an extremely useful concept relevant
to the many-body effects in electronic transport through
nanostructures. This was analyzed in the pioneering work
of Jonson [13,14], where the time scale of tunneling was
determined by the time scale of formation of the image charge,
causing alteration of the effective tunneling barrier [15,16].
More generally, our ability to characterize the time scales
of transit or tunneling of an electron through a nanocontact
would be extremely helpful in understanding the importance
of interactions in an ab initio description of quantum transport
[17–23].

Independent of these physically motivated treatments, an
important step forward in understanding the time operator,
not as a self-adjoint operator but rather as a positively valued
operator measure, has been taken by Holevo [24]. Indepen-
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dently, Kijowski [25] heuristically constructed a distribution
of a time-of-arrival for a quantum particle. His work was
later developed into the formulation of the construction of
probability distribution of the arrival time [26–29]. Most
recently, even the problem of non-self-adjointness of the
time operator for a free quantum particle was addressed by
Galapon [30,31] by introducing the confined time-of-arrival
operator (CTAO) within finite space using specific boundary
conditions in real space.

In the present paper, we propose an alternative formalism,
the use of periodic boundary conditions in the energy repre-
sentation that leads to a family of self-adjoint time operators.
In contrast to the CTAO, arbitrary scattering potentials can be
considered from the start and the related issue of normalization
of the probability distribution for times [26,27] is also resolved.
The boundary conditions in the energy representation lead to
formal quantization of the time, similar to the situation with
the CTAO. The quantization of time is a useful mathematical
tool for drawing a simple physical picture of the time dynamics
of the quantum particle within the orthogonal time-eigenstate
basis. This is used for physical interpretation of the zero-
time eigenstate and its relation to the conventional arrival-
time operator [3] and the “time-of-presence” operator [24].
However, within the energy representation, the formalism is
similar to many previous uses of time operators in the form
of differentiation by energy [6,24,32–35]. Our formalism is
demonstrated on a simple example of scattering of a particle
on a resonant potential in one dimension (1D).

II. DEFINITION AND GENERAL PROPERTIES
OF THE TIME OPERATOR

In our work we will consider a quantum particle moving
along the x axis, characterized by its Hamiltonian Ĥ assumed
to have continuous spectrum, occupying a state |φ〉. For this
particle we introduce a family of time operators, τ̂η, for which
we will show that each of them gives the time it took for
the particle to arrive into the state |φ〉, assuming its dynamics
has been governed by Ĥ . The concept of the time operator
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also demands a definition of the zero of the time for a certain
state, which will be discussed after the operator is introduced.
Different zero-time states are in one-to-one correspondence to
different members of the family of time operators.

For the state |φ〉, we will assume that it can be expressed
as a linear combination of the Hamiltonian eigenstates,
|ε,α〉, with energies from a finite interval, the energy band
ε ∈ (ε0,ε0 + �ε),

|φ〉 =
∑

α

∫ ε0+�ε

ε0

dεgφ(ε,α) |ε,α〉 , (1)

where α is the quantum number for degenerate states at the
energy ε. This degeneracy arises from some other operator
Â (or possibly several operators) that commutes with the
Hamiltonian. The eigenstates are chosen so as to be common
eigenstates of both Â and Ĥ . The complex amplitude gφ(ε,α)
represents the state |φ〉 in the energy-band representation. The
eigenstates are normalized to the δ function of energy, and
the amplitude is normalized to unity. This representation is
not unique, another one can be obtained choosing a different
operator B̂ that also commutes with Ĥ (but not with Â). The
representations are then related through an energy-dependent
unitary transformation

|ε,α〉 =
∑

β

Uα,β (ε) |ε,β〉 . (2)

We will assume that the amplitude for the state |φ〉 has
a support within the considered energy band so that at the
ends of the interval we have gφ(ε0,α) = gφ(ε0 + �ε,α) = 0.
The states gφ(ε,α) form a subspace of the Hilbert space
H�ε of all square-integrable states g(ε,α) that are periodic
within the energy band. Extending the width of the energy
band, or considering a union of all energy bands covering
the continuous spectrum of the Hamiltonian, and adding its
possible bound states forms a complete set of states [36].
However, for the purpose of introducing the time operators
for state |φ〉 it is sufficient to consider a single energy band.

We will demonstrate that in the energy-band representation,
within H�ε, the self-adjoint time operator can be defined as1

τ̂η = iδα,α′
∂

∂ε
+ ηα,α′ (ε). (3)

Apart from the so-far unspecified Hermitian, energy-
dependent matrix ηα,α′ (ε), and the fact that we define it only
within the energy band, this operator has been known for long
time as the operator for time in the energy representation.
It is well known that it is not self-adjoint if the whole
spectrum is considered [24] and not unique by the freedom
of choice in the energy representation [28]. The former is
removed by the finite energy interval and the periodic boundary
conditions employed. On the other hand, the freedom of
choice of the energy representation in Eq. (1) is related to
the choice of the Hermitian matrix ηα,α′ (ε) in the definition
in Eq. (3). Using the unitary transformation, introduced in

1We use atomic units where e = h̄ = me = 1.

Eq. (2), Uα,β (ε) = exp{i ∫ ε
dε′να,β (ε′)} we find a transformed

time operator

τ̂η′ = iδα,α′
∂

∂ε
+ ηα,α′ (ε) − να,α′ (ε). (4)

Hence, starting from a particular energy representation and
a particular choice of ηα,α′ (ε), we can find a representation
where the time operator is represented by the energy derivative
only. This latter representation, if we had some rationale for
choosing it independently of the time operator, could serve
as the basis for definition of the time operator without any
ambiguities.

The first step along this line is to demand that the
time operator should commute with chosen operator(s) Â.
Examples of these could be the linear or angular momentum,
spin, etc. One of these is also the projector to the right- and
left-going scattering states leading to α = R or α = L in 1D
scattering that will be used in the next section. This reduces
the matrix ηα,α′ (ε) into diagonal form and specifies the time
operator for processes which conserve the particular quantum
number α. For the simplicity of notation, we will not indicate
this fact with any additional index for the time operator τ̂η.

Further specification of τ̂η is related to the choice of the
zero-time state, as discussed below, but in general no unique
definition of the time operator will be given. Instead, we will
accept that we deal with a family of operators of the form
given by Eq. (3) with ηα,α′ (ε) = δα,α′ηα(ε) and that for specific
calculations we need to choose one particular form.

Physically, different choices of the phases ηα(ε) can be
related to different idealized time-measurement devices, each
characterized by its eigenstates (derived in the following
paragraph). One could view the eigenstate of the chosen
time-measurement device as a sort of bin in space—the elapsed
time for the particle is found according to the bin in which the
particle is found after the measurement. Different phases η(ε)
lead to differently shaped bins but for any choice they form an
orthogonal system. However, this analogy needs to be taken
with care since, e.g., spatially these bins do overlap to some
extent and have growing effective widths in space.

The eigenfunctions of the time operator are

gτm,α(ε,α′) = 1√
�ε

e−iτmεei
∫ ε

dε′ηα (ε′)δα,α′ , (5)

where

τm = 2π

�ε
m, m = 0 ± 1, . . . (6)

are discreet eigenvalues of the time operator. Similar to our
finding, discreet eigenvalues were found in the construction of
the confined time operator [30] for a free quantum particle. In
both cases, the quantization is nothing fundamental and arises
only as a result of the choice of the energy band: the size
of the time quanta could be changed by simply changing the
width of the energy band, while the final average values of the
time operator will remain independent of this choice, which
becomes obvious when using the energy representation. Still,
choosing a wider energy band, i.e., decreasing the quantum
of time, is desirable if one is interested in finer details of the
probability distribution in time variable.
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Rewriting the time eigenstates from the energy-band repre-
sentation into the abstract form, we have

|τm,α〉 = 1√
�ε

∫ ε0+�ε

ε0

dεe−iτmεei
∫ ε

dε′ηα(ε′) |ε,α〉 . (7)

This set of states is a subspace of the stroboscopic wave-
packet basis, recently introduced for the description of open
nonequilibrium electronic systems [36,37]. Here we see that
it naturally arises as the set of eigenstates of the time operator
defined on the chosen interval of energies.

The eigenstates with m = 0, |τ0 = 0,α〉, have the eigen-
value of the time-operator zero, i.e., this is the choice of the
zero of time. Due to the unspecified phase ηα(ε) there is a
certain freedom in the choice of this zero-time eigenstate (and
hence a particular time operator). If a particle is in one of these
states, it took zero time to arrive into it. On the other hand, for
a state |τm,α〉 it took it precisely the time τm = 2πm/(�ε) for
the particle to arrive there from |τ0,α〉, since from Eq. (7) we
find

e−iĤ τm |0,α〉 = |τm,α〉 . (8)

Finally, using this observation we obtain that for a par-
ticle in an arbitrary state within the energy band, |φ〉 =∑

m,α cm,α |τm,α〉, and |cm,α|2 = | 〈τm,α|φ〉 |2 will be the prob-
ability for the particle to arrive into it in time τm = 2πm/(�ε).

From the above it follows that the expectation value of the
time τφ

η in the state |φ〉 is given by weighting the different time
eigenvalues with the probabilities that the relevant eigenstate
is present in the state |φ〉,

τφ
η =

∑
m,α

|cm,α|2τm = 〈φ| τ̂η |φ〉 , (9)

This is equivalent to using the form in Eq. (3) within the
energy-band representation,

τφ
η =

∑
α

∫
dεg∗

φ(ε,α)

[
i

∂

∂ε
+ ηα(ε)

]
gφ(ε,α), (10)

which motivates the formal definition of the time operator by
Eq. (3). Clearly, the expectation value of the time operator
depends on the choice of zero-time eigenstate, i.e., on the
choice of the phases ηα(ε). In contrast, for the uncertainty of
this average,

�τφ =
√

〈φ| τ̂ 2
η |φ〉 − (〈φ| τ̂η |φ〉)2, (11)

we find

�τφ =
∑

α

∫
dε

∂

∂ε
|gφ(ε,α)|2, (12)

which is manifestly independent of the choice of the phases
ηα(ε) and hence characteristic of the whole family of time
operators.

The whole family of time operators, Eq. (3), fulfills the
canonical commutation relation with the Hamiltonian Ĥ =
εδα,α′ , [τ̂ ,Ĥ ] = i, if the latter is understood to act only on
states |φ〉 with finite support within the energy band. (A minor
technical issue that can be dealt with arises if the whole H�ε

is considered, since there the Hamiltonian is not continuous at
the boundaries of the energy band.) This commutation relation

then leads automatically to the uncertainty relation for the
mean-square fluctuations in energy and time, �τ�H � 1/2.

The argument of Pauli [3,4] regarding the nonexistence
of the self-adjoint time operator does not apply since
the boundary conditions cause the energy-shift operator to
move the states periodically within the band. Namely, using
the orthogonality of the time operators’ eigenstates [Eq. (5)],
we can expand the Hamiltonian eigenstates |ε,α〉, Eq. (7), into
the former and find the identity

Ĥ e−iε′ τ̂ |ε,α〉 = [(ε − ε′)mod(�ε)]e−iε′ τ̂ |ε,α〉 , (13)

for ε ∈ (ε0,ε0 + �ε). On the other hand, if the periodic
boundary conditions within the bands were not used, the
above identity would not contain the modulo operation with
the difference (ε − ε′) and the result would be that the
state e−iε′ τ̂ |ε,α〉 is an eigenstate of the Hamiltonian with
the eigenvalue ε − ε′. Following Pauli, and in view of the
arbitrariness of ε′, this would be in contradiction with the
existence of the lower bound on the eigenenergies. However,
we have shown above that the use of the periodic boundary
conditions removes this problem.

The time operator used here is, by its character, close to
the “time-of-presence” mentioned in the review by Muga and
Leavens [3]. However, many authors [25–27,29] prefer the
concept of the arrival-time operator that gives the average
value of time for a quantum particle to arrive at a spatial
position x0 if initially (at time t = 0) it was in a chosen state
|ψ〉. One can easily see that such an operator is given by −τ̂η,
with a specific choice of the phases ηα(ε). The latter is such
that the zero-time eigenstates resemble the position eigenstate
δ(x − x0) as much as possible. For example, for a free quantum
particle, the energy eigenstates are

〈x|ε,α〉 = 1√
2πk

eikx, k =
√

2ε, (14)

and using the projection
∫

dε |ε,α〉 〈ε,α|x0〉, one finds ηα(ε) =
(d/dε)

√
2εx0. The interpretation of this time operator is as

follows. We expand the state |ψ〉 into the arrival-time operator
eigenstates, |ψ〉 = ∑

m 〈τm,α|ψ〉 |τm,α〉. Then | 〈τm,α|ψ〉 |2 is
the probability that the particle in |ψ〉 will arrive into the
|τ0 = 0,α〉 in time −τm. Identifying the zero-time eigenstate
with measurement device at x = x0 gives the sought Kijowski
probability distribution [26,27]. However, we need to stress
that the arrival state, i.e., the zero-time eigenstate, can be quite
different from the position eigenstate δ(x − x0) so that it should
not be interpreted literally as the probability of the time of
arrival into x0 exactly.

III. ARRIVAL TIME IN TUNNELING PROBLEMS

We will now demonstrate the use of the time operator
for calculation of the tunneling time scales involved in the
dynamics of a quantum particle in 1D. For the state into which
we expect the particle to arrive, we initially take a state |φ〉,
located on the right of the tunneling barrier and characterized
by a momentum directed away from the barrier,

〈x|φ〉 =
∫ ε0+�ε

ε0

dε√
2πk

Aφ(ε)eik(x−xR ), xR � 0, (15)
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where xR determines the average position of a particle in the
state and k = √

2ε. The real amplitude Aφ(ε) is a continuous,
differentiable function with its support within the energy band.
The time it takes for the particle to arrive into the state |φ〉 from
the left of the barrier will contain a contribution of the time it
took for the particle to tunnel. However, since the arrival time
is an instance of time of arrival into a chosen state rather than
some sort of time span of the tunneling, a quantitative measure
of the concept of tunneling time, i.e., vaguely speaking, the
time the particle is in the scattering potential region compared
to the case when the scattering potential is absent, can be
obtained as a difference between average times for tunneling
for scattering potentials which can be varied from none (free
particle) to a tunneling regime.

The dynamics of the particle is governed by the Hamiltonian
Ĥ which asymptotically, for x → ±∞, is that of a free
particle. Close to the origin there is nonzero potential energy
V (x). The Hamiltonian possesses a continuous spectrum of
doubly degenerate, energy-normalized, right- and left-going
eigenstates 〈x|ψε,R〉 and 〈x|ψε,L〉 of which we will explicitly
need only the right-going ones,

〈x|ψε,R〉 = ψε,R(x) =
{

eikx√
2πk

+ r(ε) e−ikx√
2πk

x 
 0

t(ε) eikx√
2πk

x � 0
, (16)

where k = √
2ε, and r(ε) and t(ε) are the reflection and

transmission amplitudes, respectively.
As a illustrative example, we will consider the Hamil-

tonian Ĥ = (1/2)d2/dx2 + V (x), where V (x) = λ[δ(x) +
δ(x − a)] + (u/2)[1(x) − 1(x − a)], where 1(x) is the unit
step function, λ = 1, a = 10.0, and u = 0.1–0.65 is a variable
potential within the δ functions (see Fig. 1). As can be inferred
from the amplitude and the phase of transmission amplitude
shown in Fig. 2, these values offer a variety of different
transport regimes. It might be also interesting to mention that
this Hamiltonian corresponds to a simple model of a perturbed
monoatomic sodium chain [37]. For the arrival state φ(x)
in Eq. (15), we take A(ε) = NA{cos2[(ε − ε1)π/ε2]}, where
ε1 = ε0 + �ε/2 and ε2 = �ε, with ε0 = 0.2 and �ε = 0.4,
which produces a convenient localized state covering the
interesting features in the transmission and its phase (Fig. 2).
The constant NA is fixed by the normalization of the state
φ(x). The localization of the arrival state will be set at
xR = 100, which for the chosen parameters will guarantee

E

a

ε + ∆ ε
ε

λ λ

u
0

0

x

FIG. 1. (Color online) Form of the potential energy used for
demonstration of the tunneling time scales in 1D. The potential has
two delta-shaped barriers of strength λ at both ends and a constant
value u in between. Varying the latter gives access to various transport
regimes, from resonant tunneling to opaque tunneling. The energy
band of the stroboscopic wave-packet representation is indicated by
arrows.
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FIG. 2. (Color online) Amplitude (solid red line) and the phase
(dashed green line) of the transmission amplitude t(ε) for a scattering
state in the potential given in Fig. 1 for u = 0.3 (upper panel) and
u = 0.65 (lower panel). Since the energy band consists of energies ε ∈
(0.2,0.6), the smaller u corresponds to resonant transport, whereas
the larger u gives predominantly an opaque tunneling regime.

that its amplitude in the region of the nonzero potential is
negligible.

We proceed by the selection of the time operator. First, the
Hermitian matrix ηα,α′ (ε) = ηα(ε)δα,α′ will be diagonal in the
basis of the scattering states so that α = R or L for right- or
left-going scattering states. Second, the phases of this matrix
will form the zero-time eigenstate from the incoming scattering
states at some initial time T0,

ηR/L(ε) = −T0. (17)

If T0 were 
 0, the zero-time eigenstates would look just like
wave packets formed from incoming plane waves, localized
far to the left (right) of the barrier for α = R (L). However,
this only shifts its origin for the time, so that in our calculations
we will simply use T0 = 0.

To evaluate the average time of arrival into |φ〉, we need
to express this state in the energy representation of the above
scattering states,

|φ〉 =
∑

α

∫
dε|ψε,α〉〈ψε,α|φ〉, α = R,L, (18)

For the chosen state |φ〉, Eq. (15), both 〈ψε,R|φ〉 and 〈ψε,L|φ〉
will be nonzero. The presence of the left-going states goes
against our intention to characterize the tunneling time scale.
The physically relevant state in which the time average should
be calculated should consist of the right-going states only.

To construct the final state correctly for a particle moving
from the left to the right of the barrier, we need to construct
a state |φ̃〉, obtained from the state |φ〉 by a von Neumann
projection on the right-going states only,

∫
dε|ψε,R〉〈ψε,R|,

|φ̃〉 = 1√
N

∫
dε|ψε,R〉〈ψε,R|φ〉, (19)

where N is the normalization constant,

N =
∫

dε|〈ψε,R|φ〉|2. (20)
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FIG. 3. (Color online) Probability densities of projected states
φ̃(x) for xR = 100 into which the particle arrives, for two different
potential barriers u. In contrast to the unprojected state φ(x), the
arrival states are distorted and contain significant weight on both
sides off the potential barrier (the amplitude for the state for u = 0.65
on the right is 105 times magnified so that it is visible) localized
within x ∈ (0,10).

The state |φ〉 for xR = 100 is negligibly small in the region
where the states ψR(x) differ from their asymptotic form for
x � 0 in Eq. (16), so that

〈ψε,R|φ〉 = t∗(ε)Aφ(ε)e−ikxR , (21)

and N = ∫
dε|A(ε)t(ε)|2 = 〈T 〉 has the meaning of the trans-

mission of a right-going plane waves of energy2 T (ε) = |t(ε)|2,
averaged over the envelope |Aφ(ε)|2. The unprojected φ(x)
and the projected states φ̃(x) for two extremal values of the
potential parameters u are shown in Fig. 3. It should be noted
that, unlike φ(x), the projected states are distorted and contain
a nonzero amplitude of the reflected state on the left of the
barrier. This is necessary to have the total probability of
arriving into the projected state at any time being unity.

According to the general treatment, the probability that the
particle arrived into state |φ̃〉 at time τm is

Pm = |〈τm,R|φ̃〉|2

= 1

〈T 〉
∣∣∣∣
∫

dε′
√

�ε
Aφ(ε)t∗(ε′)ei[(τm+T0)ε′−kxR ]

∣∣∣∣
2

, (22)

which is positive definite and normalized to unity. The example
of several such probabilities obtained for our particular
example is shown in Fig. 4. For the energy band above
the potential between the barriers (u = 0.1,0.3), the particle
will bounce between the barriers, resulting in the probability
density of the arrival time into the state to the right of the
potential with several local maxima, separated by the time it
takes for the particle to traverse the distance between the barrier
twice. On the other hand, for a particle within an energy band

2One should not confuse the formally appearing reference to
incoming plane waves with a state that, through the time evolution
by the Hamiltonian, evolves into the arrival state |φ̃〉.
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FIG. 4. (Color online) Probabilities of arrival into state φ̃(x)
at time τm for different transport regimes. In resonant transport
(u = 0.3), due to good localization of the state, we see several maxima
giving multiple bounces between the δ-function barriers; increasing
u into the tunneling regime, we first see very broad distribution
(u = 0.53) with its width characterized by the Büttiker-Landauer
time, evolving into a relatively narrow saturated distribution arriving
earlier than the free particle (the Hartman effect).

below the potential barrier, no particular structure is visible.
Clearly, different potentials lead to different distributions for
arrival times, and only the full probability distribution gives a
complete picture of the time scales involved in the dynamics.
Still for many cases two measures are most useful: the average
value and its uncertainty.

The average time of the particle to arrive into the state
∣∣φ̃〉

is
most easily calculated within the energy-band representation,

τ φ̃
η = 1

〈T 〉
∫

dε|Aφ(ε)t(ε)|2
[
dθ

dε
+ xR

vg

− T0

]
, (23)

where θ (ε) is the phase of the transmission amplitude t(ε) =
|t(ε)|eiθ . The additive term proportional to the average position
xR is the classical expression xR/vg , where vg = dε/dk is
the group velocity of the particle outside of the barrier. The
first term is the generalization of the phase time since for
a state within a narrow energy band (�ε → 0), the average
time equals the well-known expression dθ (ε)/dε. The choice
of the phases ηR(ε) = −T0 leads to a simple shift in the
time, independent of the transmission or the Hamiltonian’s
potential. Keeping this form, one can compare average times
for different scattering potentials V (x), localized close to the
origin. In general, however, the energy-dependent phase leads
to nontrivial change in the average time. Simple, potential-
independent shift is found only if this energy dependence is
negligible, i.e., (d/dε)ηR(ε)�ε 
 ηR(ε).

According to Eq. (12), the uncertainty of the average time
is given by

(�τ )2 =
∫

dε

〈T 〉 (|Aφ(ε)t(ε)|′)2. (24)

There are two limiting cases: (1) (d/dε)Aφ � (d/dε)|t | when
the uncertainty is dominated by the energy width of the state
|φ̃〉, Aφ(ε), and it does not carry information about the time
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scale in the scattering, and (2) (d/dε)Aφ 
 (d/dε)|t | when the
uncertainty is dominated by the time scale known previously
as the traversal time [11] and identified [7] as one of the
Larmor clock times, τL

z = |t |−1(d/dε)|t |. Most importantly,
the traversal time dominates the uncertainty whenever the
energy of the state moves under the barrier and the transmission
is principally given by |t | ∼ exp{−d

√
2(u − ε)}, where d is

the barrier width and u its height. In Russian literature, it is
known as the Keldysh time [12,38] and is approximately given
as �τ ∼ d/κ , where κ = √

2(u − ε) is the magnitude of the
imaginary momentum under the barrier. Our results are also
in agreement with the observations of Yücel and Andrei that
this is the time scale that should appear in the energy-time
uncertainty principle [38]. The identification of the traversal
time with the variance of probability density of the dwell
time has been also found by Olkhovsky [32] or within the
path-integral formulation by several authors [39–41].

The appearance of the huge uncertainty in time, �τ , due
to presence of the average energy of the state just below
the barrier is demonstrated in Fig. 4 for u = 0.53, in the
very long tail toward large times of arrival. This will have
significant effect on the tunneling process itself if the particle
could interact with some additional degree of freedom within
the barrier. This explains the appearance of this time scale
in interacting tunneling models [11,13,14,38]. On the other
hand, increasing the potential barrier further, the uncertainty
is dominated by the energy width of the state φ̃(x), and hence
independent of u (e.g., u = 0.55 and u = 0.65).

Similar to the traversal time, one can find a close correspon-
dence between the average of τ̂ 2

η and the Büttiker-Landauer
time [1] τT ; but this statement, as any expression involving the
phase time, is valid only for a particular choice of the phases
in the zero-time eigenstate. This, however, is less important in
the tunneling regime, where �τ is the dominant contribution
to the average value of τ̂ 2

η .

IV. CONCLUSIONS

We have introduced a family of self-adjoint time operators
into the framework of standard quantum mechanics using
periodic boundary conditions used on the amplitudes within
the energy-band representation. This representation leads to
the quantization of time which is a useful tool for regularizing
the time eigenstates and drawing a physical interpretation
of the use of this operator. We have shown that each
member of the family of time operators fulfills the canonical
commutation relation with the particle’s Hamiltonian and
hence the energy-time uncertainty principle, identified its
eigenstates as stroboscopic wave packets, and showed how
the present treatment avoids Pauli’s argument. In the context
of the tunneling of a quantum particle, we have shown how a
positively defined distribution function of times of arrival into
an arbitrary state is obtained. Using the latter we have obtained
the average value of the time operator which corresponds to the
phase time, which, however, is specific to a particular choice
of the zero-time eigenstate and hence the particular choice of
the time operator. In contrast, its uncertainty is independent
of this choice; and in the limit of a narrow energy spread of
the state, it is equal to the traversal time scale of Büttiker
and Landauer, or the Keldysh time. Our formalism confirms
the role of energy derivative in energy representation as a
legitimate time operator in nonrelativistic quantum mechanics
and opens consistent ways for studying temporal behavior in
many quantum-mechanical problems of interest.
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