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In this paper, the exact non-Markovian dynamics of open quantum systems in the presence of initial
system-reservoir correlations is investigated for a photonic cavity system coupled to a general non-Markovian
reservoir. The exact time-convolutionless master equation incorporating with initial system-reservoir correlations
is obtained. The non-Markovian dynamics of the reservoir and the effects of the initial correlations are embedded
into the time-dependent coefficients in the master equation. We show that the effects induced by the initial
correlations play an important role in the non-Markovian dynamics of the cavity but they are washed out in the
steady-state limit in the Markovian regime. Moreover, the initial two-photon correlation between the cavity and
the reservoir can induce nontrivial squeezing dynamics to the cavity field.
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I. INTRODUCTION

The study of dynamics of open quantum systems con-
tinuously receives attentions because of its fundamental
importance in quantum physics and also because of the rapid
development of quantum technologies. Previous studies on
the dynamics of open quantum systems mainly rely on the
Lindblad-type master equation [1–3], where the characteristic
time of the environment is sufficiently shorter than that of
the system such that the non-Markovian memory effect is
negligible, and so does for initial system-reservoir correlations.
However, the new development in ultrafast photonics, ultracold
atomic physics, nanoscience and technology, and quantum
information science strongly suggests that the non-Markovian
dynamics in ultrafast and ultrasmall open systems should play
an important role and that the associated effects (including the
initial system-reservoir correlations) should be fully taken into
account. To this end, a more rigorous approach is demanded
for the study of non-Markovian dynamics of open quantum
systems incorporating the initial system-reservoir correlations.

The exact description of open quantum systems has indeed
been explored extensively in the literature, mainly focusing on
quantum Brown motion based on the Feynman-Vernon influ-
ence functional [4–9] and the stochastic diffusion Schrödinger
equation [10–12]. Extending the Feynman-Vernon influence
functional to other open quantum systems has also achieved
great success recently, including the exact master equation for
electron systems and the nonequilibrium quantum transport
theory in various nanostructures [13–15], as well as the
exact master equation for micro- or nanocavities in photonic
crystals and the quantum transport theory for photonic crystals
[16–18]. However, in most of these investigations, the system
and the reservoir are often assumed to be initially uncorrelated
with each other [19]. Realistically, it is possible and often un-
avoidable in experiments that the system and its environment
are correlated closely at the beginning, especially for the cases
of the system strongly coupled to the reservoir [20]. Various
initial-correlation-induced effects have been investigated in
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different open quantum systems [21–32]. For example, it has
been recently shown that the initial correlations between a
qubit and its environment can lead to the distance growth of
two quantum states over its initial value [27–29]. It has also
been demonstrated that the initial correlations have nontrivial
differences in quantum tomography process [30]. Besides, it
has been found that the initial system-reservoir correlations
have significant effects on the entanglement in a two-qubit
system [31,32].

In this paper, the dynamics of open quantum systems in the
presence of initial system-reservoir correlations is investigated
with a photonic cavity system coupled to a non-Markovian
reservoir as a specific example. By solving the exact dynamics
of the cavity system, the effects of the initial correlations are
explicitly built into the equations of motion for the intensity
and the two-photon correlation function of the cavity field. We
then obtain the exact master equation incorporating with the
initial correlations which induce new terms and also modify
the time-dependent dissipation and fluctuation coefficients
in the master equation. Taking a nanocavity coupled to a
coupled-resonator optical waveguide (serving as a structured
reservoir) as an experimentally realizable system, we find that
the effects of the initial correlations are fragile for a Markovian
reservoir but play an important role in the non-Markovian
regime. In fact, in the strong non-Markovian regime, the initial
two-photon correlation between the cavity and the reservoir
can induce oscillating squeezing dynamics in the cavity.
However, in the Markovian regime, the initial correlations will
be washed out in the steady-state limit.

The rest of the paper is organized as follows. In Sec. II,
the dynamics of open quantum systems with initial system-
reservoir correlations is formulated for a photonic cavity
system coupled to a general non-Markovian reservoir. In
Sec. III, we construct the exact time-convolutionless master
equation incorporating with the initial correlations, where the
effects from the initial correlations are explicitly embedded
into the time-dependent coefficients in the master equation. In
Sec. IV, an experimentally realizable example is considered
to analytically and numerically examine the influence of the
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initial correlations on the dynamics of open quantum systems.
Last, a summary is given in Sec. V.

II. NON-MARKOVIAN DYNAMICS WITH INITIAL
CORRELATIONS

To be specific, we consider here a single-mode photonic
cavity system coupled to a general non-Markovian reservoir,
where the single-mode cavity system could be a nanocavity
in nanostructures or photonic crystals and the non-Markovian
environment may be a structured photonic reservoir [33]. The
Hamiltonian of the system can be expressed as a Fano-type
model of a localized state coupled with a continuum [34],

H = ωca
†a +

∑
k

ωkb
†
kbk +

∑
k

Vk(ab
†
k + bka

†), (1)

where the first term is the Hamiltonian of the cavity field with
frequency ωc and a† and a are the creation and annihilation
operators of the cavity field; the second term describes a
general non-Markovian reservoir which is modeled as a
collection of infinite photonic modes, where b

†
k and bk are the

corresponding creation and annihilation operators of the kth
photonic mode with frequency ωk . The third term characterizes
the system-reservoir coupling with the coupling strength Vk

between the cavity field and the kth photonic mode. For
convenience, we take h̄ = 1 throughout the paper.

We shall use the equation-of-motion approach to solve the
dynamics of the cavity system and the reservoir, from which
the general initial correlations between the cavity and the
reservoir can be fully taken into account. The time evolution of
the cavity field operator a(t) = eiHtae−iH t and the reservoir
field operators bk(t) = eiHtbke

−iH t in the Heisenberg picture
obey the equations of motion

d

dt
a(t) = −i[a(t),H ] = −iωca(t) − i

∑
k

Vkbk(t), (2a)

d

dt
bk(t) = −i[bk(t),H ] = −iωkbk(t) − iVka(t). (2b)

Solving Eq. (2b) for bk(t),

bk(t) = bk(0)e−iωkt − iVk

∫ t

0
dτa(τ )e−iωk (t−τ ), (3)

we obtain

d

dt
a(t) = −iωca(t) −

∫ t

0
dτg(t − τ )a(τ )

− i
∑

k

Vkbk(0)e−iωkt . (4)

Here the memory kernel g(τ ) = ∑
k |Vk|2e−iωkτ characterizes

the non-Markovian dynamics of the reservoir. For a continuous
reservoir spectrum, we have g(τ ) = ∫ ∞

0
dω
2π

J (ω)e−iωτ , where

J (ω) = 2π�(ω)|V (ω)|2 is the spectral density of the reservoir,
with �(ω) being the density of states and V (ω) the coupling
between the cavity and the reservoir in the frequency domain.

Because of the linearity of Eq. (4), the cavity field operator
a(t) can be expressed, in terms of the initial field operators
a(0) and bk(0) of the cavity and the reservoir, as

a(t) = u(t)a(0) + f (t), (5)

where the time-dependent coefficient u(t) and f (t) are
determined from Eq. (4) and given by

d

dt
u(t) = −iωcu(t) −

∫ t

0
dτg(t − τ )u(τ ), (6a)

d

dt
f (t) = −iωcf (t) −

∫ t

0
dτg(t − τ )f (τ )

− i
∑

k

Vkbk(0)e−iωkτ , (6b)

subjected to the initial conditions u(0) = 1 and f (0) = 0. The
integrodifferential equation (6a) shows that u(t) is just the
propagating function of the cavity field (the retarded Green’s
function in nonequilibrium Green’s function theory [35]). In
addition, f (t) is, in fact, an operator coefficient and its solution
can be obtained analytically from the inhomogeneous equation
of Eq. (6b):

f (t) = −i
∑

k

Vkbk(0)
∫ t

0
dτe−iωkτ u(t − τ ). (7)

From Eqs. (5)–(7) we can determine the exact non-
Markovian dynamics of the cavity field coupled to a general
reservoir with arbitrary initial system-reservoir correlations,
upon a given initial state ρtot(0) of the whole system. In
the Heisenberg picture, quantum states are time-independent.
Once ρtot(0) = ρtot is given, the time evolution of any physical
observable can be obtained directly from Eqs. (5)–(7) through
the relation

〈O(a†(t),a(t))〉 = tr[O(a†(t),a(t))ρtot]. (8)

For example, the time evolution of the expectation values
〈a(t)〉, n(t) ≡ 〈a†(t)a(t)〉, and s(t) ≡ 〈a(t)a(t)〉, which respec-
tively describe the cavity amplitude, the cavity intensity, and
the two-photon correlation of the cavity field, can be expressed
explicitly by the following solution:

〈a(t)〉 = u(t)〈a(0)〉 + υ0(t), (9a)

n(t) = |u(t)|2n(0) + 2Re[u∗(t)ν1(t)] + υ1(t), (9b)

s(t) = u2(t)s(0) + 2u(t)ν2(t) + υ2(t), (9c)

where 〈a(0)〉,n(0), and s(0) are the corresponding initial
conditions. Other time-dependent functions in Eq. (9) are given
by

ν1(t) = 〈a†(0)f (t)〉 = −i

∫ t

0

∑
k

Vk〈a†(0)bk(0)〉e−iωkτ u(t − τ )dτ, (10a)

ν2(t) = 〈a(0)f (t)〉 = −i

∫ t

0

∑
k

Vk〈a(0)bk(0)〉e−iωkτ u(t − τ )dτ, (10b)
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υ0(t) = −i

∫ t

0

∑
k

Vk〈bk(0)〉e−iωkτ u(t − τ )dτ, (10c)

υ1(t) = 〈f †(t)f (t)〉 =
∫ t

0
dτ

∫ t

0
dτ ′ ∑

kk′
V ∗

k Vk′ 〈b†k(0)bk′(0)〉e−i(ωk′ τ ′−ωkτ )u∗(t − τ )u(t − τ ′), (10d)

υ2(t) = 〈f (t)f (t)〉 = −
∫ t

0
dτ

∫ t

0
dτ ′ ∑

kk′
VkVk′ 〈bk(0)bk′(0)〉e−i(ωkτ+ωk′ τ ′)u(t − τ )u(t − τ ′). (10e)

In these solutions, υj (t) (j = 0,1,2) characterize, respectively,
the contributions from the initial field amplitudes 〈bk(0)〉,
the initial photon scattering amplitudes 〈b†k(0)bk′(0)〉, and the
initial two-photon correlations 〈bk(0)bk′(0)〉 of all the photonic
modes in the reservoir. While ν1(t) and ν2(t) correspond to
the contributions from the different initial system-reservoir
correlations 〈a(0)b†k(0)〉 and 〈a(0)bk(0)〉, respectively.

If the initial state of the total system is uncorrelated, and
the reservoir is in a thermal equilibrium state, that is,

ρtot(0) = ρ(0) ⊗ ρR(0), ρR(0) = e−βHR

tre−βHR
, (11)

with HR = ∑
k ωkb

†
kbk and β = 1/kBT being the initial

temperature of the reservoir, it is easy to check that νi(t) =
0,υi(t) = 0 except for v1(t), which is given by

υ1(t) =
∫ t

0
dτ

∫ t

0
dτ ′u(t − τ ′ )̃g(τ ′ − τ )u∗(t − τ ). (12)

Here g̃(τ ) = ∑
k |Vk|2n̄ke

−iωkτ and n̄k = 〈b†k(0)bk(0)〉 =
1/(eβωk − 1) is the initial photonic distribution function of
the reservoir. Then Eq. (9) reproduces the same solution
solved from the exact master equation without initial system-
reservoir correlations [16]. However, as we see, the exact
non-Markovian dynamics in Eq. (9) derived via the equation-
of-motion approach has explicitly included the effects
induced by the initial correlations between the system and the
reservoir.

III. EXACT MASTER EQUATION WITH INITIAL
CORRELATIONS

To further understand the effects of the initial system-
reservoir correlations on the dynamics of open quantum
systems, we attempt to derive the exact master equation
for the reduced density matrix of the cavity system ρ(t).
In the literature, exact master equations for open systems
are mostly derived without initial correlations, such as the
systems associated with quantum Brown motions [7–9],
quantum dot systems in various nanostructures [13,14], and
cavity systems coupled to structured reservoirs as well as
general non-Markovian reservoirs [16,17,36]. Here we con-
centrate the exact master equation for the photonic system
in the presence of initial Gaussian correlated states. Based
on the bilinear operator structure of the system, as well as
the techniques in deriving exact master equation for the cavity
system described by Eq. (1) [16,17], the master equation with

the initial system-reservoir correlations would have a general
time-convolutionless form as follows:

ρ̇(t) = −i	(t)[a†a,ρ]

+ γ1(t)(2aρa† − a†aρ − ρa†a)

+ γ2(t)(aρa† + a†ρa − a†aρ − ρaa†)

+ γ ∗
3 (t)(2aρa − aaρ − ρaa)

+ γ3(t)(2a†ρa† − a†a†ρ − ρa†a†), (13)

where the coefficient 	(t) is the renormalized cavity fre-
quency, γ1(t) and γ2(t) usually denote, respectively, the
dissipation (damping) and fluctuation (noise) due to the back
reactions between the system and the reservoir, and γ3(t)
is related to a two-photon decoherence process. As we see,
the first three terms have the standard form as the exact
master equation for the Hamiltonian in Eq. (1) without the
initial correlations [16,17], but with the coefficients modified
by the initial correlation 〈a(0)b†k(0)〉. The last two terms
are contributed from the two-photon correlation 〈bk(0)bk′(0)〉
in the reservoir as well as by the initial system-reservoir
two-photon correlation 〈a(0)bk(0)〉.

To figure out the time-convolutionless coefficients in
Eq. (13), we compute the physical observables in Eq. (9) from
the above master equation. From Eq. (13), it is easy to find that

d

dt
〈a(t)〉 = −[γ1(t) + i	(t)]〈a(t)〉, (14a)

d

dt
n(t) = −2γ1(t)n(t) + 2γ2(t), (14b)

d

dt
s(t) = −2[γ1(t) + i	(t)]s(t) − 2γ3(t). (14c)

On the other hand, with Eq. (5) we obtain

d

dt
a(t) = u̇(t)

u(t)
a(t) − u̇(t)

u(t)
f (t) + ḟ (t). (15)

Note that the photonic modes in the reservoir usually cannot
be a coherent state so that 〈bk(0)〉 = 0. Then, using Eq. (15),
we find that

d

dt
〈a(t)〉 = u̇(t)

u(t)
〈a(t)〉, (16a)

d

dt
n(t) = 2Re

[
u̇(t)

u(t)

]
n(t) + υ̇1(t) − 2Re

[
u̇(t)

u(t)

]
υ1(t)

+ 2Re

[
u∗(t)ν̇1(t) − u̇(t)u∗(t)

u(t)
ν1(t)

]
, (16b)

d

dt
s(t) = 2

u̇(t)

u(t)
s(t) + υ̇2(t) − 2

u̇(t)

u(t)
υ2(t)

+ 2u(t)ν̇2(t) − 2u̇(t)ν2(t). (16c)
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By comparing Eq. (14) with Eq. (16), the coefficients 	(t)
and γj (t) in the master equation can be uniquely determined
and given by

	(t) = −Im

[
u̇(t)

u(t)

]
, γ1(t) = −Re

[
u̇(t)

u(t)

]
, (17a)

γ2(t) = υ̇1(t) + 2Re

[
u(t)ν̇∗

1 (t) − u̇(t)

u(t)
[υ1(t) + u∗(t)ν1(t)]

]
,

(17b)

γ3(t) = −1

2
υ̇2(t) + u̇(t)

u(t)
υ2(t) − u(t)ν̇2(t) + u̇(t)ν2(t),

(17c)

which shows that the coefficients γ2(t) and γ3(t) in the
master equation depend explicitly on the initial correlations
〈a(0)b†k(0)〉 and 〈a(0)bk(0)〉 in the presence of the initial
Guassian correlated states of the whole system.

If the reservoir is initially in a thermal state uncorre-
lated to the system, we have 〈a(0)b†k(0)〉 = 〈a(0)bk(0)〉 =
〈bk(0)bk′(0)〉 = 0 except for 〈b†k(0)bk′(0)〉 = n̄k . Accordingly,
from Eq. (10) we have υ2(t) = 0 = ν1(t) = ν2(t) so that
γ3(t) = 0 and

γ2(t) = υ̇1(t) − 2Re

[
u̇(t)

u(t)

]
υ1(t), (18)

where υ1(t) is then given by Eq. (12). Consequently, the master
equation (13) in this situation is reduced to the exact master
equation for the cavity system coupled with a general non-
Markovian reservoir presented recently in Ref. [16,17], which
is obtained originally using the Feynman-Vernon influence
functional. In addition, if there are no initial correlations but
the reservoir involves initially two-photon correlation, namely,
〈a(0)b†k(0)〉 = 〈a(0)bk(0)〉 = 0 but 〈bk(0)bk′(0)〉 �= 0, then we
have ν1(t) = 0 = ν2(t) but υ2(t) �= 0. As a result, the coef-
ficient γ3(t) �= 0, which induces a two-photon decoherence
process in the cavity [37]. However, if the initial states of
the whole system only contains the two-photon correlation
〈a(0)bk(0)〉 but the reservoir itself stays in an initial thermal
state, then we have ν1(t) = 0 = υ2(t) but ν2(t) �= 0. This
situation also leads to a nonzero γ3(t), which is essentially
equivalent to the situation in which the reservoir involves
initially two-photon correlation but without the initial system-
reservoir correlations.

Therefore, the master equation, Eq. (13) with the time-
dependent coefficients in Eq. (17), describes the exact non-
Markovian dynamics of a cavity system coupled with a
general reservoir involving two-photon correlation in the
presence of the quadratic-type initial correlations between
the system and reservoir. It shows explicitly that the initial
correlation 〈a(0)b†k(0)〉 modifies the fluctuation coefficient
γ2(t) but without altering the damping (dissipation) rate γ1(t),
which in turn changes the cavity field intensity given by
Eq. (9b) without changing the cavity field amplitude of
Eq. (9a). The initial correlation 〈a(0)bk(0)〉 affects the two-
photon decoherence process, which leads to a two-photon
process s(t) = 〈a(t)a(t)〉 of the cavity field. It should be
pointed out that if the system and the reservoir are initially
in non-Gaussian correlated states, the form of Eq. (13) may
need to be modified further. Nevertheless, the master equation

FIG. 1. (Color online) A schematic plot of a nanocavity (M)
coupled to a CROW structure.

of Eq. (13) is exact for the initial Gaussian correlated states
of the whole system, and it remains in a time-convolutionless
form in which the non-Markovain memory dynamics is fully
embedded into the time-dependent coefficients. As we see,
all these time-dependent coefficients are determined by a
unique function, the cavity field propagating function u(t),
through the relations given by Eqs. (17) and (10). While the
propagating function u(t) is determined by Eq. (6a) in which
the integral kernel contains all the non-Markovian memory
effects characterizing the back reactions between the system
and the reservoir.

IV. EXAMPLE WITH INITIAL SYSTEM-RESERVOIR
CORRELATIONS

In this section, we take two different initial correlated
states to examine the effects of the initial correlations on the
non-Markovian dynamics in such an open system. To be more
specific, we consider an experimentally realizable nanocavity
system. Figure 1 is a schematic plot for a single-mode nanocav-
ity coupled to a coupled-resonator optical waveguide (CROW)
structure. The nanocavity could be a point defect created
in photonic crystals and the waveguide consists of linear
defects in which light propagates due to the coupling of the
adjacent defects. The CROW is called as a structured reservoir
which possesses strong non-Markovian effects [17,38]. The
Hamiltonian of the whole system is given by

H = ωca
†a +

∑
n

ω0b
†
nbn + λ(ab

†
1 + b1a

†)

−
∑

n

λ0(bnb
†
n+1 + bn+1b

†
n), (19)

where a and a† are the annihilation and creation operators of
the nanocavity field with frequency ωc, and the annihilation
and creation operators bn and b

†
n describe the resonators

at site n in the waveguide with identical frequency ω0.
The frequencies ωc and ω0 are tunable by changing the
size of the relevant defects. The third terms describes the
coupling of the nanocavity field to the resonator at the first
site in the waveguide with the coupling strength λ which is
also controllable experimentally by adjusting the distance
between defects. The last term characterizes the photon
hopping between two consecutive resonators in the waveguide
structure with the controllable hopping amplitude λ0.

Consider the waveguide to be semi-infinite in
length; then performing the Fourier transformation
bk = √

2/π
∑∞

n=1 sin(nk)bn, where the operators bk and
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b
†
k correspond to the Bloch modes of the waveguide, the

Hamiltonian of Eq. (19) becomes

H = ωca
†a +

∑
k

ωkb
†
kbk +

∑
k

gk(ab
†
k + bka

†), (20)

where

ωk = ω0 − 2λ0 cos k, gk =
√

2

π
λ sin k, (21)

with 0 � k � π . As we see, Eq. (20) is reduced to the same
form of Eq. (1) for the system considered in Secs. II and III.

A. Initial system-reservoir correlated squeezed state

For the above specific physical system, we first consider
an initial system-reservoir correlated state with two-photon
correlation 〈a(0)bk(0)〉 �= 0. We assume that the cavity field is
correlated initially with the first resonator mode of the CROW
in terms of a two-mode entangled squeezed vacuum state [37]
as

|ψab1 (0)〉 = exp
( − rse

−iθs ab1 + rse
iθs a†b†1

)|0a0b1〉, (22)

and the other resonators in the CROW are in vacuum, with rs

and θs being the squeezing parameter and the reference phase,
respectively. The strength of the nonclassical correlations
(entanglement) contained in the above state increases with
the increase of the squeezing parameter rs [39]. The reduced
density matrices of the cavity field and the resonator mode
from Eq. (22) is a mixed state which can be expressed as

ρa(b1)(0) =
∞∑

n=0

sinh2n rs

(sinh2 rs + 1)n+1
|na(b1)〉〈na(b1)|, (23)

which is indeed of a single-mode thermal state with average
thermal photon number na(b1)(0) = sinh2 rs . It follows that the
initial system-reservoir correlations are then given by

〈a(0)bk(0)〉 =
√

1

2π
sinh 2rse

iθs sin k, (24a)

〈a(0)b†k(0)〉 = 0, (24b)

namely, the initial Gaussian state only has initial two-photon
correlation between the system and the reservoir.

With the initial system-reservoir correlations in Eq. (24),
we obtain from Eq. (10) that ν1(t) = 0 = υ0(t) = υ2(t) and

ν2(t) = −i
sinh 2rse

iθs

√
2π

F(t), (25a)

υ1(t) = 2

π
sinh2 rs |F(t)|2, (25b)

where

F(t) =
∫ t

0
dτ

∑
k

gk sin(k)e−iωkτ u(t − τ )

= η√
2π

∫ t

0
dτ

∫ ∞

0
dω sin[k(ω)]e−iωτ u(t − τ ). (26)

The last line of the above equation has been applied to the
waveguide band structure given in Eq. (21), so that η = λ

λ0

and sin[k(ω)] = 1
2λ0

√
4λ2

0 − (ω − ω0)2, with ω0 − 2λ0 � ω �
ω0 + 2λ0.

After obtaining the time-dependent functions νj (t) and
υj (t) given above, Eq. (9) becomes

〈a(t)〉 = 0, (27a)

n(t) = |u(t)|2na(0) + υ1(t), (27b)

s(t) = 2u(t)ν2(t). (27c)

This solution indicates that for the given initial thermal state
ρa(0) in Eq. (23), the cavity field at time t is in a squeezed
thermal state [40], which can be expressed as

ρ(t) = Sa[r(t)]ρth(t)S†
a[r(t)], (28)

where the single-mode squeezing operator

Sa[r(t)] = exp

[
− r(t)

2
e−iθ(t)a2 + r(t)

2
eiθ(t)a†2

]
, (29)

with the squeezing parameters

r(t) = 1

4
ln

n(t) + |s(t)| + 1/2

n(t) − |s(t)| + 1/2
, (30)

and θ (t) = arg[s(t)]. The thermal state

ρth(t) =
∑

k

[n̄(t)]n

[n̄(t) + 1]k+1
|na〉〈na|, (31)

where the average thermal photon number n̄(t) =√
(n(t) + 1/2)2 − |s(t)|2 − 1/2. By defining the quadrature

operators X = (a + a†)/
√

2 and Y = (a − a†)/
√

2i, the
covariance matrix is given by(

	X2 	{XY }
	{YX} 	Y 2

)
=

[
n̄(t) + 1

2

] [
cosh 2r(t)I

+ sinh 2r(t)

(
cos θ (t) sin θ (t)

sin θ (t) − cos θ (t)

)]
. (32)

If n̄(t) = 0, the above covariance matrix is reduced to the
standard form for a pure squeezed state [41]. Obviously, the
squeezed thermal state squeezes the thermal-state fluctuation
n̄(t) + 1/2. Thus, the squeezing in the squeezed thermal state
can be described by the squeezing parameter r(t). If there is no
initial system-reservoir correlation, then we have ν2(t) = 0 so
that s(t) = 0, which leads to the squeezing parameter r(t) = 0.

In Fig. 2, the time evolution of the cavity intensity n(t)
and the squeezing parameter r(t) are plotted for the different
coupling strengths η = λ/λ0. As shown in Fig. 2(a), for a weak
coupling (η = 0.4), the cavity intensity decays monotonically
and eventually approaches zero, as a result of the Markovian
damping dynamics at zero temperature. Also, the small but
nonzero squeezing parameter r(t) indicates that the initial
two-photon correlation 〈a(0)bk(0)〉 between the system and
reservoir induces a small squeezing effect to the cavity
field in the beginning. However, the long-time behavior of
the squeezing parameter shows that the effect of the initial
system-reservoir correlation is washed out in the long-time
limit, which is also consistent with the Markovian dynamics.
In contrast, by increasing the coupling strength, as depicted in
Fig. 2(b), the cavity intensity decays rather fast in the beginning
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FIG. 2. (Color online) The time evolution of the cavity field intensity, that is, the average photon number n(t) = 〈a†(t)a(t)〉 and the
squeezing parameter r(t) in the presence of the initial two-photon correlation between the system and the reservoir. The parameters taken in
the plots are ωc = ω0, λ0 = 0.025ω0, rs = 1.0, θs = 0, with η = 0.4 in (a), η = 1.2 in (b), and η = 2.0 in (c).

and then it revives and damps with oscillation in which
some non-Markovian memory effect appears. Interestingly,
the squeezing parameter r(t) shows a similar behavior of
the non-Markiovan effect, except for the beginning where the
initial two-photon correlation 〈a(0)b1(0)〉 generates a stronger
squeezing effect to the cavity field, in comparison with the
weak coupling case. When the coupling strength continues
increasing to η = 2.0 (the strong non-Markovian regime [17]),
the cavity intensity decays faster in the very beginning and
then revives and keeps oscillating without damping from
then on [see Fig. 2(c)]. In this situation, we find that the
initial-correlation-induced squeezing dynamics also oscillates
over all the time. Therefore, we can conclude that the initial
two-photon correlations 〈a(0)bk(0)〉 can lead to a nontrivial
squeezing dynamics of the cavity field, as a consequence of
strong non-Markovian memory dynamics, but it is negligible
in the steady-state limit in the Markovian regime.

B. Initial system-reservoir correlated mixed thermal states

Next, we investigate the effect of the initially system-
reservoir correlated state with the correlation 〈a(0)b†k(0)〉 �= 0.
To this end, we consider an initially mixed state

ρab1 (0) = B(ϑ)ρa ⊗ ρb1B
†(ϑ), (33)

where the operator B(ϑ) = exp[ϑ
2 (ab

†
1 − a†b1)] and the den-

sity operators ρa (ρb1 )represent the thermal states with average
thermal photon numbers n̄a (n̄b1 ). This initially correlated state
can be formed via the bilinear coupling between the cavity field
a and the resonator mode b1 in the thermal states, and note

that nonclassical entanglement is not present in this initially
correlated state [42]. A direct calculation shows that the initial
system-reservoir correlations

〈a(0)bk(0)〉 = 0, (34a)

〈a(0)b†k(0)〉 = sin ϑ√
2π

(n̄a − n̄b1 ) sin k. (34b)

For the initially correlated state of Eq. (33), it is easy to find that
the reduced density matrices ρa(0) and ρb1 (0) of the cavity field
and the resonator mode b1 are also the thermal states with the
average thermal photon numbers na(0) = 1

2 [n̄a + n̄b1 + (n̄a −
n̄b1 ) cos ϑ] and nb1 (0) = 1

2 [n̄a + n̄b1 − (n̄a − n̄b1 ) cos ϑ],
respectively. From Eq. (10), we obtain

ν1(t) = −i
(n̄a − n̄b1 ) sin ϑ√

2π
F(t), (34)

υ1(t) = 2nb1 (0)

π
|F(t)|2, (35)

and ν2(t) = 0, υ0(t) = 0, and υ2(t) = 0. Thus, the correspond-
ing physical observables of the cavity system for the above
initially correlated state of Eq. (33) are given by

n(t) = |u(t)|2na(0) + 2Re[u∗(t)ν1(t)] + υ1(t), (36)

and 〈a(t)〉 = 0 and s(t) = 0. It indicates that the cavity state
remains in a thermal state over all the time with the cavity field
intensity ∼n(t).

In Fig. 3, the time evolution of the cavity field intensity
n(t) is plotted for different coupling strengths η between the
nanocavity and the waveguide. Figure 3(a) shows the the

FIG. 3. (Color online) The time evolution of the cavity field intensity n(t) with the initial correlation 〈a(0)b†
1(0)〉 (red solid line) and without

such correlation (blue dashed line) for ωc = ω0, λ0 = 0.025ω0, n̄a = 6, n̄b1 = 0, ϑ = π

2 , η = 0.4 in (a), η = 1.2 in (b), and η = 2.0 in (c).
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average photon number for a weak coupling η = 0.4. It reveals
that the intensity of the cavity field decays monotonically
to a steady-state value, as a character of the Markovian
dynamics. The initial system-reservoir correlation 〈a(0)b†k(0)〉
leads to the intensity oscillating around the decay line of
the case of the initially uncorrelated state. The amplitude
of the local oscillations increases in the beginning and then
decreases to a unnoticeable effect as time develops. In other
words, the effect of the initial correlation 〈a(0)b†k(0)〉 will
be washed out in the steady limit. With the increasing of
the coupling strength, the intensity no longer monotonically
decays and some revival phenomena occur as a character of
the non-Markovian memory dynamics [17], as depicted in
Fig. 3(b). When the coupling is increased to η = 2.0 as a strong
coupling value, we see from Fig. 3(c) that the intensity and the
initial system-reservoir induced oscillation keep oscillating in
the whole time regime. In other words, the effect resulting from
the initial system-reservoir correlation in the non-Markovian
regime will not be washed out by the interaction between the
system and the reservoir.

V. SUMMARY

In summary, we investigate the dynamics of open quantum
systems in the presence of initial system-reservoir correlations.
We take the photonic cavity system coupled to a non-
Markovian reservoir as a specific open quantum system. By
solving the exact dynamics of the cavity system, the effects
of the initial correlations are explicitly built into the solution
of the cavity field intensity and the two-photon correlation

function. We also derive the time-convolutionless exact master
equation which incorporates with the initial system-reservoir
correlations. The non-Markovian memory effects are fully
embedded into the time-dependent coefficients in the master
equation. The fluctuation coefficient γ2(t) is modified by the
initial system-reservoir photonic scattering correlation but
the frequency shift 	(t) of the cavity and the dissipation
coefficient γ1(t) remain unchanged. However, the initial two-
photon correlation between the system and the reservoir
induces two-photon decoherence terms in the master equation,
which can lead to photon squeezing in the cavity. We also take
a nanocavity coupled to a CROW (serving as a structured
reservoir) as an experimentally realizable system, from which
we find that the effects of the initial correlations are fragile
for a Markovian reservoir but play an important role in the
non-Markovian regime. In fact, in the strong non-Markovian
regime, the initial two-photon correlation between the cavity
and the reservoir can induce oscillating squeezing dynamics
in the cavity. However, in the Markovian regime, the effects of
the initial system-reservoir correlations will be washed out in
the steady-state limit.
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