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Measurements of quantum systems disturb their states. To quantify this nonclassical characteristic, Zurek and
Ollivier [Phys. Rev. Lett. 88, 017901 (2001)] introduced the quantum discord, a quantum correlation that can be
nonzero even when entanglement in the system is zero. Discord has aroused great interest as a resource that is more
robust against the effects of decoherence and offers the exponential speed-up of certain computational algorithms.
Here, we study general two-level bipartite systems and give general results on the relationship between discord,
entanglement, and linear entropy. We also identify the states for which discord takes a maximal value for a given
entropy or entanglement, thus placing strong bounds on entanglement-discord and entropy-discord relations. We
find out that although discord and entanglement are identical for pure states, they differ when generalized to
mixed states as a result of the difference in the method of generalization.
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I. INTRODUCTION

Since the emergence of quantum mechanics at the
beginning of the 20th century, physicists have been intrigued
and puzzled by its interpretation and consequences. The
characteristics that distinguish quantum from classical systems
have been investigated extensively. To be able to study
quantum correlations in a system, it is important to quantify
them. Although this is a challenging task for multicomponent
quantum systems, progress has been made in the case of
two-level bipartite quantum systems. One method suitable
for pure states [1,2] involves calculating the entropy of the
reduced density matrix of the system, also known as the
entanglement of formation (EOF). To extend this concept to
mixed states, the entanglement is defined to be equal to the
weighted sum of the entanglement of the pure states involved
in the decomposition of the mixed states, minimized over
all decompositions [3–5]. The restriction enforced by this
minimization places a bound on the entanglement for mixed
states; indeed, when a certain level of disorder of the state is
attained, it is known that entanglement must disappear [6,7].
It is, therefore, not surprising that for some systems as they
reach a certain level of mixture, the entanglement is completely
lost, a phenomena which in the study of state dynamics is
commonly known as entanglement sudden death (ESD) [8].

Another approach to capture quantum correlations was
taken by Zurek and Ollivier [9], where they used the fact
that the measurement of quantum systems, unlike classical
systems, disturbs their state. To quantify the correlations
based on this idea, one looks at the mutual information
function I (ρ̂), where ρ̂ is the density matrix describing the
state of the whole system. Given a system C composed of
two subsystems A and B, I (ρ̂) is a measure of how much
information is shared between the two subsystems. In other
words, it is can viewed as an indication of the degree of
correlation between them. The correlations between the two
subsystems can be classical and/or quantum. However, if
the correlations are quantum in nature, then calculating I (ρ̂)
after a measurement is performed on one of the subsystems

(for instance, B) yields a different result than that calculated
before the measurement is performed. This disagreement
is the basis for defining discord; the definition is finalized
after optimizing over all possible measurement bases. One
of the major reasons in the aroused interest [10–23] in this
novel correlation is that, as was shown in [9], even when
entanglement is zero in a system, discord can still be finite.
This led to the hope that using discord instead of entanglement
as a resource, in fields like quantum computation, can lead to
more efficient computations. In [23], discord was characterized
in the deterministic quantum computation with 1 bit (DQC1)
model [25], calling for experimental verifications of its powers,
which was demonstrated in [22].

In this paper, we look at the relationship between discord,
entanglement, and linear entropy to investigate the connection
between these quantities. We perform the study on the
most general density matrices representing two-level bipartite
systems. Since we lack an analytic expression for discord for
these general states, the heart of the work is numeric in nature,
involving optimization over all possible measurements that
can be performed on one of the subsystems under study. Our
numerical work facilitates the principal results presented here:
the analytic form of the states for which the discord takes
extreme values. As will be shown, one can place definite
boundaries on the relationships between entanglement and
discord, and mixture [quantified by the linear entropy using
Eq. (8)] and discord.

II. DISCORD, ENTANGLEMENT, AND LINEAR ENTROPY
FOR TWO-LEVEL BIPARTITE SYSTEMS

To consider discord, let us look at system C, which is
composed of two subsystems A and B, both of which are
two-level quantum systems. The effects of measurements on
one of the subsystems (B in the following analysis) is captured
by looking at the mutual-information function defined as
follows:

I (ρ̂) = S(ρ̂A) + S(ρ̂B ) − S(ρ̂), (1)
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where ρ̂i is the reduced-density matrix of subsystem i and
S(ρ̂) = −Tr{ρ̂ log2ρ̂} [26]. Then, defining all set of projectors
on B by {B̂k}, the measurement-induced mutual-information
function for each of these sets takes the following form:

I (ρ̂ | {Bk}) = S(ρ̂A) −
∑

k

pkS(ρ̂k), (2)

where ρ̂k is the density matrix of the system after Bk is applied
on B, k ∈ {1,2}, and pk = Tr{(Î ⊗ B̂k)ρ̂(Î ⊗ B̂k)}. To obtain
the final form for the measurement-induced density matrix, Eq.
(2) is maximized over all possible {B̂k} to obtain the following
expression for discord:

Q(ρ̂) = I (ρ̂) − max
{Bk}

{
S(ρ̂A) −

∑
k

pkS(ρ̂k)

}
. (3)

To start the comparison between discord and entanglement,
we compute the EOF and the discord for pure states in two-
level bipartite systems |ψ〉 = a|00〉 + b|01〉 + c|10〉 + d|11〉,
where |a|2 + |b|2 + |c|2 + |d|2 = 1. It is convenient to use
the Schmidt decomposition [27] to write the state as |ψ〉 =√

λ |1A〉 |1B〉 + √
(1 − λ) |2A〉 |2B〉, where λ and (1 − λ) are

the eigenvalues of the reduced density matrices, and |1i〉
and |2i〉 are the corresponding eigenvectors of the reduced
density matrix of subsystem i. Using local unitary operations,
which do not affect the quantum correlations present in
the system, one can show that this state is equivalent to
|ψ〉 = √

λ |00〉 + √
(1 − λ) |11〉. In this case, the EOF as well

as the discord, which can be computed analytically, are found
to be identical and are given by E (ρ̂) = Q (ρ̂) = h(λ), where
h(x) = −x log2 x − (1 − x) log2 (1 − x). Therefore, discord
and EOF amount to the same set of correlations in the case of
pure states [16]. In the mixed state case, there is no explicit
analytic expression for discord. The most general analytic
expression so far was presented in a very interesting paper by
Luo [28] for the mixed states with maximally mixed marginals
(MMMs) (i.e, the reduced density matrices ρ̂A and ρ̂B are both
maximally mixed).

Going back to system C described above, with A and
B each being two-level quantum systems, we parametrize
all the possible measurements that can be performed on B
by two variables θ and φ. Each complete set of possible
measurements, which is composed of two elements, is defined
as follows:

B̂1 = |ψ〉〈ψ |,
(4)

B̂2 = |ψ⊥〉〈ψ⊥|,
where

|ψ〉 = cosθ |0〉 + eiφsinθ |1〉,
(5)

|ψ⊥〉 = −sinθ |0〉 + eiφcosθ |1〉.
The resultant of the density operator when such measure-

ments are performed on subsystem B is

ρ̂k = 1

pk

(Î ⊗ B̂k)ρ̂(Î ⊗ B̂k). (6)

To obtain the final form of Eq. (3), we numerically search
the θ and φ space for the set of values that maximizes Eq. (2).

For a given density matrix ρ̂, the EOF is given in terms of
concurrence C (ρ̂) by the formula [5]

E(ρ̂) = h

(
1 +

√
1 − C2(ρ̂)

2

)
, (7)

where C = max = {√λ1 − √
λ2 − √

λ3 − √
λ4}, where λi are

the eigenvalues, in decreasing order, of the matrix R̂ = ρ̂(σ̂y ⊗
σ̂y)ρ̂T (σy ⊗ σy).

For a comparison of discord with entropy, we calculate the
linear entropy, defined as follows:

SL = 4
3 [1 − Tr(ρ̂2)]. (8)

III. RESULTS

Figures 1 and 2 provide the plots that give the relationship
between discord and entanglement, and discord and linear en-
tropy for the two-level bipartite systems, respectively. As noted
above, in the case of pure states, discord and entanglement
are identical. For mixed states, the two quantities are loosely
related; generally speaking, the higher the entanglement, the
higher the discord. The region with high-quantum correlations
has a narrower relationship than the one in a lower-correlation
regime. This results in a plot that resembles a horn (Fig. 1).
The difference between discord and entanglement that arises in
the mixed-state case is due to the optimization that was done
to extend the pure-state case to the mixed-state case. In the
low-quantum regime and for a large number of systems, the
minimization that is done over the pure-state decomposition in
defining entanglement has a trend of giving a more pessimistic
measure for quantum correlations than the maximization

FIG. 1. (Color online) Discord-entanglement horn. Discord
increases as entanglement increases. In the case of pure states,
the two quantities are identical. While in the mixed-state case, the
relationship broadens. However, notice that this relationship narrows
in the high-quantum correlated regime and is the broadest in the
low-correlation regime. This gives the plot its “horn” shape. The
upper bound of this relationship is given by the α states [Eq.(10)]
(for 0 � EOF � 0.620 and 0 � Q � 0.644), the Werner states
[Eq.(9)] [24] (for 0.620 � EOF � 0.746 and 0.644 � Q � 0.746),
and the pure states (for 0.740 � EOF and Q � 1). The lower bound
is given by the β states [Eq.(11)].
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FIG. 2. (Color online) Boundaries on the relationship between
discord and linear entropy. To easily illustrate the boundaries, this
plot only includes the states that are involved in defining them. The
two-parameter states [Eq. (14)] bound the curve from above up to Q =
1/3 and SL = 8/9, after which the Werner states take over. Discord
and linear entropy, as expected, display an inverse relationship: more
randomness implies less quantum correlations. One of the interesting
phenomena occurs at the pimple, where there exists states in which
an increase in their entropy results in an increase in their discord. This
is also the point that defines the value of linear entropy after which
no entanglement can exist in the system [7]. Unlike entanglement,
states exist that are very close to the maximally mixed states, but still
have nonzero discord. In fact, the only value for entropy such that
discord cannot be finite is for it being equal to one, in the case when
the system is maximally mixed.

over all possible projectors on subsystem B that is done in
defining discord. Discord and entanglement, therefore, are not
different quantum correlations. They are two different ways to
quantify these correlations. The disagreement between them,
in the general mixed-state case, comes from limitations of
optimization methods

The upper bound for the discord-entanglement plot is given
for the most part by two classes of MMMs: the Werner states
[Eq. (9)] and the α states [Eq. (10)]. In the highly correlated
regime, it is bound by the pure states. The lower bound is given
by another class of MMMs: the β states [Eq. (11)]. The Werner
states, the α states, and the β states are given, respectively, as
follows:

ρ̂(ξ ) = (1 − ξ )
I

4
+ ξ |ψ−〉〈ψ−|, (9)

where − 1
3 � ξ � 1 and |ψ−〉 = 1√

2
(|01〉 − |10〉),

ρ̂(α) =

⎛
⎜⎜⎜⎝

α
2 0 0 α

2

0 (1−α)
2 0 0

0 0 (1−α)
2 0

α
2 0 0 α

2

⎞
⎟⎟⎟⎠ , (10)

where 0 � α � 1, and

ρ̂(β) =

⎛
⎜⎜⎜⎜⎝

β

2 0 0 β

2

0 (1−β)
2

(1−β)
2 0

0 (1−β)
2

(1−β)
2 0

β

2 0 0 β

2

⎞
⎟⎟⎟⎟⎠ , (11)

where 0 � β � 1. The analytic result for quantum discord in
these cases can easily be obtained from the general expression
for the MMMs in [28]. For the α and β states, it is given,
respectively, as follows:

Q(α,ζ ) = (1 − α)log2(1 − α) + αlog2(α) + (1 + α)

− (1 − ζ )[log2(1 − ζ )]/2

− (1 + ζ )[log2(1 + ζ )]/2, (12)

where ζ = max {|α|,|2α − 1|}, and

Q(β) = βlog2(β) + (1 − β)log2(1 − β) + 1. (13)

Since these states also fall under the class of X states, expres-
sions for their concurrence, from which the EOF is calculated,
can be found, for example, in [29]. The concurrence of the α

and β states, is given, respectively, by C(α) = max {0,2α − 1}
and C(β) = |2β − 1|. To prove that theses are indeed the
boundaries, we performed two numeric calculations. First,
we generated 106 random density matrices to find that the
relationship between their discord and entropy all fall within
these bounds. The algorithm involved creating a complex
and random matrix T̂ , and from it, obtaining a well-behaved

density matrix ρ̂ by the relation ρ̂ = T̂ T̂ †/Tr{T̂T̂
†}. We also

generated 105 points very close to the vicinity of each of the
boundaries, with the result that none of the points fell outside
the bounds imposed on them.

In Fig. 2, where the plot shows how much discord can
be present in the system for a given amount of mixture, the
boundaries are given by a different set of states. Beyond linear
entropy being 8/9, it is bound from above by the Werner
states. The rest of the plot is bound from above by a class of
two-parameter density matrices described as follows:

ρ̂(a,b) = 1

2

⎛
⎜⎜⎜⎝

a 0 0 a

0 1 − a − b 0 0

0 0 1 − a + b 0

a 0 0 a

⎞
⎟⎟⎟⎠ , (14)

where 0 � a � 1 and a − 1 � b � 1 − a. We find the analytic
result for discord in this case to be

Q(a,b) = min{a,q}, (15)

where

q = −b

2
log2

[
(1 + b)(1 − a − b)

(1 − b)(1 − a + b)

]
+ a

2

× log2

[
4a2

(1 − a)2 − b2

]
−

√
a2 + b2

2

× log2

[
1 + √

a2 + b2

1 − √
a2 + b2

]
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+ 1

2
log2

[
4[(1 − a)2 − b2]

(1 − b2)(1 − a2 − b2)

]
, (16)

and the expression for concurrence in this case is C(a,b) =
max{0,|a| −

√
(1 − a)2 − b2}.

As can be seen in Fig. 2, the maximally entangled mixed
states (MEMSs) [7] and the α states, both of which fall under
this class of states, bound the plot at different regions. There
is no lower bound to the relationship between discord and
entropy, as the area below the two-parameter states as well
as the Werner states becomes filled up when the whole range
of density matrices is included. Also, note that the case when
a = q is what gives the bounding line that slopes down from
the “pimple.” Again, as is the case with discord and EOF,
to verify these boundaries, points representing 106 random
density matrices were generated, as well as 105 points in the
near vicinity of these bounds. Other points to note about the
figure is, first, that at the pimple, after which no entanglement
can exist in the system [7], a rise in linear entropy results
in a rise in discord. The states in this region are interesting
to investigate, since experimentally speaking, more noise in
the system at that stage enhances the quantum correlations.
Also, unlike the case with entanglement, even for cases where
linear entropy is arbitrarily close to the maximally mixed states
at unit entropy, discord can still be finite. It is, therefore, not
surprising that for states in which ESD occurs, similar behavior
is not observed for discord [14,21].

IV. CONCLUSION

In conclusion, this work describes the relationship between
discord and entanglement for the general two-level bipartite
system. We have shown that in the general case of mixed
states, the two quantum correlations vary, with the relationship
broadening in the low-quantum regime. We conclude that they
describe the same set of quantum correlations, as can be seen
in the pure-state case, and although they vary in the case of
mixed states, this is due to different methods of optimization
used to extend the correlations from the pure-state case to
the mixed-state case. Some questions arise. One is what is
the optimal method to quantify quantum correlations? The
answer to this question depends on the application of the
quantum correlations. There is no universal definition for these
correlations. An operational view is therefore recommended in
order to define them. Another question is what is the meaning
of the values for discord and EOF that are between the extreme
cases of zero and one? We also reveal the general relationship
between discord and linear entropy, highlighting interesting
differences with a similar analysis done for entanglement [7]:
At the point where entanglement disappears from the system,
discord increases in value, and discord can be nonzero unless
linear entropy is identically equal to one.
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