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Fast nondeterministic random-bit generation using on-chip chaos lasers
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It is shown that broadband chaos suitable for fast nondeterministic random-bit generation in small devices
can be achieved in a semiconductor laser with a short external cavity. The design of the device is based on a
theoretical model for nondeterministic random-bit generation by amplification of microscopic noise. Moreover, it
is demonstrated that bit sequences passing common tests of statistical randomness at rates up to 2.08 Gbits/s can
be generated using on-chip lasers with a monolithically integrated external cavity, amplifiers, and a photodetector.
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Random-bit generators are widely used in communication
and computation systems, and they are key devices for
achieving ultimate performance and reliability [1–4]. Nonde-
terministic random bits are generated by sampling random
physical phenomena but it is difficult in practice to avoid
correlations and statistical bias when bits are generated at
high speeds in small devices. Hence it has been an urgent
but difficult challenge to find physical phenomena suitable for
fast, reliable nondeterministic random-bit generation in small
physical devices. Recently optical turbulence due to chaotic
mechanisms in semiconductor lasers with oscillations at high
frequencies above the order of GHz has been used to achieve
fast random-bit generation [5–11]. However, these chaotic
lasers used long optical feedback over 1 m. Monolithically
integrated chaotic lasers with short delay have been developed
for data transmission with chaotic optical carriers [12,13].
However, it has not been known whether such on-chip devices
with short optical feedbacks are sufficiently chaotic and robust
to generate random-bit sequences reliably at high rates.

In this Rapid Communication, we report that we have
succeeded in generating random-bit sequences at rates up
to 2.08 Gbits/s using monolithically integrated chaotic semi-
conductor lasers. Chaotic lasers have been integrated with
photodiodes in a structure specifically designed to achieve
robust generation of random bits at high bit rates. The
design is based on a theoretical model for nondeterministic
bit generation using chaotic laser dynamics seeded by the
quantum noise of spontaneous emission.

The scheme for generating random-bit sequences using
a module with two chaos laser chips (we call them laser 1
and laser 2) is shown in Fig. 1(a). Two chaos laser chips
are contained in a single module with two high-frequency
connectors to output the electrical signals from the integrated
photodiodes (PDs) as shown in Figs. 1(b) and 1(c). The ac
components of the electrical signals from the PDs are digitized
at a 2.08-GHz sampling rate. The ac signals are converted
to binary signals by comparing with a threshold voltage,
and finally the binary bit signals are combined by a logical
exclusive-OR (XOR) operation to generate a single random-bit
sequence. No other digital postprocessing is required. This
method is similar to that used for bit extraction in a previous
demonstration of fast physical random-bit generation [5,7].

Figure 1(d) shows an optical image of the monolithically
integrated optical components in a chaos laser chip. High-
reflective coating at the edge of the passive waveguide
reflects the light back into the distributed feedback (DFB)
laser, inducing high-frequency chaotic oscillations in the
gigahertz regime. The feedback delay length L is just 10 mm.
The strength and phase of the optical feedback is controlled
with the current to the semiconductor optical amplifiers
(SOAs). The temporal wave forms of the signals from the
two photodiodes of the chaos laser chips in the random signal
generator module are shown in Fig. 2. The sequence of random
bits is obtained as the output from the XOR operation.

The statistical randomness of digital bit sequences was
verified using the statistical test suite for random number
generators provided by the National Institute of Standard
Technology (NIST) and the DIEHARD test suite [14,15]. Bit
sequences obtained from the experimental device for sampling
rates up to 2.08 Gbits/s passed all of the NIST and DIEHARD
tests at the common statistical significance level of α = 0.01
[16]. The tests were performed using 1000 instances of 1 Mbit
sequences for NIST tests and using 92 Mbit sequences for
DIEHARD tests. The random signal generation is stable with
respect to mechanical and thermal perturbations, to the extent
that statistical properties of the sequences were maintained
over multiple trials during continual operation of the device.

The design of the chaos laser is based on a theoretical model
for nondeterministic random-bit generation by amplification of
microscopic noise. From the fundamental point of view, it is
important that there is a theoretical basis for expecting this
device to achieve truly random-bit sequences. The theoretical
basis is obtained by considering the mechanism by which
chaotic dynamics amplifies and mixes intrinsic quantum laser
noise. Let us suppose that time evolution of output light
intensity I (t) of strongly chaotic lasers is given at discrete
sampling times t = 0,τ,2τ, . . . , where τ is a sampling clock
time. Then the mixing property of strong chaos implies that any
arbitrary smooth initial probability density of I (t) converges
to the invariant density ρ(I ) corresponding to the natural
invariant density of this chaos laser dynamical system. We
emphasize that the asymptotic invariant density of the light
intensity does not depend on the initial noise density. In
principle the nondeterminism of the microscopic noise is the
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FIG. 1. (Color) Random-bit generation scheme and device struc-
tures. (a) Schematic diagram of random-bit generation. ADC denotes
the analog-digital converter. (b) Schematic of the random signal gen-
erator module consisting of two chaos laser chips. Chip resistors are
used for impedance matching and current is injected to the distributed
feedback (DFB) laser and semiconductor optical amplifier (SOA)
contacts of the chaos laser chips via bonding pads (wires not shown
here). Electrical signal is output from the photodiodes (PDs) in the
chaos laser chips via microstriplines to high-frequency connectors.
(c) Photo of a random signal generator module. (d) Optical image
showing the monolithically integrated optical components. A small
section of the 10-mm-long passive waveguide for optical feedback
can be seen. DFB laser, semiconductor distributed feedback laser;
SOA1 and SOA2, semiconductor optical amplifiers, The width of the
waveguide is 2 µm. The lengths of the PD, DFB laser, SOA1, SOA2,
and passive waveguide are, respectively, 50 µm, 300 µm, 200 µm,
100 µm, and 10 mm.

origin of the nondeterminism of the output light intensity,
but the asymptotic invariant density of the large-amplitude
light intensity is a property of the chaotic dynamics. This
convergence to the invariant density is a key fundamental
point for the use of chaotic devices to generate large-amplitude
signals for robust nondeterministic random-bit generation.
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FIG. 2. Random-bit generation using the random signal generator
module. Temporal wave forms of the two module outputs and
corresponding binary digitized signals (a) 00111111010. . . and
(b) 0110010110. . .. Dots mark points sampled with 2.08 GHz
sampling rate. The threshold value for the ADC is zero, shown as
a solid line. The random bit sequence output after the XOR operation
is 01011010111. . ..

Let us extract binary bits from the chaotic laser intensity by
assigning bit 0 (1) to the output intensity I less (greater) than
the threshold Ibit, where Ibit is defined by ρ(I ) so that it satisfies∫ Ibit

0 ρ(I )dI = ∫ ∞
Ibit

ρ(I )dI. If the chaotic laser dynamics starts
from an arbitrary initial state and evolves in time subject
to perturbations by microscopic noise, such as spontaneous
emission, and finally ends with an observation assigning a
binary bit, and then if the interval between observations is
sufficiently long, then the bits will be random with equal
probabilities of 0 or 1, that is, probability 1/2.

It is important to note that real systems cannot exactly
achieve the above equality which assumes that the observation
of intensities and comparison with the threshold value are
done with infinite precision. In our experimental system, I (t)
is measured with 8-bit precision, and we combine the outputs
of two chaos laser chips by a logical exclusive-OR operation, a
simple and common way to make the bit frequency ratio closer
to 50%.

The mixing property of the convergence to the invariant
density implies the decay of the autocorrelation function C(τ ),

C(τ ) = 〈I (t + τ )I (t)〉t − 〈I 〉2
t −→

|τ |→∞
0, (1)

where the bracket defines the time average: 〈X(t)〉t ≡
limT →∞ 1/T

∫ T

0 X(t)dt . Therefore, observation of the au-
tocorrelation is a practical way to monitor the rate of
convergence of the probability distribution. If the probabilities
of successive bits are to be independent and depend only on
the invariant density and the bit-extraction threshold, then the
autocorrelation vanishing time should be smaller than the bit
extraction interval. Conversely, if the bit extraction interval is
smaller than the vanishing time of the autocorrelation, then
successive bit probabilities cannot be described by the above
theory.

Based on the above theoretical principle, the chaos laser
chips are designed so that the probability density function and
autocorrelation function converge as fast as possible. We use
a Lang-Kobayashi model as a reference model for optimizing
the device parameters. The dynamics of the light field E and
the carrier density N in a laser with delayed optical feedback
is described by the Lang-Kobayashi equations [17] as

dE

dt
= 1 + iα

2

{
G − 1

τp

}
E + κ

τin

E(t − τD)e−iθ +
√

CsN

τs

ξ,

(2)

dN

dt
= J − 1

τs

N − G|E|2, (3)

where the gain G depends on E and N as G ≡ G0(N − N0)/
(1 + ε|E|2). ξ is white Gaussian noise with zero mean and
unitary variance. The last term of the right-hand side of Eq. (2)
represents the effect of spontaneous emission. The linewidth
enhancement factor is α = 5, the differential gain G0 =
10−12 m3 s−1, the gain saturation coefficient ε = 4.08 × 10−24

m3, the propagation time in the DFB laser τin = 7 ps, the delay
time τD = 0.303 ns, the delay phase shift θ = 0 rad, the carrier
life time τs = 2.04 ns, and the transparent carrier density
N0 = 1.4 × 1024 m−3. Several values of the spontaneous
emission factor Cs were used between 10−5 and 10−3.

031803-2



RAPID COMMUNICATIONS

FAST NONDETERMINISTIC RANDOM-BIT GENERATION . . . PHYSICAL REVIEW A 83, 031803(R) (2011)

Delay time [ns]

F
ee

db
ac

k 
st

re
ng

th
κ

0.125 0.425 0.725 1.025 1.325
0.10

0.35

0.30

0.25

0.20

0.15

0.45

0.40

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

τ=0.303ns
(L=10mm)

FIG. 3. (Color) The “vanishing time” of the autocorrelation func-
tions. The colors indicate the time (ns) required for the exponentially
decaying envelope of the autocorrelation function to becomes less
than 0.1.

We calculated the dependence of the autocorrelation decay
on values of parameters, in particular delay time τD and
feedback strength κ . The parameter dependence of the times
required for autocorrelation to become less than 0.1 are shown
in Fig. 3. One can see that although strong chaos disappears
when the delay time becomes too short, over most of this range
the autocorrelation function vanishes faster as the feedback
strength becomes larger and the delay time becomes shorter.
It is important to note that this range is not the so-called
“short cavity regime” where the inverse delay time exceeds the
relaxation oscillation frequency and the dynamical behavior
sensitively depends on the phase of the delayed feedback
field [12,13,18,19].

Figure 4 shows an example of convergence of the distri-
bution and the autocorrelation function with time in the most
strongly chaotic regime. It can be seen that the deviation of
the distribution and the autocorrelation both decay at the same
rate, and the autocorrelation decays to less than 0.1 within
1 ns. For small noise, the decay rate is roughly independent
of the noise strength. However the curve shifts downward for
larger noise amplitude, achieving shorter randomization times
for larger noise strengths.
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FIG. 4. (Color) Numerical results on the convergence of the
density and autocorrelation function. (a) Difference between the
evolving time density and the invariant density. Inset: Any smooth
initial density (the green curve) converges to the invariant density (the
red curve). (b) The autocorrelation function.
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FIG. 5. Radio-frequency spectra and autocorrelation functions
for ISOA1 = (a), (b) 2 mA; (c), (d) 6 mA; and (e), (f) 10 mA.

The experimental laser chaos chips were designed to
operate in the regime where the correlation vanishes fastest,
marked by the arrow in Fig. 3. In particular, the strong feedback
and tunability, which have been shown to be necessary by the
above theory, were achieved by integrating dual SOAs and
a PD together with the optical waveguide. Figure 5 shows a
typical scenario observed while tuning the experimental chip
to minimize the correlation time. It is important to note that
the decay of the autocorrelation function is closely related
to the flatness of the power spectrum. Even small structures
in the spectrum mean slower decay of the autocorrelation
function. In this example, the current ISOA1 injected to the
first optical amplifier SOA1 is increased while the injection
currents of the DFB laser and the SOA2 are fixed at 42.5 and
5 mA, respectively. (The threshold current for the DFB laser
is 12.69 mA.) When ISOA1 is 2 mA [Fig. 5(a)], the signal starts
oscillating, and the relaxation oscillation frequency increases
to 6.6 GHz while the inverse of the feedback delay time
remains 3.3 GHz. These two peaks have come into resonance,
so the peaks are sharp and higher harmonics are observed. The
corresponding autocorrelation function takes a long time to
decay, as shown in Fig. 5(b). When ISOA1 is increased to 6 mA,
the signal becomes chaotic and the autocorrelation function
decays faster as shown in Figs. 5(c) and 5(d). When ISOA1 is
increased to 10 mA, the signal becomes more strongly chaotic
and the rf spectrum becomes more similar to white noise, with
intensity increased by more than about 30 dB compared to
the solitary laser case, and the autocorrelation function decays
much faster, as shown in Figs. 5(e) and 5(f). It can be seen
that the correlation decays to less than 0.1 well within 1 ns, as
anticipated from the Lang-Kobayashi model. The broadband
chaos of the flat spectrum as in Fig. 5(f) and the corresponding
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fast vanishing autocorrelation functions can be stably obtained
in a wide range of ISOA1 between 8 and 20 mA.

Previous lasers used for random-bit generation had a
significant peak in the autocorrelation function corresponding
to long feedback time delays longer than 50 ns [5,7,11]. This
required the delay times and multiples of sampling intervals
to be detuned when sampling in the gigahertz regime. In
contrast, for the short cavity it is not necessary to detune the
delay lengths since the delay time is shorter than the sampling
interval. Moreover, the spectrum is flatter than previous reports
for short cavity chaos lasers of the short cavity regime [12,13].
This is due to the tuning of the lasers to a more strongly
chaotic regime which was achieved using a structure with
integrated dual SOAs. Besides, it is theoretically shown that
nondeterministic random-bit sequences can be obtained by this
scheme using the quantum noises of spontaneous emission
and the mixing property of the strongly chaotic dynamics.
Together these results show not only that random signal
generation is possible with smaller devices but also that the

characteristics can be even better than the previous examples
using macroscopic optical components [5,7].

Finally, we note that it is expected that this device could be
used to generate sequences that pass the statistical randomness
at higher effective bit rates by applying multibit sampling
and postprocessing methods such as demonstrated recently,
for example, in [9–11]. However, achieving nondeterministic
random-bit generation at higher rates remains a difficult
challenge as it is limited by the rate of amplification of
microscopic noise.

In conclusion, we have demonstrated that continuous
streams of random-bit sequences which pass standard tests
of statistical randomness can be generated at fast rates of
up to 2.08 Gbit/s using two monolithically integrated chaos
laser chips with a scheme based on a theoretical model for
nondeterministic random-bit generation. This achievement
opens the door to reduction of size and cost of fast nonde-
terministic physical random-bit generators operating at rates
beyond gigabits per second.

[1] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook
of Applied Cryptography (CRC Press, Boca Raton, FL, 1996).

[2] N. Metropolis and S. Ulam, J. Am. Stat. Assoc. 44, 335
(1949).

[3] S. Asmussen and P. W. Glynn, Stochastic Simulation: Algorithms
and Analysis (Springer-Verlag, New York, 2007).

[4] C. H. Bennett et al., J. Cryptology 5, 3 (1992).
[5] A. Uchida et al., Nat. Photonics 2, 728 (2008).
[6] Thomas E. Murphy and Rajarshi Roy, Nat. Photonics 2, 714

(2008).
[7] K. Hirano et al., IEEE J. Quantum Electron. 45, 1367 (2009).
[8] T. Honjo et al., Opt. Express 17, 9053 (2009).
[9] I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, Phys. Rev.

Lett. 103, 024102 (2009).
[10] Ido Kanter et al., Nat. Photonics 4, 58 (2010).
[11] K. Hirano et al., Opt. Express 18, 5512 (2010).
[12] A. Argyris, M. Hamacher, K. E. Chlouverakis, A. Bogris, and

D. Syvridis, Phys. Rev. Lett. 100, 194101 (2008).
[13] K. E. Chlouverakis, A. Argyris, A. Bogris, and D. Syvridis,

Phys. Rev. E 78, 066215 (2008).

[14] A. Rukhin et al., A statistical test suite for random and
pseudorandom number generators for cryptographic applica-
tions, National Institute of Standards and Technology, Special
Publication 800-22 Revision 1a, 2010.

[15] G. Marsaglia, in Computer Science and Statistics: The Interface,
edited by L. Billard (Elsevier, Amsterdam, 1985), p. 3. The
software package DIEHARD, a battery of tests of randomness, is
available via the WWW at [http://stat.fsu.edu/geo/diehard.html],
1996. The Marsaglia Random Number CDROM contains 4.8109
random bits obtained from a combination of several sources.

[16] For example, in the case of the monobit frequency test which
tests the ratio of 1 and 0, the statistical significance value α =
0.01 means that deviation δ from the ideal value of 1/2 should
be such that erfc(δ

√
2n < α, where erfc is the complementary

error function and n is the length of the bit sequence).
[17] R. Lang and K. Kobayashi, IEEE J. Quantum Electron. 16, 347

(1980).
[18] T. Heil, I. Fischer, W. Elsasser, and A. Gavrielides, Phys. Rev.

Lett. 87, 243901 (2001).
[19] T. Heil et al., Phys. Rev. E 67, 066214 (2003).

031803-4

http://dx.doi.org/10.2307/2280232
http://dx.doi.org/10.2307/2280232
http://dx.doi.org/10.1007/BF00191318
http://dx.doi.org/10.1038/nphoton.2008.227
http://dx.doi.org/10.1038/nphoton.2008.239
http://dx.doi.org/10.1038/nphoton.2008.239
http://dx.doi.org/10.1109/JQE.2009.2031310
http://dx.doi.org/10.1364/OE.17.009053
http://dx.doi.org/10.1103/PhysRevLett.103.024102
http://dx.doi.org/10.1103/PhysRevLett.103.024102
http://dx.doi.org/10.1038/nphoton.2009.235
http://dx.doi.org/10.1364/OE.18.005512
http://dx.doi.org/10.1103/PhysRevLett.100.194101
http://dx.doi.org/10.1103/PhysRevE.78.066215
http://stat.fsu.edu/geo/diehard.html
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1103/PhysRevLett.87.243901
http://dx.doi.org/10.1103/PhysRevLett.87.243901
http://dx.doi.org/10.1103/PhysRevE.67.066214

