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Digital reverse propagation in focusing Kerr media

Alexandre Goy and Demetri Psaltis
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Lenses allow the formation of clear images in homogeneous linear media. Holography is an alternative
imaging method, but its use is limited to cases in which it provides an advantage, such as three-dimensional
imaging. In nonlinear media, lenses no longer work. The light produces intensity-dependent aberrations. The
reverse propagation method used in digital holography to form images from recorded holograms works even
in Kerr media [M. Tsang, D. Psaltis, and F. G. Omenetto, Opt. Lett. 28, 1873 (2003).]. The principle has been
experimentally demonstrated recently in defocusing media [C. Barsi, W.Wan, and J.W. Fleischer, Nat. Photonics
3, 211 (2009).]. Here, we report experimental results in focusing media.
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Focusing optical Kerr media have been widely studied
since the discovery of self-focusing in the early sixties
[1–3]. The attention of researchers was focused on the rich
variety of physical phenomena that occur when intense light
propagates through these media, but did not focus on imaging
until recently [4]. Imaging through Kerr media has had
no practical applications, but the increasing use of intense
laser beams in applications such as microscopy, lithography,
or micro-machining will likely require the development of
nonlinear optical imaging technology. As opposed to imaging
in defocusing media, imaging in focusing media is challenging
because initial modulations may lead to filaments when
the power exceeds the critical power for self-focusing, first
introduced in [3,5]. We use the following definition: Pcr =
π0.612λ2

0/(8n0n2), where λ0 is the free-space wavelength, n0

the refractive index, and n2 [m2/W] the nonlinear coefficient.
We investigate a classic imaging system in which a cell

filled with acetone (the focusing nonlinear medium) is placed
at the focal plane. At low intensity a high-quality image is
produced, whereas at increasing intensities the interaction
of the focused beam with the nonlinear medium results
in a distorted image. The main result of this paper is
the experimental demonstration of image formation in the
presence of this strong focusing nonlinearity. We demonstrate
that, with the proper choice of nonlinear index modulation and
nonlinear absorption, very high quality images are produced
by digital reverse propagation (DRP), which concept was
first demonstrated in the time domain for fibers [6]. In our
experiments, the power was gradually increased from the linear
regime up to Pcr. In this way, we primarily characterize the
nonlinear effects that are observed before strong self-focusing
and filamentation takes place. A contrast inversion due to
the nonlinearity [7–11] occurs at one-half the critical power.
Close to and above this power, filamentation can occur, which
generally makes the object reconstruction impossible. The fact
that contrast inversion occurs at a given fraction of Pcr suggests
that DRP can be used for the characterization of the nonlinear
properties of the focusing media as an alternative to the Z-scan
method [12].

The main approach for dealing with nonlinear aberrations
is based on the time-reversal property of Maxwell equations to
implement various kinds of phase conjugation (PC) [13–20].
Phase conjugation, however, produces an image at or near the

object location, which is not accessible in most applications,
and therefore its practical utility has been limited. Closely
related to the phase conjugation principle, the DRP concept
allows us to see through media involving a nonlinear process
for which we have a proper physical model (see Fig. 1). The
first application, as far as we know, of DRP in the spatial
domain was the demonstration in defocusing photorefractive
media [4].

In related work on the manipulation of spatial information
in nonlinear media, it has been suggested that the nonlinear
coupling between high and low spatial frequency modes can
increase spatial resolution [4]. The nonlinearity can also
be used to reveal weak signals in noisy environments by
exploiting stochastic resonance [21], or simply to prevent
diffraction blur through the use of spatial solitons as the
sampling element [22].

As a physical model for digital propagation, we use
the nonlinear Schrödinger equation (NLSE) based on Kerr
nonlinearity. For continuous-wave monochromatic radiation,
we have

∂A

∂z
= i

2k
�⊥A + ik0ñ2|A|2A − βn0

4η0
|A|2A, (1)

where A (V/m) is the complex envelope of the field, z (m)
is the propagation direction coordinate, �⊥ is the transverse
Laplacian operator, n0 is the linear refractive index, k0 (m−1) =
2π/λ, k = n0k0, ñ2 (m2/V2) is the nonlinear coefficient, and
β (m/W) is a nonlinear loss term defined by the drop of
intensity: Iz = −βI 2, with I = n0|A|2/2η0, with η0 = 377�.
Note that n2 (m2/W) = (2η0/n0)ñ2 (m2/V2). Equation (1)
accounts for diffraction, self-phase modulation (SPM), and
effective two-photon absorption. We use the split-step Fourier
(SSF) beam propagation method (BPM) [23] to numerically
evaluate Eq. (1).

The experimental setup is depicted in Fig. 2, the physical
dimensions are provided in the supplementary material [24].
The acetone used as the nonlinear medium in the experiments
has n2 coefficient 3.6 × 10−21 m2/W. This was measured by
the Z-scan method for our particular laser pulse [24]. The
laser source is a Ti:sapphire amplifier emitting 150-fs pulses
centered at 800 nm, with 10-Hz repetition rate. The maximum
energy per pulse is 2 mJ, and the best energy stability from
pulse to pulse is ±2%. For these parameters, Pcr = 19 MW and
we define the critical energy per pulse Ecr = PcrT = 2.9 µJ,
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FIG. 1. Conceptual and practical differences between phase
conjugation and DRP. Phase conjugation (a) does not require us
to know the properties of the medium, but the image is formed at
the object place. The beam splitter (BS) required to separate the
image from the object would be on the wrong side of the medium.
Conversely, for DRP (b), we need a model for the medium but the
image is available in the computer.

where T is the pulse duration. The object consists of
a chromium-coated glass U.S. Air Force resolution chart
with dark patterns on a clear background, illuminated with
convergent light, which focuses at the center of a 10-mm-thick
acetone cell. The object itself is imaged onto the camera
(CCD) with lenses located after the nonlinear medium. At
low intensity we obtain a sharp image of the object. In order to
reconstruct the object when the nonlinearity distorts its image,
we record the full complex field on the CCD. For this purpose,
we use off-axis holography to record amplitude and phase in a
single shot. The pulse energy is measured independently with
a photodiode.

This type of system is known to produce a contrast inversion
of the object as already shown for thin nonlinear media placed
at the focus of a lens [7–11]. The contrast inversion happens
when the low spatial frequencies of the field carry most of
the power and are nonlinearly phase shifted with respect to
higher spatial frequencies. A digital model of the nonlinear
imaging system shown on Fig. 2 was implemented in order to
use reverse propagation. Lenses were represented by quadratic

Nonlinear
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Photo-
detector
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FIG. 2. Experimental setup. The object is illuminated with con-
verging light focused by lens 1. The nonlinear medium is 10 mm thick
and is centered about the focus. Lenses 2 and 3 produce an image of
the object on the CCD. A reference beam is used to record the phase
via off-axis holography. The delay line allows overlap of the signal
and reference pulses. A photodetector is used to measure the actual
pulse energy. For more details, see [24].

phase terms, free-space propagation was computed with single
linear step of the BPM and nonlinear propagation in acetone
with nonlinear SSF-BPM.

Figure 3 summarizes the results of three experiments
done at increasing pulse intensities (0.87, 1.61,and 2.64 µJ,
respectively, equal to 0.3Ecr, 0.6Ecr, and 0.9Ecr). As expected,
the reverse propagation properly undoes the effect of SPM and
restores the object’s original contrast (dark pattern on bright
background) for pulse energies up to 0.8. We also include the
result for an approximate Zernike filter that will be discussed
later. As the energy comes closer to Ecr, an SPM-only model
fails to provide the correct contrast. It has been observed that
the low frequencies of the field are not only shifted but also
undergo nonlinear absorption process.

When the total power becomes larger than Pcr, a filament is
created at the focus and produces a colorful conical emission
attributed to supercontinuum generation and four-wave mixing
[25]. In our imaging system, this emission constitutes an
effective loss mechanism. We show that the addition of the
nonlinear gain term in Eq. (1) can effectively account for the
loss. The empirical values of β that yielded the best recon-
struction are β = 8 × 10−15 up to 2.2 µJ, β = 10−14 m/W
at 2.64 µJ, and β = 1.6 × 10−14 m/W at 2.8 µJ. The result is
shown on Fig. 3(f) where the original contrast is successfully
restored by the use of both SPM and gain in the reverse prop-
agation. More information on the measurement of nonlinear
absorption and its intensity dependence is provided in [24].

The nonlinearity in the systems of Fig. 2 is highly localized
near the focal plane inside the acetone cell. Therefore we
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FIG. 3. Compared results of DRP and Zernike filter reconstruc-
tion. (a) to (c) Amplitudes of the measured output field recorded with
the mentioned pulse energies. Note that linear reconstructions are
similar except for a magnification factor. (d) to (f) Reconstruction of
fields (a) to (c), respectively, using DRP. Both SPM and nonlinear
gain are necessary to get a correct reconstruction in (f). (g) to (i)
Zernike filters applied to measured field (a) to (c), respectively, with
the following parameters: (g) φ = −π/5, g = 1, (h) φ = −2π/5,
g = 1, and (i) φ = −5π/8, g = 3. kc = 2π/1.4 mm in all cases.
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can approximate the nonlinear medium as a thin transparency
whose amplitude and phase are modified by the presence of
the light beam. The contrast inversion process can then be un-
derstood simply as a dynamic Zernike filter [26] automatically
induced by the light beam itself. Accordingly the operation
performed by reverse propagation can be approximated by
a linear Zernike filter with the following transfer function:
T = exp{iWkc[φ − i ln(g)]}, where Wkc is the circular window
normalized to 1 with radius kc centered about the origin in the
Fourier domain. φ is a constant phase, and g is a constant gain
(φ = π/2 and g = 1 for the normal Zernike filter). Note that
φ, g, and kc are independent on the field.

The Zernike filter inversion method can be thought of as
an alternative to DRP for inverting the nonlinear aberrations.
However, at high power, the thin transparency approximation is
less accurate for the nonlinear phase and intensity modulation
of the light beam since the three-dimensional nature of the
nonlinear medium becomes important at higher intensities.
This effect is shown in the third row of Fig. 3 where the
results of DRP and the Zernike approximation are compared.
At a pulse energy of 2.64 µJ, DRP shows clearly a much
sharper image reconstruction. Note that for the Zernike filter,
the parameters kc, φ, and g need to be determined through an
exhaustive search or another search algorithm, whereas DRP
only requires the knowledge of one parameter: the correct laser
pulse energy.

The above results can be quantified by comparing the
reconstruction provided by the reverse propagation and linear
imaging (equivalent to linear reverse propagation). The dis-
tance between the two (complex) images X and Y is measured
with a correlation coefficient r . X and Y are first normalized
in order to have the same background as the lowest contrast
image R. Then, we define x = |X| − |R|, y = |Y | − |R|, and

r(x,y) =
∑ (x − x̄)(y − ȳ)√∑

(x − x̄)2
√∑

(y − ȳ)2
, (2)
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FIG. 4. Quantitative comparison between linear imaging, DRP,
and Zernike filter. The correlation coefficient is computed between
the current reconstruction and the low-intensity linear object, which is
considered as a reference. The pulse energy is given in units of critical
energy Ecr = 2.9 µJ (critical power times pulse duration). The value
of the critical power is derived from the nonlinear coefficient n2

measured by Z scan.
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FIG. 5. Image contrast as a function of pulse energy. The contrast
is quantified as the ratio of the integrated intensities in regions A and
B. According to our empirical model, the curve crosses the contrast =
0 line at 0.424 times the critical energy Ecr. The value measured by
Z scan is slightly lower, 0.424Ecr = 1.2 µJ.

where the overbar denotes the average. With this definition, we
get 0 < r < 1 for the original contrast images, r ≈ 0 for low
contrast images, and −1 < r < 0 for inverted contrast images.

As shown on Fig. 4, the nonlinear reconstruction shows
higher correlation with the object than the linear reconstruc-
tion, mainly because the latter fails to provide the correct con-
trast. At high energy, the DRP deteriorates because the loss in
the low spatial frequency components is not completely com-
pensated by the two-photon absorption term used to account
for it (see [24] for a measurement of the absorption coefficient
as a function of intensity). The conical emission associated
with this loss also involves the generation of new frequencies
that are neither accounted for in the model nor recorded by the
hologram. The Zernike model is inferior (which compensates
for the effects of nonlinear propagation with a two-dimensional
transparency) to the DRP at high powers because the nonlinear-
ity throughout the three-dimensional medium becomes more
pronounced.

An important characteristic of reverse propagation through
nonlinear media is that the nonlinear coefficient n2 of the
material has to be known. Conversely, if the pulse power
is known accurately from experimental measurement, then
n2 can be determined by scanning its value until the recon-
struction best matches the object. In this regard the contrast
inversion setup can be an effective tool, since the contrast
can be measured easily and the inversion occurs at a precise
power.

The nonlinear coefficient n2 is inversely proportional to the
critical power for self-focusing which can in turn be related
to the power Pinv at which the contrast inversion occurs. If
the object is illuminated with a convergent Gaussian beam,
then to each spatial frequency will correspond a focused beam
with its waist in the Fourier plane. For transparent or reflective
objects, the low spatial frequency components of the field are
the strongest and we can assume that all the nonlinear phase
shift occurs in the Gaussian beam corresponding to the zero
frequency. This is equivalent to a Zernike filter, for which it
is known that the minimum contrast image is obtained with a
±π/2 phase shift.

We can derive a simple relationship to link the nonlinear
phase shift of a Gaussian beam to its total power P . When
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fitted to a numerical simulation, it gives a simple empirical
relationship, as a function of p = P/Pcr, for the nonlinear
phase shift accumulated between z = z1 and z = z2:

	NL(z1,z2) = (p + p3)φ, (3)

where φ = arctan(z2/z0) − arctan(z1/z0) happens to be the
Gouy phase shift between z1 and z2, z = 0 being the waist
position, and z0 the Rayleigh range of the beam. This model is
valid when |zi |/z0 > 1. This allows us to predict the power at
which we obtain a π/2 phase shift, corresponding to the lowest
contrast image. If we require that

∫ ∞
−∞ 	NL(z)dz = π/2, then

we get an expression for the beam power at which the contrast
inversion takes place: Pinv = 0.424Pcr.

In the experiments, the contrast inversion occurs at 1.5 µJ,
which provides a value for the nonlinear coefficient: n2 =
2.8 × 10−21 m2/W (see Fig. 5). The value obtained from the
Z-scan measurement was n2 = 3.6 × 10−21 m2/W.

In conclusion, we have presented experimental results of
image reconstructions using DRP through a focusing Kerr
medium. In the convergent light system we used, the nonlin-
earity has pronounced effects even below critical power. This
includes nonlinear losses and SPM, which are both corrected
by DRP. We have also shown that an alternative reconstruction
algorithm, a properly defined Zernike filter in the dig-
ital domain, can also correct nonlinear aberrations. We
have found that DRP is superior at stronger light in-
tensities. Finally, we have suggested that imaging in
nonlinear media in conjunction with reverse propagation
offers a tool to rapidly measure the nonlinear coeffi-
cient n2 without the need for implementing a Z-scan
experiment.

We would like to thank our colleague K. Makris for rich
and constructive discussions.
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