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Multistability in an optomechanical system with a two-component Bose-Einstein condensate
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We investigate a system consisting of a two-component Bose-Einstein condensate interacting dispersively with
a Fabry-Perot optical cavity where the two components of the condensate are resonantly coupled to each other by
another classical field. The key feature of this system is that the atomic motional degrees of freedom and the internal
pseudospin degrees of freedom are coupled to the cavity field simultaneously, hence an effective spin-orbital
coupling within the condensate is induced by the cavity. The interplay among the atomic center-of-mass motion,
the atomic collective spin, and the cavity field leads to a strong nonlinearity, resulting in multistable behavior in
both matter wave and light wave at the few-photon level.
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In the past few years, there has been a great surge of
interest in the nonlinear phenomena associated with the
so-called optomechanical systems, which are realized by
coupling a mechanical oscillator to an electromagnetic field
in a cavity [1–7]. The exploration of these systems has
led to many exciting developments, including self-sustained
oscillations [8,9], bistability [9,10], and optomechanical chaos
[11]. Besides these linear optomechanical coupling systems,
devices with nonlinear optomechanical coupling have been
studied in some very recent experimental works [12,13] as
well.

On the other hand, more recent studies on the cavity quan-
tum electrodynamics (QED) with an ensemble of ultracold
atoms, both bosonic [14–18] and fermionic [19], give rise to a
new platform of cavity optomechanics. In this new regime of
cavity QED, a cavity field at the level of few photons or even a
single photon can significantly affect the collective motion of
the whole atomic samples. This allows us to study the nonlinear
dynamics of ultracold atomic gases in a new domain.

Among all these nonlinear phenomenon in a cavity optome-
chanical system, the bistable behavior is one of the focuses
of research interest. The optical bistability in optomechanical
systems has been studied both in theory [20] and in exper-
iment [21,22]. Strong matter wave bistability has also been
investigated in a spinor Bose-Einstein condensate (BEC) [23].
In this work, we propose a scheme to exploit the multistable
behavior in a two-component BEC coupled to a Fabry-Perot
cavity. Here the two components of the condensate are coupled
by another classical optical field, hence realizing a pseudospin
half system. The cavity supports a single-mode standing wave
optical field, which interacts with atoms dispersively. When
the coupling strengths of the two atomic spin components and
the optical field are different, the cavity field will then couple to
both the external center-of-mass and the internal spin degrees
of freedom of the condensate. Whereas in previous studies
of the BEC-cavity system, the cavity field couples either to
the center-of-mass [14–17,20–22] or to the spin degrees of
freedom [23], but not to both [24]. As we shall demonstrate,
the nonlinear coupling among the external and internal states

of the condensate and the cavity photons leads to multistability
in both light wave and matter wave.

In our model, as depicted schematically in Fig. 1(a), we
consider a quasi-one-dimensional BEC of N atoms in two
stable hyperfine spin ground states |a〉 and |b〉 trapped in
a high-finesse Fabry-Perot cavity. The two spin states are
coupled to each other by a classical light field (this can
be, for example, either a two-photon Raman field or an
radio-frequency field). The BEC and the cavity are in the strong
coupling regime of cavity QED, that is, the maximum coupling
strength between a single atom and a single intracavity photon,
ga and gb, are larger than both the amplitude decay rate of the
intracavity field κ and that of the atomic excited state. The
coupled dynamics of the BEC and the cavity field is driven by
continuously applying a weak pump laser field with frequency
ωp and amplitude η along the cavity axis, taken to be the z

axis.
Let c (c†) denote the annihilation (creation) operators for the

single-mode cavity field, and a (a†) and b (b†) the annihilation
(creation) field operators for the atoms in states |a〉 and |b〉,
respectively. Then the Hamiltonian in a frame rotating at
the pump frequency ωp can be written as (to focus on the
atom-photon interaction, we have neglected the atom-atom
collisions)

H =
∫ L

0
dz

[
a†(z)

−h̄2

2m

∂2

∂z2
a(z) + b†(z)

−h̄2

2m

∂2

∂z2
b(z)

+ h̄J a†(z)b(z) + h̄J b†(z)a(z)

+ h̄[Uaa
†(z)a(z) + Ubb

†(z)b(z)] cos2(kz)c†c

]

− h̄δcc
†c + ih̄η(c† − c) . (1)

Here L is the length of the cavity and δc = ωp − ωc is the
cavity-pump detuning. The second line of Eq. (1) represents
the coupling between the two spin states by the classical field,
with J being the coupling strength (without loss of generality,
we take J to be real and negative). Ui = g2

i /(ωp − ωi)
(i = a,b) characterizes the cavity-field-induced energy shift
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FIG. 1. (Color online) (a) Schematic diagram of the system. The
cavity is pumped at rate η and the cavity photon decays at rate κ .
(b) Atomic level diagram: The two stable atomic hyperfine ground
states |a〉 and |b〉 are coupled by a classical field with coupling
strength J . In addition, they interact with the cavity dispersively,
resulting to an energy shift Ua and Ub, respectively.

of the atomic spin states, with gi being the resonant coupling
strength between the atom and the cavity field, and ωi the
transition frequency for the two atomic states, respectively.
We assume that the pump-atom detuning is large enough so
that the atomic upper level can be adiabatically eliminated
and the interaction between the cavity photon and the atom is
essentially of dispersive nature.

The standing-wave cavity mode couples different mo-
mentum modes of the condensate separated by an integer
multiple of 2h̄k, with k being the wave number of the
cavity photon. Recent experiments [21] suggest that when
cavity photon number is not large, the atomic momentum
modes interacting significantly with the cavity field are
those with momenta 0 and ±2h̄k. Neglecting all higher-
order modes, we can expand the atomic field operators in
k space as a(z) = (a0 + √

2a2 cos 2kz)/
√

L and b(z) = (b0 +√
2b2 cos 2kz)/

√
L. Substituting them into Eq. (1) leads to the

Hamiltonian under this few-mode approximation:

H

h̄
= ω(a†

2a2 + b
†
2b2) + J (a†

0b0 + a
†
2b2) + J (b†0a0 + b

†
2a2)

+ 1

2

[
Ua

(
a
†
0a0 + a

†
2a2 + 1√

2
a
†
0a2 + 1√

2
a
†
2a0

)

+Ub

(
b
†
0b0 + b

†
2b2 + 1√

2
b
†
0b2 + 1√

2
b
†
2b0

)
− 2δc

]
c†c

+ iη (c† − c) , (2)

where ω = 4h̄k2/2m is the photon recoil frequency.
Now we can draw an analogy with the optomechan-

ical system by defining two harmonic oscillator modes
with displacement X̂a = (a†

0a2 + a
†
2a0)/

√
2Na and X̂b =

(b†0b2 + b
†
2b0)/

√
2Nb. Their corresponding conjugate vari-

ables are P̂a = −i(a†
0a2 − a

†
2a0)/

√
2Na and P̂b = −i(b†0b2 −

b
†
2b0)/

√
2Nb, respectively. Ns denotes the number of atoms

in spin state |s = a,b〉. Under the condition that most of
the atoms are still in the zero-momentum mode, which is
an excellent approximation for the parameters of current
experiments [21], it is straightforward to verify that these
variables satisfy the commutation relations [X̂j ,P̂j ] = i(Nj0 −
Nj2 )/Nj � i (j = a,b), and all other commutators vanish.

In the following we adopt a mean-field treatment by
replacing the operators a0 (b0) and a2 (b2) with their cor-
responding C numbers α0 = √

Na0e
−iθa0 (β0 = √

Nb0e
−iθb0 )

and α2 = √
Na2e

−iθa2 (β2 = √
Nb2e

−iθb2 ). Now we can define
another pair of conjugate variables as the atomic collective spin

M̂ = N̂a − N̂b and the relative phase θ = θa0 − θb0 . Obviously
we have [X̂i,M̂] = [P̂i ,M̂] = 0 and [X̂i,θ ] = [P̂i ,θ ] = 0 (i =
a,b). In other words, we have three pairs of independent
conjugate variables: (X̂a,P̂a), (X̂b,P̂b), and (M̂,θ ). The first
two pairs represent the oscillator modes and originate from
the center-of-mass motion of the condensate, while the last
pair originates from the internal motion of the condensate.
We can then rewrite the Hamiltonian under the few-mode
approximation in terms of these three pairs of conjugate
variables as

H

h̄
= ω

2

(
X̂2

a + P̂ 2
a + X̂2

b + P̂ 2
b

) + J
√

N2 − M̂2 cos θ

+ 1

2
[(Ua − Ub)M̂/2 + UaX̂a

√
(N + M̂)/2

+UbX̂b

√
(N − M̂)/2 − 	c]c†c + iη (c† − c), (3)

where 	c = 2δc − (Ua + Ub)N/2.
To proceed further, we treat the leakage of cavity photons

phenomenologically by introducing a cavity decay rate κ

whose typical value (∼ 1 MHz) is much larger than ω and
J , under which condition we can assume that the cavity
field always follows adiabatically the atomic dynamics. From
ih̄ċ = [c,H ] = 0, we obtain the mean intracavity photon
number Nc as

〈c†c〉 = η̄2

1 + 1
4

[
Ūmm + Ūaxa

√
1+m

2 + Ūbxb

√
1−m

2 − 	̄c

]2
.

(4)

Here we have adopted the normalized variables xa = Xa/
√

N ,
xb = Xb/

√
N , and m = M/N , and the dimensionless pa-

rameters η̄ = η/κ , Ūa = UaN/κ , Ūb = UbN/κ , Ūm = (Ūa −
Ūb)/2, and 	̄c = 	c/κ . For convenience of the following
discussion, we also define two other dimensionless parameters
as ω̄ = ωN/κ and J̄ = JN/κ .

We can now write down the equations of motion as follows:

ẋa = ω̄pa , (5a)

ẋb = ω̄pb , (5b)

ṁ = 2J̄
√

1 − m2 sin θ , (5c)

ṗa = −ω̄xa − Ūa

√
(1 + m)/8 〈c†c〉 , (5d)

ṗb = −ω̄xb − Ūb

√
(1 − m)/8 〈c†c〉 , (5e)

θ̇ = 2J̄m cos θ/
√

1 − m2 − [Ūm + Ūaxa/
√

8(1 + m)

− Ūbxb/
√

8(1 − m)] 〈c†c〉 , (5f)

where the time derivatives are taken with respect to the
dimensionless time τ = κt .

Combining Eqs. (4) and (5), one can find the effective
Hamiltonian Heff as

Heff

h̄κ
= ω̄

2

(
x2

a + p2
a + x2

b + p2
b

) + J̄
√

1 − m2 cos θ

− η̄2 arctan

[
1

2

(
	̄c − Ūmm − Ūaxa

√
1 + m

2

− Ūbxb

√
1 − m

2

)]
. (6)
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From Eqs. (5) one can see that the atomic dynamics
will depend on the intracavity photon number. Conversely,
the intracavity photon number is dependent upon the atomic
variables via Eq. (4). It is this interdependence of the atomic
and photonic modes that leads to interesting multistability of
this coupled system, which will be the main result of this work.

The steady-state solutions are obtained by setting the time
derivatives to zero in Eqs. (5) which yields six coupled
nonlinear algebraic equations. In the case of Ua = Ub, i.e.,
when the light shifts induced by the cavity photon are spin
independent, it is not difficult to see that m = 0 in the steady
state. In other words, under this situation, the populations in the
two spin states are always equal to each other, which effectively
freezes the atomic spin degrees of freedom. Thus, we will
always focus on the case where Ua �= Ub.

We may get some useful information from the phase dia-
gram identifying different types of phase-dependent solutions.
It follows from Eq. (5) that θ = 0 or π in the steady state.
We will focus only on the θ = 0 branch, which for J < 0
represents the lower energy branch. In the parameter space of
η̄2 and 	̄c, the number of steady-state solutions are illustrated
in Fig. 2. We can see that in certain parameter regimes, the
number of different solutions of the system can be more
than one, which indicates that multistable behavior may be
observed. By varying η̄ and/or 	̄c, one can traverse different
solution regions of the system. So, this coupled system can be
easily manipulated by tuning the intensity or frequency of the
pump laser field.

As an example, we consider the case where the pump
intensity is fixed at η̄2 = 7. By varying the cavity-pump
detuning 	̄c, the equilibrium properties of the system are
changed, as shown by the red-dashed line in Fig. 2. The
corresponding solutions are derived and the typical results
are shown in Fig. 3. From these plots, one can see that both the
cavity field and the atomic spin population exhibit multistable
behavior. For certain values of detuning 	̄c, it supports three or
five steady-state solutions. A standard linear stability analysis
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FIG. 2. (Color online) Phase diagram for different types of
solutions with θ = 0 in the parameter space of η̄2 and 	̄c. Different
regions are differentiated by their colors. The digits labeled in
each region denote the numbers of corresponding solutions. The
dimensionless parameters are taken to be Ūa = 50, Ūb = 200, ω̄ =
400, J̄ = −1. The total number of atoms are set as N = 105. The red
dashed line corresponds to η̄2 = 7.
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FIG. 3. (Color online) Mean intracavity photon number Nc (upper
panel) and normalized collective spin m (lower panel) vs cavity-pump
detuning 	̄c for the steady-state solutions with η̄2 = 7, corresponding
to the red-dashed line in Fig. 2. The branches represented by the blue
(darker) lines correspond to the dynamically stable solutions (the
solid parts denote the ground state and the dashed parts denote stable
but not the ground state), and the ones represent by the red (lighter)
dot-dashed lines correspond to the dynamically unstable solutions.

shows that in the region with three solutions, two of them
are dynamically stable, and in the region with five solutions,
three of them are dynamically stable. Hence these represent
bistable and tristable regimes, respectively. In these multistable
regimes, we calculate the energies of the stable states according
to Eq. (6), from which we identify the ground-state solutions
which are represented by the solid lines in Fig. 3. As can be
seen, the ground state jumps from one branch to another at
certain critical values as 	̄c is scanned. These critical points
correspond therefore to first-order transitions in this system.

We remark that optical tristable behavior was discussed
in theory several decades ago [25] and has been observed in
various systems [26–29]. Here we report a platform where
simultaneous bistability or tristability in optical and matter
waves can be observed. We emphasize that in the regime of
a weak cavity field such that the few-mode approximation is
valid, the existence of a tristable regime requires both external
center-of-mass and the internal spin degrees of freedom of
the condensate to be present. By contrast, in previous studies
where one or the other of these degrees of freedom is absent,
only bistable behavior is observed [14–17,19–23].

Note also that the presence of several degrees of freedom
does not guarantee tristability. For example, optomechanical
systems with multiple degrees of freedom were studied in
several works recently [30–32], with no tristability being
reported. There is a common feature in the systems studied
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in these works, that is, each mechanical degree of freedom
is only coupled to the cavity mode, and there is no direct
coupling among themselves. In fact, this corresponds to setting
J = 0 in our model, so that the collective spin M becomes
a conserved quantity and hence effectively freezes the spin
degrees of freedom. Then, in principle, through a canonical
transformation, one can always rewrite the Hamiltonian [see
Eq. (3), for example] as a sum of several independent
subsystems, each of which can be regarded as an oscillator
coupled with a cavity field or just a free oscillator. Obviously,
there would be no multistable behavior other than bistability
in such a system.

In contrast, in the model we have considered here, the
mechanical degrees of freedom represented by Xa and Xb,
the spin degrees of freedom represented by M , and the cavity
field are all coupled simultaneously, as can be seen from
Eq. (3). It is this nonlinear coupling that makes tristability
possible.

In summary, we have studied the interaction of a two-
component BEC with a standing-wave cavity field, where the
two components are coupled by another classical optical field.
We show that this coupled cavity-BEC system can display
simultaneously optical multistability at the few-photon level
and matter-wave multistability involving a whole condensate

with a macroscopic number of atoms. This highly controllable
optical and collective spin multistability can be very useful
both in exploring fundamental quantum physics such as
understanding decoherence in a macroscopic system and in
applications such as building switches and logical gates for
quantum-information processing. Our study also opens up
possibilities to explore nonlinear dynamical effects such as
chaos [33] and bifurcation [34] in an optomechanical system
at the regime of the few-photon level. In this work, we
have adopted a few-mode approximation. As a self-consistent
check, we have verified that for the parameters we used,
the zero-momentum atomic population always exceeds 90%,
which should make the approximation valid. In the future, it
will be instructive to numerically study the validity regime of
the few-mode approximation and explore the potentially inter-
esting physics beyond the approximation. Another interesting
revenue of research is to explore the novel physics induced
by the coupling between the motional and spin degrees of
freedom within the condensate.
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