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Bound states of two bosons in an optical lattice near an association resonance
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We model two bosons in an optical lattice near a Feshbach or photoassociation resonance, focusing on the
Bose-Hubbard model in one dimension. Whereas the usual atoms-only theory with a tunable scattering length
yields one bound state for a molecular dimer for either an attractive or repulsive atom-atom interaction, for a
sufficiently small direct background interaction between the atoms a two-channel atom-molecule theory may
give two bound states that represent attractively and repulsively bound dimers occurring simultaneously. Such
unusual molecular physics may be observable for an atom-molecule coupling strength comparable to the width of
the dissociation continuum of the lattice dimer, which is the case, for instance, with narrow Feshbach resonances
in Na, 87Rb, and 133Cs or low-intensity photoassociation in 174Yb.
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An optical lattice [1] modifies the motion of atoms
profoundly compared to free space. Moreover, the site-to-
site hopping of the atoms can be controlled by varying
the intensity of the lattice laser, which enables phenomena
ranging from Mott insulators [2] to atomtronics [3]. The
interactions between the atoms can also be tuned by utilizing
Feshbach [4,5] and photoassociation [6,7] resonances. In
effect, both the mass of the atoms and the atom-atom
interactions can be controlled experimentally, possibly leading
to custom-tailored molecules and unprecedented experimental
control of molecular physics. As the prime example to date,
dimers bound by repulsive atom-atom interactions have been
demonstrated experimentally [8] and confirmed theoretically
[8–12].

In the conventional single-channel description of the lattice
dimers [8,10–16] the atoms have an interaction between
them characterized by a scattering length that diverges at the
resonance. The more nuanced two-channel theory [9,17,18]
asserts that there are also molecules present as an independent
degree of freedom. In this view atom pairs may be converted
into molecules, and a resonance occurs when the atom pairs
and the molecules have the same energy.

In the present communication we formulate and solve the
time-independent Schrödinger equation for a lattice dimer
within the two-channel model. We find a peculiar qualitative
change in the molecular physics compared to the single-
channel model: while the latter always presents one bound
state for the dimer, in the case of sufficiently weak direct
interactions between the atoms the two-channel model may
exhibit two bound states, one below and one above the band of
dissociated dimer states. In particular, while the single-channel
description provides for a bound state below the continuum
band for attractive atom-atom interactions or a bound state
above the dissociation continuum for repulsive interactions,
the two bound states for the two-channel dimer may be viewed
under certain conditions as the analogs of attractively and
repulsively bound pairs occurring simultaneously for the same
system parameters.

We begin with the Bose-Hubbard Hamiltonian for a one-
dimensional lattice in the single-channel picture [11],
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The index k runs over the lattice sites, L of them. We use
periodic boundary conditions, so that the site k = L is the same
as the site k = 0. The parameter J characterizes tunneling from
site to site, U quantifies the atom-atom interactions, and ak is
the annihilation operator for bosonic atoms at the site k.

The corresponding two-channel model describes an associ-
ation resonance where a bound molecular state and a state
of two asymptotically free atoms become degenerate. The
Hamiltonian is
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where bk is the annihilation operator for a molecule at the site k,
and the detuning δ quantifies the difference in energy between
a molecule and an atom pair; δ = 0 denotes the resonance. The
entities annihilated by ak and bk are bare atoms and molecules
that would exist without the atom-molecule conversion ∝ξ .
Diagonalization of the Hamiltonian (2) gives a description of
the physically observable dressed molecules.

In our simplest possible model we do not include site-to-
site tunneling of the molecules. This is reasonable since the
molecules are twice as heavy as the atoms and the tunneling
amplitude J is exponentially small in mass. There could also be
atom-atom interactions as in the single-channel model (1), as
well as interactions between molecules and between atoms and
molecules, but these are all ignored in the Hamiltonian (2). In
Eq. (2), and in most of this Rapid Communication, we assume
that the resonance at δ � 0 dominates the physics to the extent
that direct two-particle interactions can be ignored.

Although the single-channel model speaks of only
atoms that interact among themselves and the two-channel
model shows atom-molecule conversion with seemingly no
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atom-atom interactions at all, there is a close connection
between the two descriptions. To demonstrate this, we write
the Heisenberg equations of motion for ak and bk from the
Hamiltonian (2), and for an asymptotically large detuning δ

eliminate adiabatically the molecular operators bk . With the
identification

U ≡ −2ξ 2/δ, (3)

the result is the same atomic dynamics as per the single-
channel Hamiltonian (1). One may think of the single-channel
model as the limit of the two-channel model far away from the
resonance.

The analysis of the two-channel model proceeds much
along the lines of the single-channel case [11]; the multitude
of mathematical complications is essentially the same, and we
only outline the main points. First, using the discrete Fourier
transformation we take both the atomic and the molecular
operators into the lattice momentum representation, ak → cq

and bk → dq . The quasimomentum q runs over a suitable set
of values, e.g., q = 2πn/L for integers n such that q belongs to
the first Brillouin zone of the lattice. The Hamiltonian becomes

H
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= −J

∑
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cos qc†qcq + δ
∑
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qdq

− ξ√
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For diatomic molecules, the total atom number

N =
∑
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†
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(c†qcq + 2d†
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is a conserved quantity for the two-channel Hamiltonian.
Given two lattice momenta q1 and q2, we next define the

analogs of the center-of-mass (c.m.) and relative momenta
P = q1 + q2 and q = (q1 − q2) /2, and write an ansatz for the
state with the total number of atoms N = 2 as
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∑

q

A(q) c
†
1
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c
†
1
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|0〉 + β d
†
P |0〉. (6)

Here |0〉 is the particle vacuum, and without restricting the
generality we set A(q) = A(−q). The Hamiltonian maps the
state (6) to a state of the same form, with the same P , which
is a manifestation of conservation of the c.m. momentum.
The problems with the notation 1

2P ± q [11] are irrelevant
in our final limit when the momentum becomes a continuous
variable. Defining a characteristic frequency �P and scaling
all dimensional quantities to it,
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(7)

we find the time-independent Schrödinger equation for the
energy E ↔ ω in the form

(ω + cos q)A(q) + �β√
2L

= 0, (8)

(� − ω)β −
√

2�√
L

∑
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A(q) = 0 . (9)

From the Schrödinger equations (8) and (9) one may deduce
the condition for the (scaled) eigenstate energy ω,

f (ω,L) ≡ 1

L

∑
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= ω − �

�2
. (10)

For comparison, the single-channel result is

f (ω,L) = 1/K, (11)

with K = U/�P . Once the eigenenergy ω has been solved
from Eq. (10), the unit-normalized solution to the Schrödinger
equation is

β = −
[
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L

∑
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(ω + cos q)2

]−1/2

, (12)

A(q) = −�β√
2L(ω + cos q)

. (13)

We plot the function f (ω,L) for L = 16 as a function of
the variable ω in Fig. 1. The right-hand sides of Eqs. (10)
and (11) for the parameters K = � = 1/2 and � = 1/

√
2 are

also represented as straight lines in Fig. 1. The solutions occur
where the straight lines and the graph of f (ω,L) intersect.
Equations (10) and (11) both have one solution ω between
each value of − cos q for the successive discrete values of
the quasimomentum q. This is the finite-lattice analog of
the dissociation continuum of the dimer. The single-channel
eigenvalue equation (11) also has one solution ω outside
of the range (−1,1). For a positive atom-atom interaction
coefficient U this is the celebrated repulsively bound dimer [8].
On the other hand, the two-channel model as in Eq. (10) always
has two bound states; one above and one below the dissociation
continuum.

With the addition of the explicit molecular degree of
freedom, for each fixed c.m. momentum P the dimer system
has one more degree of freedom in the two-channel case than
in the single-channel case, which accounts for the existence
of the extra state. However, the nature of the newly emerged
bound state calls for an investigation.

2 1 1 2
ω

5

5

f ω, L

FIG. 1. (Color online) The function f (ω,L) [Eq. (10)] for
L = 16. The horizontal and positive-slope lines represent the
right-hand sides of Eqs. (11) and (10), respectively, for K = � = 1

2

and � = 1/
√

2. The dashed vertical lines are the asymptotes of
f (ω,L) at the values of ω = − cos q such that f (ω,L) = ±∞.
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We discuss the limit when the lattice is infinitely long,
L → ∞, whereupon the quasimomentum becomes a contin-
uous variable in the interval [−π,π ). The main technical rule
is that any sum over the lattice momenta is replaced with an
integral,

∑
q → L

2π

∫ π

−π
dq . Here we only look into the two

bound states with |ω| > 1. The eigenvalue equation and the
amplitude of the molecules in the bound state are

ω − �

�2
= sgn(ω)√

ω2 − 1
, (14)

β = −
[

(ω2 − 1)3/2

(ω2 − 1)3/2 + |ω|�2

]1/2

. (15)

References [9] and [18] based on scattering theory also
report multiple bound states, but the explicit results are
different from ours as these papers incorporate a significant
“background” atom-atom interaction ∝U as in Eq. (1). We
may add the background interaction into the present two-
channel model, and represent it in terms of the same parameter
K = U/�P that was used in Ref. [11]. For instance, the
counterpart of Eq. (14) then becomes

ω − �

K(ω − �) + �2
= sgn(ω)√

ω2 − 1
. (16)

The advantage of the present approach is that, once we have
both the bound states and the dissociated states, we can
straightforwardly analyze [11] quantities such as the disso-
ciation rate of the bound state when the lattice parameters are
modulated, as measured in Ref. [8]. However, the continuum
states present similar mathematical issues as in Ref. [11], and
we defer the discussion of the dissociation rates for later.

The variety of special cases that may arise with
K 	= 0 complicates the discussion, so we continue without
the background interactions and set K = 0. Given the actual
parameter values, the number of real roots to Eq. (16) with
|ω| > 1 may be employed as a test of the qualitative validity
of the present arguments. For instance, on exact resonance
� = 0 there are two such roots if �2 > |K|.

We approximate the bound states as a function of the
scaled detuning �. First, we note that if the pair (ω,�)
satisfies Eq. (14), then so does (−ω, − �). In view of this
invariance, it is convenient to assume first that � � 0, and
then use the symmetry to deal with the case � < 0. In the limit
� → ∞ the angled straight line in Fig. 1 slides down, and it
is evident that the two bound-state energies become ω ∼ �

and ω ∼ −1. Let us first study the state with ω ∼ �. Since an
expansion in �−1 is expected in the limit � → ∞, we attempt
to find the energy by substituting an expansion of the form
ω� = � + a0 + a−1�

−1 + · · · into Eq. (14). MATHEMATICA

makes this sort of work extremely easy. The result is

ω� = � + �2

�
− �2(2�2 − 1)

2�3
+ O

(
1

�5

)
. (17)

An expansion of the other bound-state energy ωT � −1 that
approaches the continuum threshold in the limit � → ∞ is
found similarly. Analytical expansions are also available in the
neighborhood of the association resonance � ∼ 0. In this case
the energies ω± are found in the form ω± = ± sgn(ω) b0 +
b1� + · · · .

The extra bound state can be characterized starting from the
asymptotic expansions of the bound-state energies. For large
detuning the expansions (17) and its counterpart for the energy
ωT give the molecular fractions f = |β|2,

f� � 1 − �2

�2
, fT � �4

|�|3 , (18)

whereas for � ∼ 0 the molecular fractions for both bound
states are

f± � 2�4

1 + 4�4 + √
1 + 4�4

. (19)

According to Eq. (3), the single-channel model is recaptured
from the two-channel model in the limit when the parameters
� and � both tend to infinity in such a way that K = −�2/�

remains constant. K is then nothing but the two-channel coun-
terpart of the dimensionless atom-atom interaction constant
that we also denoted by K in our single-channel theory [11].
In fact, in this particular limit the energy of the bound state ωT

converges to the single-channel result ω = sgn(K)
√

1 + K2.
Moreover, the molecular fraction fT of this bound state
vanishes. The |�| → ∞ bound state that we have denoted
by the subscript T is the counterpart in the two-channel model
of the bound state in the single-channel model.

The character of the other |�| → ∞ bound state that we
have denoted by the subscript � is equally obvious. The
energy tends to ω� → �, the energy of the bare molecule,
and the molecular fraction behaves as f� → 1. This bound
state simply represents a bare molecule that has decoupled
from the atoms.

The bound states at resonance � ∼ 0 make a more
interesting tale. First, the structure of the state space and
of the coupling between bare atoms and molecules, the
kinematics of the problem, forces the existence of two bound
states for the dressed molecule. Second, from Eq. (19) we
see that the fraction of bare molecules f± in both bound
states tends to zero when the atom-molecule coupling ∝�

vanishes, and to 1/2 when the atom-molecule coupling is
strong. In dimensional quantities the borderline between the
two cases is approximately at ξ � �P , when the strength of
the atom-molecule coupling is comparable to the width of the
continuum band of the dissociated states of the molecule.

In the limit of strong atom-molecule coupling, |�| → ∞,
the width of the continuum band is negligible. Formally,
cos q ≡ 0 in Eq. (8) and an effective two-level system for
the amplitude β and the collective amplitude

∑
q Aq emerges.

The association resonance then splits these two states apart.
All told, the corresponding bound states represent association
in a system that behaves as if there were no kinetic energy
for the atoms. On the other hand, for weak atom-molecule
coupling, � → 0, the bound states are already far detuned
from the association resonance as a result of the width of
the continuum band, and are effectively described by the
single-channel theory. The two coexisting bound states we
have denoted by ± then mean that the usual bound state for
an attractive atom-atom interaction and the repulsively bound
state are present simultaneously.

The two bound states also provide unexpected insights into
modeling of Feshbach resonances. In molecular physics it is
customary to think of Feshbach resonances in terms of multiple
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channels, whereas single-channel pictures are the norm in
condensed-matter physics. Oddly enough, there seems to be
little difference [19] between the predictions from single- and
two-channel theories in common experimental situations with
quantum degenerate gases. In contrast, one bound state in
the single-channel description and two bound states in the
two-channel description is a stark qualitative difference.

The characteristic frequency scale of the lattice physics [1]
is the recoil frequency set by the atomic mass m and the
lattice spacing d as εR = π2h̄/2md2, roughly 10 × 2π kHz;
the tunneling amplitude J is typically a fraction thereof.
The two bound states are similar in character and therefore
presumably easiest to detect simultaneously on resonance,
� ∼ 0. To have the bound states well separated from the
dissociation continuum we would like to have ξ >∼ �P ∼ J .
On the other hand, the resonance will overwhelm the lattice
physics if ξ � εR , and the Bose-Hubbard model itself may
need to be amended [20,21]. Overall, it appears that the best
experimental parameters are in the neighborhood of ξ ∼ εR .
Our question is, are atom-molecule couplings of this order
available in practice?

We proceed along the lines of Refs. [22,23]. We write the
atom-molecule coupling as ξ = ω̄1/4�3/4, where ω̄ charac-
terizes the free-space molecular physics and � the lattice
physics. Assuming that the Wannier functions for atoms
and molecules at each lattice site are ground states of a
three-dimensional harmonic oscillator with frequencies ωi ,
we have � = (ω1ω3ω3)1/3/2π . The characteristic order of
magnitude of the lattice contribution is then of the order of
the recoil frequency and, in turn, so should be the free-space
contribution, which calls for a weak association resonance.

For the Feshbach resonance, the free-space coupling for
a given resonance is fixed once and for all. The remaining

molecular frequency is ω̄ = 4π2ma2
b�

2
B�2

µ/h̄3, where the
background scattering length is ab and the magnetic field
width of the resonance is �B , while the difference between
the magnetic moments of a bare molecule and two bare
atoms is �µ. To achieve ω̄ ∼ εR requires a narrow Feshbach
resonance. Potential candidates include the 853 G resonance
in Na [24] (ω̄ � 1.6 × 2π kHz), the 911 G resonance in
87Rb [25] (31 × 2π Hz), and the 20 G resonance in 133Cs [26]
(75 × 2π Hz).

In photoassociation the atom-molecule coupling ξ is
adjustable according to the laser intensity. Borrowing from
Ref. [23], we have ω̄ = 4π2mL2

PA�2/h̄, where LPA =
mK/(4π ) is determined from the low-intensity rate constant
K ∝ I , and the natural linewidth of the molecular state is
�. The broad natural linewidths complicate photoassociation
in alkali metals [6], but the alkali-earth metals have narrow
linewidths and, in particular, the 192 MHz line in 174Yb [7] is a
ready candidate for a laser intensity of the order of 1 mW/cm2,
so that ω̄ � 63 × 2π Hz.

We have discussed the stationary states of two bosons in a
one-dimensional optical lattice within the two-channel Bose-
Hubbard model. The particular result that there are two bound
states, one of them effectively a dimer bound by attractive
interactions and the other by repulsive interactions, provides
a dramatic example of molecular physics in a lattice with no
counterpart in free space. We have identified several Feshbach
and photoassociation systems for which this unusual situation
might be observable.
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