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Momentum-resolved study of an array of one-dimensional strongly phase-fluctuating Bose gases
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We investigate the coherence properties of an array of one-dimensional Bose gases with short-scale phase
fluctuations. The momentum distribution is measured using Bragg spectroscopy, and an effective coherence
length of the whole ensemble is defined. In addition, we propose and demonstrate that time-of-flight absorption
imaging can be used as a simple probe to directly measure the coherence length of one-dimensional gases in the
regime where phase fluctuations are strong. This method is suitable for future studies such as investigating the
effect of disorder on the phase coherence.
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Physics of one-dimensional (1D) systems attracts a great
interest both on the theoretical and the experimental side. Re-
cent progress in nanotechnology allowed the implementation
of 1D systems in a variety of fields, from inorganic and organic
superconductors [1] to carbon nanotubes and nanowires [2] to
spin chains and ladders [3] as well as cold atomic systems
[4,5]. All these systems belong to the universality class of
interacting quantum fluids known as Luttinger liquids [6],
whose properties strongly differ from their 3D counterparts.
For instance, quantum and thermal fluctuations are strongly
enhanced by the reduced dimensionality, their knowledge
giving access to key quantities characterizing the system [7].
Their presence can drastically alter the properties of the
systems, such as in superconductive disordered nanowires,
where they can lead to the formation of phase-slip centers [8].

In the context of cold atoms, both phase and density
fluctuations of 1D systems have been studied in the last years
[9–12]. In particular, phase coherence has been investigated by
monitoring interference between two different 1D gases [10]
and by observing density modulations [11] or the response
to light scattering [12] in elongated 3D quasicondensates.
Nevertheless, in all these realizations, transverse trapping
frequencies hardly exceed a few kilohertz and are typically
of the order of the chemical potential and the temperature.
Reaching the regime of strongly interacting 1D systems
would further enhance the presence of quantum and thermal
fluctuations. This can be achieved when atoms are loaded
in 2D optical lattices, allowing for much stronger transverse
confinements [4,5]. Yet in the latter case, one obtains a large
number of 1D tubes for which techniques like [10,11] cannot
be implemented to study the phase coherence properties since
tube averaging washes out the response signal.

In this Rapid Communication, we investigate the axial
coherence properties of an array of strongly phase-fluctuating
1D Bose gases and suggest time-of-flight (TOF) imaging
as a probe of the coherence length. In our case, thermally
induced phase fluctuations dominate and drastically reduce
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the coherence length (2Lφ) of the system compared to a
3D Bose-Einstein condensate (BEC) [13]. We use Bragg
spectroscopy with large momentum transfer [14] to measure
the momentum distribution and directly evaluate Lφ [12]. In
addition, we verify that direct mapping of the momentum
distribution into coordinate space via absorbtion imaging
after TOF is an effective probe of the phase fluctuations.
We demonstrate that in our range of parameters, these two
techniques yield the same results.

Our system, sketched in Fig. 1(a), consists of about
2×103 1D atomic microtubes. Each gas has typical total size
∼30 µm × 0.05 µm and linear density n1D ∼5 µm−1. To
arrange atoms in this configuration, we confine a 3D BEC
of 87Rb in a pair of orthogonal red-detuned optical lattices.
We study different configurations by tuning the amplitude
V of the 2D optical lattice (s = V/ER ranging from 5 to
56, where ER = h2/2mλ2

L, h being the Planck’s constant, m

the atomic mass, and λL = 830 nm the lattice wavelength).
The stronger the optical confinement, the more anisotropic
is the trap experienced by each 1D gas (the aspect ratio
λ = ω⊥/ω‖, namely, the ratio of the radial harmonic trapping
frequency to the axial one, ranges from 787 to 880 for
5 < s < 56). For all the amplitudes of the transverse lattices
we explore, each gas has a fully 1D character, that is,
both chemical potential and temperature are about 1 order
of magnitude smaller than the frequency of the transverse
harmonic oscillator. The crucial quantity to describe the regime
of the 1D gas is the parameter γ = mg1D/h̄2n1D , that is, the
ratio of interaction energy to the kinetic energy necessary to
correlate particles at distance 1/n1D , g1D being the interatomic
coupling in the 1D gas. In our case, γ ∼ 0.3–0.6 so that
interparticle correlations are stronger than in the mean-field
regime (see, e.g., [4]).

We first investigate the effect of the phase fluctuations via
Bragg spectroscopy. In brief, the lattice gas is diffracted from a
moving lattice created by two simultaneous off-resonant light
pulses (Bragg beams) with a relative angle θ , detuned from
each other by a tunable frequency difference ω/(2π ). This
perturbs the system activating excitations with energy h̄ω and
momentum h̄qB , the modulus of which depends on θ [14]. The
geometry of the Bragg beams is chosen to align h̄qB to the axis
of the 1D tubes. After the excitation, the lattice amplitude is
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FIG. 1. (Color online) (a) Schematic view of the two-dimensional
array of one-dimensional gases. (b) Bragg spectrum of an array of
strongly correlated 1D gases produced by lattices with amplitude
s = 50. Red curve is a fitting of the function νf (ν), where f (ν) is
a Lorentzian. (c) HWHM of the Bragg resonances as a function of
the amplitude s of the lattices for two different values of transferred
momentum: blue squares, q1 = 16.0(2) µm−1; black circles, q2 =
7.3(2) µm−1.

turned down in 15 ms to a lower value (s = 5), where the
different tubes are no longer independent, allowing the system
to rethermalize via atom-atom collisions. After 5 ms, both opti-
cal and magnetic traps are simultaneously switched off and the
system is observed after a time of flight (TOF) tTOF = 21 ms.
The physical observable is the increase of the size of the central
peak of the atomic cloud. More detailed comments on the
experimental procedure have been reported in Ref. [15]. Our
technique allows us to measure the energy �E transferred
to the system [16], which depends on the imaginary part
of its polarizability χ ′′(ω), apart from the characteristics of
the perturbing potential (amplitude VB and time duration
�t) [17]: �E ∝ V 2

Bωχ ′′(ω)�t . The polarizability can be
expressed in terms of the dynamical structure factor of the
system χ ′′

F (ω) = πS(ω,q)(1 − e−h̄ω/(kBT )).
Two different geometrical configurations of the Bragg

beams have been used to vary the transferred momentum
along the axis of the gases. Counterpropagating beams along
the axis of the atomic tubes yield q1 = 16.0(2) µm−1; a
small-angle configuration gives q2 = 7.3(2) µm−1. In both
cases we assume the excitation to be in the Doppler regime,1

where S(q,ω) is reduced to the momentum distribution n(q)
[12,14]. In this regime the spectral half width at half maximum
(HWHM) can be related to the momentum width h̄�q through
the relation �ν = (qB/2πm)h̄�q, which is linear in the wave
vector qB of the excitation.2 In the experiment, the ratio

1The Doppler regime is described by the condition q >
√

4 µm/h̄,
where µ is the chemical potential of the gas.

2To test the accuracy of this approximation, we calculate the HWHM
of the momentum distribution for a single 1D gas from the spectral

of the HWHMs of the response of identical arrays of 1D
gases to the two different excitations q1 and q2 is consistent
with q1/q2 = (2.16 ± 0.06), as expected [linear fitting of the
experimental data in Fig. 1(c) allows for defining a mean ratio
�ν1/�ν2 = (2.7 ± 0.8)].

In our range of γ ≈ 0.3–0.6, interactions are beyond the
mean-field description but still far from the Tonks-Girardeau
regime. Thus we expect the interaction-induced spatial decay
of one-particle correlation function to happen on a larger scale
than that led by phase fluctuations for typical temperatures in
the experiment (∼100 nK) [18]. The one-particle correlation
function being dominated by the exponential decay due to
phase fluctuations, the momentum distribution exhibits a
profile well described by a Lorentzian shape [13]. In Ref. [19],
the momentum distribution for a 1D gas with a parabolic profile
along its axis has been calculated, and the HWHM h̄�q of its
Lorentzian best fit has been demonstrated to rely only on the
coherence length of the gas, being

�q = 0.635

Lφ

, (1)

where Lφ = h̄2n1D/(mkBT ) is the half coherence length (T
being the temperature).

The description of the problem is complicated by the
presence of an array of gases with different densities (and
thus different characteristic Lφs). In principle, one should
consider the sum of the response of each tube. Supposing a
mean-field picture,3 interactions would give a broadening of
the width and a shift of the center of the Bragg resonance
compared to the single-particle response hνsp = h̄2q2/(2m),
both depending on the density of each tube [14]. Yet the global
response of the system to the Bragg excitation consists of a
single broad resonance, as depicted in Fig. 1(b), the center of
which is shifted compared to νsp (ν0 > νsp). Its shape is well
described by νf (ν) � ωS(q,ω), where f (ν) is a Lorentzian
function [see Fig. 1(b)]. This suggests that thermal broadening
of the response of each gas exceeds the interaction-induced
broadening and masks the relative shifts of the resonant
frequencies of the tubes. We verified numerically that this
is the case for our experimental parameters [21]. Therefore
we analyze the Bragg spectra as being the response of
a single 1D gas, and we define accordingly an effective
coherence length Lφ of the whole system using the relation
in Eq. (1).

From the fittings of the Bragg spectra, we extract the
HWHM �ν. This quantity is reported in Fig. 1(c) as a function
of the amplitude s of the optical lattices and for the two
different wave vectors of the excitation q1,q2. The total number
of atoms is kept almost constant in both the series of data.
From the spectral half width, we extract the half coherence
length Lφ . As shown in Fig. 2, Lφ drops by a factor 5 as
s increases from 5 to 56. We note that for higher s values,
the coherence length becomes comparable to the interparticle

width using a free-particle-like vs a Bogoliubov dispersion relation,
and we verify that the results differ less than 10%.

3For the values of γ that we realize, the resonant frequencies of
the Lieb-Liniger modes are indistinguishable from the mean-field
solution within our experimental resolution [20].
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FIG. 2. (Color online) Lφ of the array of 1D gases reported as a
function of the amplitude s of the lattices, which squeezes the gas in
1D microtubes, and for two different values of the momentum of the
excitation: blue squares, q1; black circles, q2.

distance. In addition, the analysis of the spectra for the two
momenta q1 and q2 reveals consistent Lφ, as expected in the
Doppler regime. The optical confinement makes the aspect
ratio of the 1D gases grow and their density decrease. However,
we estimate numerically [21] that the relative variation of the
1D density in the whole range of s is about 10% and does
not justify the rapid downfall of the coherence length. This
suggests that the major role in determining Lφ is played by the
finite temperature. In fact, the higher the value of s, the larger is
the axial energy spacing, and the temperature T of the 1D gases
should approximately grow proportionally. More precisely,
provided that T 	 h̄ω‖, as realized in our experiment (ω‖
being a few tens of Hertz), the temperature is expected to be
proportional to the energy εj of the low-energy axial modes
[22], that is, in turn proportional to the frequency of the axial
harmonic oscillator. This picture is indeed consistent with the
experimental observation: During the adiabatic transformation
of the 1D gases from s = 20 to s = 56, the axial energy spacing
increases by a factor ∼1.7; accordingly, in this range of s, the
measured coherence length reduces by a factor ∼2.5. However,
note that extracting temperature from the measurement of Lφ

is not straightforward as it requires to take into account the
inhomogeneity of n1D over the array; this will be the subject
of a future work [21].

To keep the insight up on the system, information on
the coherence length induced by thermal phase fluctuations
has also been extracted by directly mapping the momentum
distribution into space distribution, which is measured via
absorption imaging of the gas after switching off the trap
(below referred to as TOF measurements). The expansion
of the atomic gas from the trap is governed by two kinds
of kinetic energy: the one which interactions convert into
and the one produced by in-trap phase fluctuations. Due
to the strong anisotropy of the trap, the interaction-induced
expansion mainly affects the radial direction [23], whereas
the longitudinal size of the cloud Rint

TOF is not significantly
altered compared to its in-trap value. At nonzero temperature,
thermally induced local phase gradients produce a velocity
field given by vφ = (h̄/m)∇φ [24], φ varying significantly
on a length scale Lφ . It determines an increase R

φ

TOF of the
longitudinal size during TOF, which contributes relevantly if

R
φ

TOF/R
int
TOF > 1, where

R
φ

TOF

Rint
TOF

∼ h̄tTOF

mLφRint
TOF

. (2)

In previous experiments, the product LφRint
TOF amounts

typically to 10 µm × 260 µm for elongated 3D quasicon-
densates [12] and ∼1 µm × 170 µm in the case of atom-chip
experiments [10]. In both cases, R

φ

TOF is negligible, and the
longitudinal length after TOF cannot be related to in-trap
phase fluctuations. For our 1D lattice gases, this quantity is
reduced to ∼1 µm × 27 µm for s = 5, and it falls even 1
order of magnitude as the amplitude of the optical confinement
increases (∼0.2 µm × 22 µm for s = 56). This estimate refers
to a representative tube with a number of atoms equal to the
averaged value over all the array. Thus, in our case, one expects
that the in-trap size still dominates for low values of s and the
density profile has a parabolic shape (possibly smoothed to
a Gaussian by the finite resolution of the imaging system),
as expected in the Thomas-Fermi regime. For high values
of s, phase fluctuations should enlarge the distribution, and
the profile should assume a Lorentzian shape. To confirm
this behavior, we have analyzed the TOF profiles with both
Gaussian and Lorentzian functions. From these fittings, we
plot in Fig. 3 the mean squared value of the residuals of
both fitting functions. As anticipated from the simple formula
in Eq. (2), Fig. 3 points out the cross-over through the two
regimes at s ∼ 10–15. In particular, for s > 20, initial in-trap
phase fluctuations are responsible for the Lorentzian shape of
the TOF momentum distribution.

To quantitatively compare the results of Bragg spectroscopy
and TOF measurements, we map both energy spectra and
density profiles after TOF into the momentum space of the
in-trap gas. In the first case, we divide the measured amount
of excitation by ω, then we use the free-particle dispersion
relation, obtaining q = 4π2mν/(hqB) − qB/2. In the latter
case, the calibration of the pixel size in momentum space is
obtained by measuring the distance between two interference
peaks released from the lattices at weak amplitude. For an
array of strongly correlated 1D gases [s = 50 in Fig. 4(a)],

FIG. 3. Mean-square value of residuals of a Lorentzian (open
circles) and Gaussian function (solid circles) fitted to the momentum
distribution mapped through TOF.

031604-3



RAPID COMMUNICATIONS
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FIG. 4. (Color online) (a) Momentum distribution of an array of
1D gases in a strongly confining optical lattice (s = 50) measured
through Bragg spectroscopy (black circles) and direct mapping in
TOF density profile (red curve). (b) Half coherence length Lφ

extracted from TOF measurements shown as a function of s in linear
scale. The gray area points out the region of parameters where TOF
measurements cannot be used to extract Lφ . Inset shows a comparison
between Lφ from Bragg measurements (open circles) and direct
mapping (red circles).

the momentum distributions measured via Bragg spectroscopy
(data points) and TOF measurements (continuous line) show

an excellent agreement. From TOF measurements, we extract
the coherence length as well. According to our results from
Bragg spectroscopy, Lφ is observed to reduce as s increases
[Fig. 4(b)]. In the inset, we compare Lφ measured in the
two ways. The accordance fails in the region of parameters
(gray area) where TOF profiles are not dominated by phase
fluctuations (see Eq. (2)).

In conclusion, we investigate the coherence properties of
an array of 1D Bose gases by measuring their momentum
distribution. We observe the latter to have a Lorentzian
shape, as predicted for a single uniform 1D gas. We define
an effective coherence length of the whole ensemble, and
we show its evident reduction as the optical confinement is
increased. Comparing Bragg spectroscopy and direct mapping
of momentum into density distribution after TOF demonstrates
that TOF images give access to coherence properties in the
presence of strong phase fluctuations. Our work paves the
way for future studies of the coherence properties in 1D
geometries with short coherence lengths. Of particular interest
are strongly interacting disordered systems where the role of
thermal phase fluctuations in the nature of the superconductor-
insulator transition is debated [25]. So far, only disor-
dered quasicondensates have been investigated, where it
was shown that the contribution of phase fluctuations is
small [26].
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