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Interferometry with synthetic gauge fields
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We propose a compact atom interferometry scheme for measuring weak, time-dependent accelerations. Our
proposal uses an ensemble of dilute trapped bosons with two internal states that couple to a synthetic gauge field
with opposite charges. The trapped gauge field couples spin to momentum to allow time-dependent accelerations
to be continuously imparted on the internal states. We generalize this system to reduce noise and estimate the

sensitivity of such a system to be S ∼ 10−7 m/s2√
Hz

.
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In recent years atom interferometry has emerged as a
powerful tool for precision gravimetry and accelerometry
[1–3]. Experiments such as are described in Refs. [4–9]
are among the most accurate measurements to date of
surface gravity and certain fundamental constants [10–12],
and also provide probes of general relativity and the inverse
square law [4,7,13,14]. Furthermore, accelerometers have
wide application in more practical settings such as inertial
navigation, vibration detection, and gravitational anomalies
such as oil fields [15]. Current experiments use short Raman
or Bragg pulses to manipulate spin states followed by periods
of free evolution, corresponding to free flight, to accumulate
sensitivity to external fields. During free flight, a sensitivity to
external fields is imparted on the internal spin states in the form
of a path-dependent phase. This phase can then be measured
through a final Raman pulse and spin-dependent fluorescence
techniques.

At the same time that interferometry has emerged as a tool,
interest in synthetic gauge fields has also arisen, mostly in
the context of the quantum Hall effect [16,17] and cold atom
spintronics [18–21]. These systems use optical coupling of
internal spin states, simultaneous with momentum exchange
with Raman laser beams, to induce an effective vector
potential. Depending on the optical configuration these setups
can simulate systems such as spin-orbit coupling [22,23],
monopoles [21], or a constant magnetic field [24,25].

The optical coupling to the internal degrees of freedom
provides a continuous coupling of momentum and spin. This is
in contrast to standard interferometry schemes where spin and
momentum coupling is generated only through a set of discrete
Raman π/2 and π pulses. In this paper we propose a new type
of interferometer that uses the spin-momentum coupling to
measure ac signals. We use the continuous spin-momentum
coupling of the gauge field to produce an interferometer
sensitive to high-frequency time-dependent (or ac) fields. This
is in contrast to current systems whose sensitivity to signals
drops above a soft cutoff frequency of � 10 Hz [26,27]. We
specifically propose using a trapped system of cold bosons
under the influence of an optically induced gauge field to
measure weak high-frequency (∼1 kHz) ac gravity signals. We
discuss some potential implementations and we estimate that
such a system will have a sensitivity of S ∼ 10−7 m/s2√

Hz
. We

note that, since our system is trapped, it can be implemented
on an atom chip [28–30].

FIG. 1. (Color online) A potential implementation of our inter-
ferometer based upon Ref. [17]. The Raman beams �1 and �2 couple
a three-level atom by two parallel Gaussian profiles with peaks that
are spatially offset. The spatial offset of the beams provides a torque
on the atoms that looks like a magnetic field. Two of the dressed states
couple to a “synthetic gauge field” with opposite charges and become
degenerate in the large detuning limit � → ∞.

As a toy model, we consider a single particle with an internal
degree of freedom (pseudospin) in a harmonic trap with spin-
orbit coupling and an external force:

H = [p̂ − σA(r̂)]2

2m
+ 1

2
mω2

0 r̂2 − mg(t) · r̂, (1)

where p̂ and r̂ are the position and momentum operators,
respectively, ω0 is the trapping frequency, σ = ±1 labels the
pseudospin of the particle, m is the mass of the particle, g(t)
is the time-dependent external force, and A(r̂) is the spin-orbit
coupling field, or vector potential. We confine the particle to a
two-dimensional plane and chose the vector potential to have
the form of a magnetic field A(r̂) = mωcxŷ, where ωc is the
characteristic frequency scale of the spin-orbit coupling and
êz is the unit vector perpendicular to the plane of confinement.
This toy model captures the ideal behavior of systems such as
Ref. [17,25].

Without spin-orbit coupling (ωc → 0), the path of the
particle will depend on the force g(t) and will be independent
of spin. With spin-orbit fields the path will depend on the spin
of the particle as well as the force. In an atom interferometer,
path differences can be mapped to an interference signal by
creating an initial superposition of two spin states and sending
them on spin-dependent trajectories. The phase picked up on
a semiclassical path can be found by expanding the action S

about the classical trajectory in the path integral formulation
of quantum mechanics.
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For the system in Eq. (1) we find that the first-order phase
factor due to g is

eiSg/h̄ = ei m
h̄

∫
dtr(t)·g(t). (2)

We become sensitive to this phase by creating an initial spin su-
perposition |1〉+|−1〉√

2
|φ〉orbital, which evolves to 1√

2
(eiS1 |1〉|φ1〉 +

eiS−1 |−1〉|φ−1〉). In general, the spin states |±1〉 are entangled
to the orbital states |φ±1〉. In order to measure the phase
we desire a pure spin measurement. We chose the paths to
have complete orbital overlap, 〈φ1|φ−1〉 = 1, at the time of
phase measurement. This places the system in the pseudospin
state 1√

2
(|1〉 + ei�S |−1〉), which allows us to measure �S =

S−1 − S1 though a single operator measurement such as Ŝy .
Note that the Hg=0 contributions to S±1 are equal, and thus do
not lead to interference effects.

The physics described in our toy model is an idealized
version of the proposal given in Ref. [17], although other
setups such as the experiment by Y. J. Lin et al. [25] have
similar physics. This setup uses a cold atom in a �-scheme,
as can be seen in the inset of Fig. 1. The Raman beams used
have a Gaussian profile with offset centers which give spatial
dependence to the dressed states. This spatial dependence
induces dynamics that is identical to a charged particle in a
magnetic field. In the large detuning limit � → ∞, one of the
bright states becomes degenerate with the dark state; however,
the “charge” that these two states see has opposite sign. We
note that the synthetic field in this setup is nonuniform. This
leads to further technical difficulties but does not change the
underlying physics of our proposal.

We now detail the specific solution for our spin-orbit-
coupled system described by Eq. (1). We start by solving
the Heisenberg equations of motion for the system. These
correspond to the classical, spin-dependent Hamilton equa-
tions of motion since the system is quadratic in r and p. Not
surprisingly, these solutions correspond to a combination of
cyclotron orbits and orbits around the trap center. The direction
of the orbits is set by the pseudospin σ .

The solutions are characterized by the two frequencies
ω± = ω̃ ± ωc/2, with ω̃2 = ω2

0 + (ωc/2)2. We will consider
initial conditions given by r(0) = r0 and ṙ(t) = 0, as will be
discussed later. Figure 3(b) shows these paths in the absence
of a driving field. The sign of the charge changes the direction
of cyclotron motion so the paths are mirrored along r0. We
expect a driving force to break the mirror symmetry of the
paths.

In a quantum system this symmetry-breaking perturbation
will result in a pseudospin-dependent phase. We can exploit
this phase to make an interference measurement. Specifically,
we would prepare the system in an initial state |0, ↑〉, where |0〉
is the orbital ground state of the system and σz|↑〉 = |↑〉. Next
we place the system in a superposition of pseudospin states
with a Rŷ(π/2) = e−iσyπ/4 Raman pulse. Then, we suddenly
displace the minimum of the harmonic trap by an amount r0. If
we allow the system to evolve freely in time, the two different
spin states will follow time-reversed classical trajectories. In
the process, they also accumulate a pseudospin-dependent
phase term exp[iσz(ẑ × r0) · ∫

dt g(t)h⊥(t)], where h⊥(t) =
1

2ω̃
[ω− sin(ω+t) − ω+ sin(ω−t)]. We now wait for a time t at

which the two classical trajectories overlap again. We then use

ω+ ω−−ω+−ω− 0
0

1

∋2

Frequency

N
or

m
al

iz
ed

R
es

po
ns

e

FIG. 2. (Color online) The normalized response function for
| ω̃F (ω)

r0t
|2 for the pulse sequence Up , (dashed) or UCP, the Carr-Purcell-

like pulse sequence (solid). For both sequences we used t = 10π

ω++ω− =
5π

ω̃
and ε = ω+/ω−. Note we have scaled the response for the Carr-

Purcell pulse sequence by a factor of 16 to account for the factor-of-
four increase in interrogation time.

a Rŷ(−π/2) pulse to convert the coherence into a population.
An Sz-spin measurement will give

〈Sz〉 = sin

[
2
∫ t ′

0
dt (ẑ × r0) · g(t ′)h⊥(t ′)

]
. (3)

where we have neglected higher-order terms in g/(loω2)
with the harmonic oscillator length lo = √

h̄/(mω̃). We can
represent the above pulse sequence as the unitary matrix
Up = Rŷ(−π/2)U (t)D[Rr0]Rŷ(π/2) where D[r0] is a spatial
displacement of r0 and the time evolution operator U (t) can be
found exactly. The expectation value in Eq. (3) is then given
by 〈Sz〉 = 〈0, ↑|U †

pSzUp|0, ↑〉 and can be shown to reproduce
Eq. (3).

We now find the response of our interferometer to an
arbitrary time-varying force. We can express our spin pop-
ulation measurement as 〈Sz〉 = sin[

∫
dω
2π

g̃⊥(ω)F0(ω)] where
g(t) = ∫

dω
2π

e−iωt g̃(ω) and

F0(ω) = ir0t

ω̃

∑
{σ,τ=±1}

στω−σ f (ω + τωσ ) (4)

is the response function of the system, where f (ω) =
sin(ωt/2)

ωt/2 e−iωt/2. The behavior of the response function can be
seen in Fig. 2. The peak response of the system is at the
frequencies ω = ω± with relative peak amplitudes of ω−/ω+.
The bandwidth of the system varies with 1/t , giving a large
bandwidth at small times. Note that our system is sensitive to
dc signals since F (ω) is finite for ω → 0. For the purposes of
this paper this dc sensitivity is unwanted, and we will discuss
methods of dealing with it later.

It is important to note that we have waited until the
coherent states overlap fully. A measurement at a different time
would suppress our signal by a factor of A = e−[2 r0

lo
h⊥(t)]2

. The
double-exponential suppression thus requires that we obtain as
complete an overlap as possible. We can eliminate dc signals
while simultaneously improving the overlap and eliminating
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FIG. 3. (Color online) (a) Classical path a particle will follow
with the CP pulse sequence given by Eq. (5). The red path corresponds
to the initial free evolution for a time t . The dashed path is the
time-reversed path allowed to evolve for a time 2t . Finally, the solid
blue path is the return trajectory for another t . Note that the three
trajectories will overlap in practice, and have been offset just for
a visual aid. The three arcs correspond to the direction of motion
of the classical trajectory. We have also chosen ε = ω+/ω− = 22.
(b) Schematic of the experimental setup. A thermal cloud of
radius rt is displaced by r0 = rl − rt , which is limited by the
laser-inhomogeneity radius rl . The two spin states orbit along
trajectories mirrored across r0. (c) Dependence of the sensitivity of
the system based upon atom number. Below Nc ∼ 106 the sensitivity
grows as 1√

N/Nc
. Above Nc the sensitivity S ∼ 10−7(m/s2)/

√
Hz is

independent of the number of particles. (d) Bandwidth of the system
with optimal sensitivity as a function of the number of particles.

other sources of error through application of Rŷ(π ) pulses in
a sequence analogous to the Carr-Purcell (CP) pulse sequence
in NMR [31]. If applied at a time when the velocity vanishes,
a π pulse will time reverse the particle’s motion, causing it
to retrace its path. Such a time is guaranteed and occurs at
time intervals of t = 2πn

ω++ω−
= πn

ω̃
. If we wait for an additional

time 2t after the first π pulse to apply a second π pulse, the
path will be time reversed again and return to the origin. It
is clear that any dc signals will be canceled by such a pulse
sequence as the path returns to itself, so the average position is
zero. We note that this pulse sequence will also help to cancel
certain noise sources such as Zeeman fields or small trapping
asymmetries.

In the operator language such a pulse sequence has the form

UCP=Rŷ(−π/2)U (t)Rŷ(π )U (2t)Rŷ(π )U (t)D[Rr0]Rŷ(π/2).

(5)

Application of such a pulse sequence modifies the response
function to

F (ω) = 2i sin(ωt)[F0(ω)eiωt + F ∗
0 (ω)e−iωt ]ei2ωt , (6)

where F0(ω) is the response function given in Eq. (4). The
complex conjugate term F ∗

0 (ω) arises due to the time reversal

of the paths. This response function is plotted in Fig. 2. The
new response function now vanishes at ω = 0 and ω = ω±;
however we still have large sensitivity in the frequency range
ω = 1

8
2π
t

around ω±.
We now generalize from a single particle to a thermal

ensemble of ultracold dilute atoms in the presence of an
induced spin-orbit Hamiltonian of the form shown in Eq. (1).
From a practical standpoint, a system of dilute cold atoms
allows us to neglect complications arising from atom-atom
interactions in a Bose-Einstein condensate (BEC). Consider a
thermal ensemble of cold atoms at a temperature T . Using
the Glauber P -representation [32], the density matrix has
the form ρ = ∫

dα e−|α+|2/〈n+〉−|α−|2/〈n−〉|α〉〈α|, where 〈ni〉 =
[exp(h̄ωi/kT ) − 1]−1 is the average occupation for the classi-
cal mode of frequency ωi . Such an ensemble suppresses the ex-
pectation value of the Sz operator by a factor e−〈n+〉|γ+|2−〈n−〉|γ−|2

relative to the single-particle or zero-temperature expectation
value. The suppression factor γ± depends on the pulse
sequence used. For example, using the pulse sequence Up

given above we get γ+ = lo
2

∫ t

0 dt ′ (gx + igy)eiω+t ′ and γ− =
lo
2

∫ t

0 dt ′ (gy + igx)eiω−t ′ . Note that we can express
∫

dt r · g as
a superposition of γ+ and γ−. For the Carr-Purcell-like pulse
sequence the suppression factor γ± is more complicated, but
can still form a basis for which we can express the phase.
This implies that γ± has a similar frequency dependence
to F (ω).

We are now in a position to discuss the measurement
capabilities of such a system. We first estimate the maximum ac
signal such a system can measure. To avoid signal suppression
due to the finite temperature of the ensemble, we bound the
maximum strength of ac signals our system can measure by
gmax � 1√〈n〉

4πh̄
mr0τ

. In this limit the sensitivity for our detector
can be estimated with

S ∼
√

1

Nτ

2πh̄

mr0
, (7)

where the lifetime of one measurement, 1/τ = γSE + γcoll is
limited by spontaneous emission γSE and collisions γcoll.

To maximize the system’s sensitivity to accelerations (or
minimize S), we need to consider the effect of collisions and
the spatial configuration of the system. We desire to confine
our system to a “laser-homogeneity” radius rl , for which
nonlinear variations in the laser fields are suppressed. The
effective two-dimensional system will use an axial trapping
potential of ω‖ � ln (2)kT /h̄ to freeze all motion into a single
transverse mode. Thus our system will have Nl = rl/d layers,
where d = √

h̄/(mω‖), providing for an increase in sensitivity
of 1/

√
Nl . The radius rl further constrains our sensitivity by

bounding the maximum trap displacement by r0 = rl − rt ,
where rt = √〈n〉lo ∼ 〈v〉/ω̃ is the thermal radius of a thermal
ensemble and 〈n〉 = kT /(h̄ω) and 〈v〉 = √

3kT /m are the
respective high-temperature thermal occupation number and
velocity [Fig. 3(b)].

The lifetime of the system will be dominated by sponta-
neous emission at low densities and collisions at high densities.
To optimize the sensitivity we desire to place as many atoms
per layer as possible. The collisional scattering rate is given by
γcoll = Na〈v〉a2

dr2
t

, where a is the interparticle scattering length.
The critical number of atoms at which the collision rate begins
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to dominate the spontaneous emission rate is Nc = 〈v〉a2

γSEdr2
t

. We
see that, in the small-atom-number limit, the sensitivity is a
monotonically decreasing function of the trapping frequency
and has a 1/

√
Na dependence. However, in the large-atom

limit the sensitivity is minimized at a trapping frequency of
ωmin = 2〈v〉/rl and the sensitivity becomes independent of
the number of atoms per layer. Note that, in this limit the
bandwidth of the system is increased by adding atoms [see
Fig. 3(d)].

We assume our thermal ensemble has a temperature of
T ∼ 1 µK with a frequency scale ω̃ = 2π kHz. At these
temperatures the gas is nondegenerate and is described well
by a classical gas. For this temperature we find an upper
bound of g ∼ 10−2m/s2 before exponential suppression of the
signal above becomes relevant. We will consider a cold gas of
87Rb cooled to T = 1 µK with an axial confinement distance
of d = 1 µm. We take the spontaneous emission rate to be
SE = 1/70 ms−1 [23] and the laser-inhomogeneity radius to
be rl = 10–25 µm. In the Na � Nc limit we estimate the
sensitivity to be S ∼ 10−7 m/s2√

Hz
. A similar analysis for a three-

dimensional system gives a sensitivity drop of approximately
an order of magnitude. We note that, had we instead used a
fermionic species, we would obtain a similar result since we
have two spin species.

The concept of a continuous coupling of spin to momentum
can also be extended to a continuous coupling of spin and

position. We note that, in a harmonic trap, position and
momentum are dual variables, and thus a spin-dependent term
in the Hamiltonian that has spatial variation will experience a
similar phase accumulation to the system described above. An
example would be a trapped spin-1 system in the presence
of a Zeeman field with a strong spatial variation. In such
a system the Zeeman field will act to trap (antitrap) the
Sz = +1 and Sz = −1 spin states with different trapping
potentials. This will play a similar role to the opposite charge
couplings to gauge fields given above. However, such a
system requires strong magnetic field gradients so it may be
impractical.

Finally, we note that this system is not limited to mea-
surements of ac signals. Through appropriate modifications of
pulse sequences such a scheme is capable of measurements
of dc gravity and gravitational gradients and rotations. Due
to electronics noise, the sensitivity of these systems will
be significantly lower than existing atom interferometers.
However, for some applications they may still be useful due to
the ability to place the system on a chip.
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