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Dynamics of the collective modes of an inhomogeneous spin ensemble in a cavity
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We study the excitation dynamics of an inhomogeneously broadened spin ensemble coupled to a single cavity
mode. The collective excitations of the spin ensemble can be described in terms of generalized spin waves,
and, in the absence of the cavity, the free evolution of the spin ensemble can be described as a drift in the
wavenumber without dispersion. In this article we show that the dynamics in the presence of coupling to the
cavity mode can be described solely by a modified time evolution of the wavenumbers. In particular, we show that
collective excitations with a well-defined wavenumber pass without dispersion from negative to positive-valued
wavenumbers without populating the zero wavenumber spin wave mode. The results are relevant for multimode
collective quantum memories where qubits are encoded in different spin waves.
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I. INTRODUCTION

The interaction between a single quantum system and a
continuum of independent systems constitutes the standard
model of dissipation and decoherence. The Weisskopf-Wigner
model thus explains Markovian atomic decay due to coupling
to the (oscillator) modes of the quantized radiation field, and
the Caldeira–Leggett [1] and spin-star [2,3] models investigate
in detail the non-Markovian features due to the structure of the
reservoir density of states. Equivalent models have been used
to describe the interaction of a two-state fermionic particle
with a bosonic continuum [4] and the interaction of a laser
mode with a gain medium [5–7]. Common to these works is
that the focus is on the reduced dynamics of the central system,
that is, on the decoherence and decay of the central system,
the properties of the renormalized fermionic particle, or the
behavior of the laser mode.

While methods in quantum optics have been developed
to address properties of the ensemble of radiation modes,
such as the optical spectrum of fluorescence [8], only a
few detailed studies of the ensemble dynamics exist. Recent
proposals to manipulate and protect quantum information
stored in collective degrees of freedom of ensembles urge a
more precise description of the collective evolution. Systems of
interest include the nuclear spins in a host material collectively
coupled to a nitrogen-vacancy center [9] or a quantum dot [10],
trapped atoms [11,12], polar molecules [13,14], or electron
spins [15,16] coupled to a transmission line resonator, and
ions in optical cavities [17].

The inhomogeneities of spins embedded in solids follow
typically from properties of the host material, while very
well isolated two-level systems may have different excitation
energies only if we employ a spatially dependent controllable
perturbation to the system. Such a controllable inhomogeneity
could be provided by, e.g., a magnetic field gradient. Spin
systems with controllable inhomogeneities have been sug-
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gested as classical spin echo [18] and photon echo memories
[19–21], and it has been proposed that the collective interaction
with a cavity could be used to implement a holographic
quantum register [14,15]. In the latter, the qubits are stored
as collective excitations equivalent to different spin waves,
and a Raman process or a linear magnetic field gradient can be
applied to deterministically change the wavenumber between
different collective spin wave modes. Such a memory can
be read out by reversing the inhomogeneity via applying an
inverse Raman process or magnetic field gradient across the
ensemble or, as pointed out and demonstrated in Ref. [22],
by employing spin echo techniques to effectively invert the
inhomogeneity.

In this paper we consider the collective spin dynamics in an
inhomogeneously broadened system of N independent spins
Ŝj coupled to a single cavity mode as illustrated in Fig. 1. In
such a system a particular collective mode of the spin ensemble
will experience an enhanced coupling to the cavity mode due to
constructive interference of the single spin coupling terms, and
we will refer to this mode as the superradiant spin mode. The
coupling to the cavity mode results in an energy gap between
the superradiant mode and the other, subradiant, collective
modes of the spin system. A sufficiently large energy gap
protects the superradiant mode from the dephasing caused by
the inhomogeneous precession of the different spin ensemble
members, an effect proposed in Ref. [10] for a nuclear spin
ensemble interacting with a single electron spin. Consider
an excitation created in the superradiant mode and left to
evolve freely, i.e., without coupling to the cavity field, for
a time T much larger than the inverse inhomogeneous width
of the spin ensemble. If the cavity coupling is enabled at this
time, the excitation will not interact with the cavity because of
the destructive interference of the individual spin components.
Reversing the sign of the inhomogeneity or applying a π -pulse
to the entire ensemble will, however, cause the system to
refocus into the superradiant mode after another period of
length T (spin echo). Note the significance of the cavity
coupling during this process: If the cavity mode is not coupled
to the spins, the excitation may refocus perfectly into the
superradiant mode where it would couple strongly to the cavity
mode. If, however, the cavity coupling is turned on during

023826-11050-2947/2011/83(2)/023826(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.83.023826


WESENBERG, KURUCZ, AND MØLMER PHYSICAL REVIEW A 83, 023826 (2011)

FIG. 1. (Color online) (a) The model studied in this paper de-
scribes a set of N + 1 quantum oscillators with different frequencies
interacting in a star topology. We assume that the width of the
distribution of the outer oscillator frequencies can be controlled by
some external parameter. (b) A physical motivation for the model
studied is a spin ensemble in a cavity exposed to a controllable
linearly varying Zeeman shift provided by an adjustable magnetic
field gradient [15].

the refocussing period, the energy gap due to the coupling
prevents the refocusing into the superradiant mode. Our main
goal in the following is to understand the interplay between the
spin-cavity gapping interaction and the inhomogeneity under
such conditions.

The paper is organized as follows. In Sec. II, we present
the Hamiltonian describing our physical system and introduce
the bare- and dressed-time states, which are related by an
analytical expression derived in the Appendix. In Sec. III
we then consider the propagation of a spin wave packet
and introduce a “shear” approximation to provide a concise
quantitative explanation of the numerically observed effects.
Section IV concludes the paper.

II. PHYSICAL MODEL

A large ensemble of spins prepared with high probability
in the spin down eigenstates is conveniently described by the
Holstein-Primakoff approximation, which replaces the spin
operators by bosonic oscillator operators, Ŝ

(j )
+ ≈ â

†
j , Ŝ

(j )
z =

â
†
j âj − 1/2, where â

†
j is the creation operator for a quantum

oscillator representing the j th spin [10,23] and we set h̄ = 1.
This representation clearly does not reflect the saturation
by a single excitation of each individual spin, but with a
total number of excitations much smaller than the number
of spins, the most significant state components will have at
most a single excitation in each oscillator. In this limit, the
Holstein-Primakoff approximation is a valid and convenient
description of the spin ensemble as a collection of oscillators.

We will assume that the spins are strongly coupled to a
single mode of the cavity, and a cavity photon makes multiple
round trips before it gets absorbed by the ensemble, so that
we can neglect propagation effects in the medium. We further
assume that the excitation energies of the spins are much larger
than the strengths gj of the couplings to the cavity mode âc, so
that in the rotating wave approximation the interaction picture
Hamiltonian is H = H0 + V , where H0 and V describe the
free evolution and interaction:

H0 ≡ ωcâ
†
c âc +

N∑
j=1

ωj â
†
j âj , (1a)

V ≡
N∑

j=1

gj â
†
j âc + H.c. = �(âcb̂

† + H.c.). (1b)

Here the spin excitation energies ωj and the cavity mode
frequency ωc are defined relative to a common fixed frequency,
and � ≡ (

∑N
j=1 |gj |2)1/2 is the collectively enhanced effective

coupling strength between the cavity and the superradiant
mode described by the creation operator [15]:

b̂† =
N∑

j=1

αj â
†
j , where αj = gj

�
. (2)

The system Hamiltonian H is purely quadratic in the bosonic
operators and does not describe any interaction between
excitations. The dynamics of the noninteracting excitations
is therefore completely described by the evolution of the
one-excitation subspace, and to simplify the notation in what
follows we will consider the evolution of states in that
subspace.

A. Bare-time states

When the cavity is tuned far out of resonance and the
spins precess freely in the presence of inhomogeneity, the
population in the superradiant state, defined as the singly
excited state of the collective spin wave mode, |0〉 ≡ b̂†|vac〉
gradually becomes subradiant. We will refer to the resulting
distinguished subradiant states as bare-time states |τ 〉 and label
them with the time τ it takes for the system to reach them under
this free evolution starting from the superradiant state,

|τ 〉 ≡ U (0)(τ )b̂†|vac〉 =
N∑

j=1

αje
−iωj τ â

†
j |vac〉, (3)

where U (0)(τ ) ≡ e−iH0τ is the free evolution operator. The
bare-time states play an important role when the ensemble
is used as a multimode quantum memory, and we note that
if the spins are uniformly distributed along the z axis and
ωj = −κzj , the bare-time state |τ 〉 is the first excited state of
the spin wave with wavenumber k = κτ [24]. In a finite-size
system, spin wave states, and hence the bare-time states, form
an overcomplete basis in the set of singly excited spin states
that are accessible from the superradiant state and

〈τ2|τ1〉 =
N∑

j=1

|αj |2e−iωj (τ1−τ2) =
∫

e−iω(τ1−τ2)ρeff(ω) dω

(4)

is proportional to the inverse Fourier transform of the effective
spin density defined as the density of spin states weighted by
the normalized coupling strength,

ρeff(ω) ≡
N∑

j=1

|αj |2δ(ω − ωj ). (5)

In the following we shall be primarily interested in the limit of
very many spins, and hence we shall indiscriminately treat
the spin excitation energies as an integration variable and
a summation index. We will assume that the distribution of
energies is such that the overlap 〈τ2|τ1〉, which describes how
a collective excitation dephases due to the inhomogeneity,
decays on a timescale T on the order of the inverse width of
the ensemble. This in particular implies that for |τ | � T the
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bare-time state |τ 〉 is orthogonal to the superradiant state |0〉,
the effect of the cavity on |τ 〉 is insignificant, and the time
evolution of |τ 〉 is the same under the free Hamiltonian H0 as
under the full Hamiltonian H0 + V .

In the absence of coupling to the cavity, the time evolution
of the bare-time states follows from the definition,

U (0)(t)|τ 〉 = |t + τ 〉, (6)

so the free evolution of the inhomogeneously broadened
ensemble in the bare-time representation amounts to a dis-
placement of the bare-time argument equivalent to a linear
change of the collective spin wavenumber k �→ k + κt .

B. Dressed-time states

To consider the ensemble dynamics under the full Hamilto-
nian, we introduce the dressed-time states |	(τ )〉 as the limit

|	(τ )〉 ≡ lim
t→∞U(t)U (0)(−t)|τ 〉, (7)

where U(t) = e−i(H0+V)t . In analogy to the time translation
property of the bare-time states as described by Eq. (6), we
have for the dressed-time states

U(t)|	(τ )〉 = |	(t + τ )〉, (8)

so that in particular, once we have established the form of
|	(0)〉, we can redefine the dressed-time states as |	(τ )〉 =
U(τ )|	(0)〉.

As the cavity field does not couple to bare-time states with
large negative τ , the bare- and dressed-time states coincide
in the limit τ → −∞. In general, however, the dressed-
time states are cavity polaritons with both spin and cavity
components. As detailed in the Appendix, we can describe the
coupling in terms of twice the complex phase of the inverse
cavity mode susceptibility, which can be computed as

φ(ω) ≡ 2 arg

{
[ω − ωc − �2δc(ω)] + i �2 γc(ω)

2

}
, (9)

where we have introduced γc(ω) = 2πρeff(ω) and

δc(ω) = P
∫

ρeff(ω′)
ω − ω′ dω′, (10)

with P denoting the principal part of the integral. In general φ

depends on the cavity frequency and coupling strength as well
as the effective spin density, but for ω where �2 � |(ω − ωc)/
(δc(ω) + iγc(ω))| we see that φ is given by

φ∞(ω) ≡ −2 arctan

[
γc(ω)

2δc(ω)

]
(11)

independent of these parameters, and we will refer to the
system as being in the “strong coupling limit” if this condition
is met for all ω of interest. If the cavity is tuned far outside the
support of ρeff so that �c ≈ ωc − ω, and |δc(ω) + iγc(ω)| is
everywhere on the order of 2π/T , we reach the strong coupling
limit when �2 � |�c|2π/T .

FIG. 2. (Color online) Time evolution of a collective spin exci-
tation expanded in the bare-time (wavenumber) basis. The figures
show the overlap |〈τ |(t)〉|2 of the time-evolving spin state with
the bare-time basis states. Panels (a) and (c) show that the evolution
under the free Hamiltonian H0 (� = 0) is a simple translation with
time. Under the full Hamiltonian H (� = 10π/T ), the strongly
coupled state |τ = 0〉 is frozen (b), while a bare-time state with
initial condition |(t → −∞)〉 ≡ |τ = t〉 passes the τ = 0 region
without ever populating the strongly coupled |τ = 0〉 state (d).
Snapshots of the expansion of the states in (c) and (d) are shown in
Fig. 3.

In terms of φ, we find in the Appendix that the Fourier
transform of the dressed-time states can be expanded as

|	̃(ω)〉 = i

�
(e−iφ(ω) − 1)|c〉

+
∫ 0

−∞
eiωτ |τ 〉dτ + e−iφ(ω)

∫ ∞

0
eiωτ |τ 〉dτ.

(12)

This expansion is readily evaluated for any choice of the
spin couplings and density of states, and it can then be
transformed back to provide the time-dependent state of
the system. Figure 2 compares the time evolution of states
in the absence and presence of the cavity coupling. The states
are expanded on the bare-time (wavenumber) basis, and we
see that the free evolution is a simple translation with respect
to the bare-time argument. The cavity coupling, however,
freezes the superradiant |τ = 0〉 state, and it significantly mod-
ifies the shape of a wave packet during propagation from neg-
ative to positive τ , while asymptotically restoring its shape but
causing an additional translation of the bare-time (wavenum-
ber) argument. In Fig. 3, we show snapshots comparing the
coupled and uncoupled evolution of wave packets starting at
negative bare-time arguments, and we show that in addition
to the extra translational shear, the interaction provides a
change of sign of the wave packet. These numerical results
were obtained for an inhomogeneously broadened ensemble
with ρeff(ω) = T

π
cos2(ωT/2)1[−π,π](ωT ); see Fig. 4(b). In

the subsequent section, we will give an explanation of these
observed phenomena and an analytical approximation to the
shear and phase shift in terms of the physical parameters of the
model, and we will illustrate results for other inhomogeneity
models.
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FIG. 3. (Color online) Evolution of a wave packet in the bare-time
(wavenumber) basis in the presence and absence of a strongly coupled
cavity. The initial state (bottom figure) is the negative bare-time state
|τ = −4T 〉 at t = −4T , and the figures show the overlaps 〈τ |(t)〉
(solid) and 〈τ |0(t)〉 (dashed) at three different times during the
evolution. With no cavity coupling, the spin wave packet evolution is a
simple translation, while the cavity coupling freezes the superradiant
state, and unitarity forces the evolving wave packet to maintain a
vanishing overlap 〈0|(t)〉 = 0 during the evolution. The net effect
on the final state (upper figure) is a phase shift π and an additional
translation of the wave packet by �t ∼ T .

III. WAVE PACKET PROPAGATION

To explain the results in Figs. 2 and 3, let us consider a spin
wave packet with the asymptotic initial condition

|(t → −∞)〉 =
∫

ψ(t − τ )|τ 〉dτ

=
∫

ψ(t − τ )|	(τ )〉dτ. (13)

When there is no coupling to the cavity field, e.g., because the
cavity is far detuned from the spin resonance, the spins evolve
under the influence of only the free Hamiltonian H0,

|0(t)〉 =
∫

ψ(t − τ )|τ 〉dτ, (14)

as illustrated in Figs. 2(a) and 2(c). Similarly, the evolution
under the influence of the full Hamiltonian, H = H0 + V , can
be expressed in terms of the dressed-time states as

|(t)〉 =
∫

ψ(t − τ )|	(τ )〉dτ. (15)

When the cavity is strongly coupled to the ensemble,
the cavity state |c〉 and the superradiant state |0〉 practically
decouple from all other collective spin states. Therefore the
time evolving wave packet (15) is prevented from refocusing
into the superradiant state. We observe numerically (see Fig. 2)
that the wave packet smoothly evades the superradiant mode
and makes a transition from a superposition of negative to
positive bare-time states. To a good approximation the wave
packet asymptotically regains its original shape up to a phase
shift and a displacement of the expansion of the state on the
bare-time basis states as illustrated in Fig. 3.

To explain the observed shear effect and show how the
displacement and the phase shift is related to the physical
parameters of the system, we will expand the spin component
of the wave packet as

∫
χ (τ,t)|τ 〉dτ . Using Eq. (12) we find

the expansion coefficient

χ (τ,t) =
{

ψ(t − τ ) for τ < 0,

1
2π

∫
e−i[(t−τ )ω+φ(ω)]ψ̃(ω)dω for τ > 0.

(16)

This is an exact description of the evolution of a wave packet
in the spin ensemble, valid for an arbitrary time t and arbitrary
wave packet envelope ψ(t). In what follows, we assume that
ψ̃(ω) has significant value only in a vicinity of ω0 within the
support of ρeff(ω), and that the linear approximation

φ(ω) ≈ φ(ω0) + (ω − ω0)φ′(ω0) = φ0 + ω�t (17)

is valid in this vicinity. In this case, the integral over
frequencies in Eq. (16) can be approximately evaluated:

χ (τ,t) ≈
{
ψ(t − τ ) for τ < 0,

e−iφ0ψ(t + �t − τ ) for τ > 0.
(18)

One readily sees that, asymptotically, the wave packet is shifted
by �t and acquires a phase φ0 by the interaction with the
cavity mode, and through Eqs. (9) and (17), these quantities
are explicitly given by the physical parameters of the model.

In the following we will investigate the validity of the
shear approximation (18) for three different example systems
parametrized by their effective spin density ρeff: (a) a uniformly
broadened ensemble where the coupling strength of the
individual spins is not correlated with the excitation energy
of the spins, corresponding to ρeff(ω) = T

2π
1[−π,π](ωT ). (b) a

uniform spatial distribution of spins with constant magnetic
field gradient along a straight halfwave stripline resonator,
corresponding to a trigonometric dependence on frequency,

FIG. 4. (Color online) Examples of the phase φ in the strong coupling limit for three different system geometries discussed in the text. For
each part (a)–(c), the effective spin density ρeff is illustrated by the inset, and the plot shows the value of φ∞(ω) as given by Eq. (11) (solid
lines), together with the linear approximation (17) corresponding to the shear observed for fully delocalized wave packets [ψ(t) = δ(t)] in the
system as discussed in Sec. III B and Fig. 6.
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ρeff(ω) = T
π

cos2(ωT/2)1[−π,π](ωT ). (c) a spin ensemble with
a Gaussian density of states, typical for a nuclear spin ensemble
in a semiconductor quantum well, where the inhomogeneous
broadening is due to the hyperfine interaction with a spin-
polarized electron in the well (Knight shift). The frequency
variance σ 2 = (π2 − 6)/3T 2 is chosen to match the variance
of ρeff(ω) for the second case, the halfwave resonator. The
properties of these three systems are summarized in Fig. 4.

A. Shear for localized wave packets

From the exact expression (16), we expect that the shear
approximation (18) is valid if the frequency argument of ψ̃(ω)
attains values within a narrow interval, corresponding to states
expanded on a wide range of bare-time states. To verify this
expectation, we introduce the shear fidelity F as the asymptotic
overlap of the exact asymptotic state |(t)〉 with the bare-time
states |t + �t〉 maximized over the shift �t ,

F ≡ max
�t

lim
t→∞ |〈t + �t |(t)〉|. (19)

As shown in Fig. 5, the size of the optimum shear indeed
approaches φ′ as we consider wave packets that are well
localized in frequency, while at the same time the fidelity
is seen to approach unity as the linear approximation to φ

becomes more accurate over the support of the wave function,
exactly as we would expect. The configuration in which the

1.

0.5

0.5

1.a
γc ω T

δc ω T

φ

T

T 2 3

T 3, ωcT 4

b 2

T 0 T

ψ ω

ω0

F 0.9785

F 0.9999

c

ω

FIG. 5. (Color online) The shear approximation for a localized
wave packet. (a) The value of γc (filled) and δc (solid) as given
by Eq. (10) for the spin system with uniform distribution of
ω, ρeff(ω) = 1[−π/T ,π/T ](ω)T/2π , as also considered in Fig. 4(a).
(b) The phase φ(ω) given by Eq. (9) at ωc = 0 and � =
{2π/3,π,∞}/T (dotted) and at ωc = −π/4T , � = π/3T (solid).
Dashed lines are linear approximations of φ(ω) according to Eq. (17)
in two different frequency domains around ω0, where the wave
packets illustrated in (c) have significant value. The slope of the
lines is given by the �t that maximizes the fidelity (19). (c) The
frequency domain wave packets ψ̃(ω) and the shear fidelity F for
these wave packets.

shear approximation is studied in Fig. 5 is well outside the
strong coupling limit, as most clearly seen from the fact that
the form of φ is very different from the strong coupling value
(� = ∞). This illustrates that high-fidelity shear effects can be
observed for any coupling strength. Also, the figure indicates
that varying the cavity frequency and/or the coupling strength
allows very different shear effects, even for a constant system
geometry as described by ρeff.

B. Shear for delocalized wave packets

We have verified above that the shear approximation is
indeed valid when ψ̃(ω) has support only over a narrow
frequency range where a linear approximation of the phase φ

is reasonable. The examples shown in Figs. 2 and 3, however,
are for states with well-defined τ , [ψ(t) = δ(t)] so that ψ̃(ω) is
constant and extends to all values of ω, invalidating any linear
approximation of φ as illustrated by Fig. 4. In this section our
aim is to qualitatively investigate why for some systems we
nevertheless observe a relatively high-fidelity shear effect as
suggested by Figs. 2 and 3 and illustrated quantitatively in
Fig. 6.

One way to understand the shear effect for delocalized
wave packets is to note that the expansion in Eq. (13) is not
unique: Performing the convolution in frequency space, we
can write 〈τ ′|0(t)〉 as

∫
e−iω(t−τ ′)ψ̃(ω)ρeff(ω)dω, making it

clear that only the values of ψ̃(ω) where ρeff(ω) is nonzero

FIG. 6. (Color online) Shear fidelity for delocalized wave packets.
Plot shows the overlap of |τ + t〉 with (i) the unshifted state |t〉
(dashed), (ii) the state |t + �t〉 corresponding to the shear approx-
imation (dotted), and (iii) the actual asymptotic state compensated
for φ0, eiφ0 |(t)〉 (solid), for the same three spin systems (a)–(c)
as described in Fig. 4 in the limit of t → ∞. For all three systems
the wave packet traverses the τ ≈ 0 region with little dispersion as
discussed in Sec. III B and a time shift �t in good agreement with
the results of Sec. III as illustrated by Fig. 4.
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are significant. Therefore, we have the freedom to consider
only such initial wave packets for which the support of ψ̃(ω)
is within the support of ρeff(ω). For example, if the support
of ρeff(ω) is the interval [−π/T ,π/T ] [Figs. 4(a) and 4(b)],
then instead of ψ̃(ω) = 1 corresponding to ψ(t) = δ(t), we
may think of the indicator function ψ̃ ′(ω) = 1[−π/T ,π/T ](ω),
whose inverse Fourier transform is ψ ′(t) = sinc(πt/T )/T .
This in particular implies that the linear approximation (17)
needs to be valid only for values where ρeff(ω) is nonzero, so
that consulting Fig. 4 we would expect a high shear fidelity
for the second case in the strong coupling limit, as is indeed
observed in Fig. 6(b). Not surprisingly, Fig. 6(c) shows that
the shear fidelity for the third case, where ρeff is qualitatively
very similar to that of the second, is also high.

IV. CONCLUSION

To summarize, we have established a convenient descrip-
tion of the evolution of an inhomogeneously broadened spin
ensemble coupled to a central spin or a cavity mode. The
dispersion in eigenfrequencies of the individual spins leads to
propagation, which is effectively described as a translation in
a bare-time basis, equivalent to a spin wavenumber basis, and
for a range of parameters, the joint effect of the inhomogeneity
and the coupling of the cavity to a single superradiant
mode can be understood in the same basis: The superradiant
mode is gapped and hence becomes stationary (or a dressed
state pair of the superradiant spin mode and the cavity mode
form coupled, stationary eigenmodes of the system) even in
the presence of inhomogeneities. Rather than diagonalizing
the problem and finding all eigenmodes of the system, we
observe that the bare-time basis states with sufficiently
large positive and negative time argument evolve by a simple
translation without dispersion in the bare-time basis argument.
When the evolution causes this argument to approach the value
τ = 0 of the superradiant mode, a transient nodal structure
forms until the system again becomes a simple bare-time state,
but with a changed phase and a shear that we can compute from
the physical parameters of the model. Since it is a linear effect
for highly polarized spin ensembles, the shear occurs not just
for single excitations, as studied in this paper, but for any
quantum or classical excitation of the initial state, provided
that the ensemble remains strongly polarized.

The result is relevant for the application in multimode
quantum memories, as it allows an assessment of how
previously stored quantum states can be moved with high
fidelity between register positions, while other quantum states
are being read into or out of the superradiant modes. This
is a very useful property for recent strategies for quantum
computing with qubits encoded in different collective spin
modes [14,15]. Recent experiments with inhomogeneously
broadened spin ensembles and stripline cavities have verified
the strong coupling to different collective spin systems [25,26],
and we imagine that the gapping and shear effects should be
observable in these systems.
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APPENDIX: ANALYTICAL DESCRIPTION
OF THE DRESSED-TIME STATES

In the following, we will establish an analytical expression
for the expansion of the dressed-time states (7) on the cavity
and bare-time states.

We consider the evolution in terms of the resolvent
operator, G(z) = (z − H)−1, where z is a complex number.
By considering the form of G(z) close to the real axis we can
compute the forward and backward propagators as

G±(w) = ∓i

∫
eiωt�(±t)U(t) dt = lim

η→0+
G(w ± iη), (A1)

where �(t) is the Heaviside step function [27]. The propaga-
tors are in essence Fourier-Laplace transforms of the evolution
operator U and are related to the Fourier transform of U by

Ũ(ω) ≡
∫

eiωtU(t) dt = 1

i
[G−(ω) − G+(ω)]. (A2)

In terms of Ũ we can write the dressed-time states, or rather
their Fourier transform,

|	̃(ω)〉 =
∫

dteiωt |	(t)〉 = lim
τ→∞ e−iωτ Ũ(ω)|−τ 〉. (A3)

To calculate a closed expression for |	̃(ω)〉 we partition
the reachable part of the single-excitation subspace into the
subspace spanned by |c〉 and that spanned by the bare-time
states |τ 〉, and denote the orthogonal projections onto these
subspaces by C and S, respectively.

1. Evolution of the cavity state

We will first calculate the restriction of G to the subspace
spanned by the cavity state |c〉. Since the subspace is one
dimensional, the restriction of any operator is given by a com-
plex number, CG(z)C = CGc(z), where Gc(z) = 〈c|G(z)|c〉. As
G(z) by definition satisfies (z − H)G(z) = 1, we have that
C = C(z − H)(C + S)G(z)C and 0 = S(z − H)(C + S)G(z)C.
Noting that CH0S = 0, it follows that

Gc(z) = 〈c| C
z − CH0C − CR(z)C |c〉

= [z − ωc − Rc(z)]−1 (A4)

where R(z) is the level-shift operator,

R(z) ≡ V + V S
S(z − H)S V, (A5)

and Rc(z) ≡ 〈c|R(z)|c〉. The level shift can be evaluated
explicitly in the basis â

†
j |vac〉,

Rc(z) = �2
N∑

j=1

|αj |2
z − ωj

= �2
∫

ρeff(ω)

z − ω
dω, (A6)

and it is an analytic function of the complex variable z in the
whole complex plane except for the support of ρeff(ω) on the
real axis, where Rc(z) has a branch cut such that Rc(z) does
not tend to same value from above and from below the cut,

Rc±(ω) = lim
η→0+

Rc(ω ± iη) = �2[δc(ω) ∓ iγc(ω)/2], (A7)

023826-6



DYNAMICS OF THE COLLECTIVE MODES OF AN . . . PHYSICAL REVIEW A 83, 023826 (2011)

where δc and γc are given by Eq. (10). Numerically, Rc±
is most easily calculated as −2πi�2Ft {�(±t)F−1{ρeff}(t)},
where F denotes the Fourier transform. By Eq. (A4) we can
write Gc±(ω) explicitly as

Gc±(ω) = 1

[ω − ωc − �2δc(ω)] ± i�2γc(ω)/2
, (A8)

from which the exact form of 〈c|Ũ(ω)|c〉 follows from
Eq. (A2). We note that Gc+ is the susceptibility of the
cavity mode, and that �c(ω) = �2δc(ω) and �c(ω) = �2γc(ω)
describe the frequency shift of the cavity and the decay from
the cavity into the spin ensemble as discussed in greater detail
in Refs. [28–30].

2. Expansion of the dressed-time states

By algebraic manipulations similar to those used to arrive
at Eq. (A4), we find that GS(z) ≡ SG(z)S is related to Gc by

GS(z) = G(0)
S (z) + �2Gc(z)G(0)

S (z)|0〉〈0|G(0)
S (z), (A9)

where G(0)
S (z) is the resolvent corresponding to the restriction

of H to the spin subspace, G(0)
S (z) ≡ S/(z − SHS) [27].

Expressing the propagators in terms of the Green’s functions
as G(0)

S±(ω) = ∓i
∫

eiωt�(±t)U (0)
S (t)dt , we see that

e−iωτ 〈0|G(0)
S±(ω)| − τ 〉

= ±1

i

∫
eiω(t−τ )�(±t)〈τ |t〉dt →

{−iγc(ω)

0
(A10)

in the limit of τ → ∞, since we are assuming that the
overlap 〈0|τ 〉 vanishes for large τ . In other words, the back-
ward propagator does not contribute to the interaction term.
Since S|	̃(ω)〉 = limτ→∞ ie−iωτ [GS+(ω) − GS−(ω)]|−τ 〉, it
follows from Eqs. (A9) and (A10) that

S|	̃(ω)〉 =
∫

eiωτ [1 − i�2�(τ )Gc+(ω)γc(ω)]|τ 〉dτ.

(A11)

To calculate the cavity component of the dressed-time states
we note that CH0S = 0, so that it follows from the Dyson
expansion G(z) = G(0)(z) + G(z)VG(0)(z) that CG±(ω)S =
GC±(ω)VG(0)

S±(ω). Then

e−iωτCG±(ω)S|−τ 〉
= |c〉�Gc±(ω)e−iωτ 〈0|G(0)

S±(ω)| − τ 〉. (A12)

The matrix element is given by Eq. (A10), so that

〈c|	̃(ω)〉 = �Gc+(ω)γc(ω). (A13)

Finally, to arrive at Eq. (12) we note that

1 − i�2Gc+(ω)γc(ω) = Gc+(ω)

Gc−(ω)
, (A14)

which, since Gc−(ω) = Gc+(ω)∗, we can write as e−iφ(ω),
where φ(ω) = −2 arg[Gc+(ω)].
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