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We derive a nonlinear Schrödinger equation with a radical term, ∼
√

1 − |V |2, as an asymptotic model of the
resonantly absorbing Bragg reflector (RABR), i.e., a periodic set of thin layers of two-level atoms, resonantly
interacting with the electromagnetic field and inducing the Bragg reflection. A family of bright solitons is found,
which splits into stable and unstable parts, exactly obeying the Vakhitov-Kolokolov criterion. The soliton with the
largest amplitude, (|V |)max = 1, is a “quasipeakon,” i.e., a solution with a discontinuity of the third derivative at
the center. Families of exact cnoidal waves, built as periodic chains of quasipeakons, are found too. The ultimate
solution belonging to the family of dark solitons, with the background level V = 1, is a dark compacton. Those
bright solitons that are unstable destroy themselves (if perturbed) attaining the critical amplitude, |V | = 1. The
dynamics of the wave field around this critical point is studied analytically, revealing a switch of the system
into an unstable phase, in terms of the RABR model. Collisions between bright solitons are investigated too.
The collisions between fast solitons are quasielastic, while slowly moving ones merge into breathers, which may
persist or perish (in the latter case, also by attaining |V | = 1).
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I. INTRODUCTION AND THE MODEL

The interplay between the resonant reflection of light
on Bragg gratings (BGs) and resonant interaction of light
with nanolayers of two-level atoms (of width �100 nm,
which is much smaller than the wavelength of light) or
with similar active elements, deposited at reflecting layers
of which the BG is built, gives rise to artificial optical
media in the form of resonantly absorbing Bragg reflectors
(RABRs). They are promising for fundamental studies and
applications [1–5], including the storage of slow-light pulses
[6], negative reflection [7], and periodically amplifying BGs
[8]. The currently available nanofabrication techniques make
the creation of RABRs with required properties quite feasible
[9]. In particular, the interplay of the resonant nonlinearity
(which gives rise to the self-induced transparency in uniform
media [10]) with the bandgap spectrum induced by the BG may
give rise to peculiar species of temporal solitons in RABRs (see
Ref. [11] for a review and more recent works [12–14]). These
solitons belong to the class of gap solitons, whose propagation
constant falls into the underlying bandgap. Gap solitons in
fiber Bragg gratings with the uniform Kerr nonlinearity have
been a subject of intensive theoretical studies [15] and have
been created experimentally, in the form of moving Bragg
solitons [16].

Using the rotating-wave approximation, the Maxwell-
Bloch equations governing the transmission of light in the
RABR can be reduced to the system of equations for the scaled
slowly varying variables, viz., the amplitude of the electro-
magnetic field �+, polarization of the medium P , and
population inversion w of two-level atoms [3,11]:

(�+)ττ − (�+)ζ ζ = −η2�+ + 2iηP + 2Pτ , (1)

Pτ = −iδP + �+w, wτ = −Re(�+P ∗), (2)

where τ and ζ are the scaled time and coordinate (another am-
plitude, �−, is governed by a detached equation). Coefficient
δ, which may be positive or negative, measures the detuning
of the transition frequency of the two-level atoms from the

carrier frequency of the electromagnetic field, and η, which is
defined to be positive, is the scaled BG reflectivity.

A straightforward corollary of Eqs. (2) is ∂(|P |2 + w2)/
∂τ = 0, i.e.,|P |2 + w2 = const. The normalization may be set
by fixing const = 1, hence w can be eliminated in favor of
P [3]:

w = ±
√

1 − |P |2. (3)

The stable situation is determined by the condition that, in
the absence of the polarization (P = 0), the atomic population
must be uninverted (w = −1); hence the lower sign must be
chosen in Eq. (3). The opposite situation is possible too, but
it is unstable, corresponding to an inverted population in the
absence of the field.

Thus, assuming that the stable branch of square root (3)
is used, w = −

√
1 − |P |2, one arrives at the system of two

equations [3]:

(�+)ττ − (�+)ζ ζ = −η2�+ + 2i(η − δ)P − 2
√

1 − |P |2�+,

(4)

Pτ = −iδP −
√

1 − |P |2 �+. (5)

Looking for bright-soliton solutions to Eqs. (4) and (5) as
�+ = exp(−iωτ )S(ζ ),P = i exp(−iωτ )P(ζ ), solutions for
real functions S(ζ ) and P(ζ ) were found in an implicit
analytical form in Ref. [3]. In the general case, these solitons
fall into two distinct bandgaps produced by the linearized
version of the system. Dark-soliton solutions were also studied
in Ref. [3].

The present paper is focused on subfamilies of solitons
residing near the edge of one of the gaps, ω = δ. First, we aim
to show that, in an asymptotic approximation valid in this case,
Eqs. (4) and (5) reduce to a single nonpolynomial Schrödinger
equation (NPSE), with the nonlinear term in the form of a rad-
ical. To this end, solutions to Eqs. (4) and (5) are looked for as

�+ = e−iδτQ−1V (ζ,τ ), P = −ie−iδτ [V (ζ,t) + R(ζ,τ )],

(6)
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where Q ≡ (η + δ)/2, V (ζ,τ ) is assumed to be a slowly
varying function of time, in comparison with exp(−iδτ ), and
R is a small correction to V required by the self-consistent
derivation. Actually, the slow time dependence in V accounts
for a small deviation of the full frequency from ω = δ; in
other words, for the purpose of the asymptotic analysis δ and
η may be considered as large parameters, which corresponds
to a far-detuned strongly reflecting RABR. Then it is a simple
exercise to demonstrate that the self-consistent asymptotic
approximation corresponds to

R = δ−1(iVτ − Q−1
√

1 − |V |2V ) (7)

in Eq. (6), and the asymptotic NPSE takes the following form:

iVt + Vζζ − ε
√

1 − |V |2V = 0, (8)

where the rescaled time is t ≡ δ(η2 + δ2)−1τ and ε ≡ 2η/δ.
An additional obvious rescaling of t and ζ allows one to fix
ε ≡ ±1 for δ ≷0, which is adopted below. It is easy to see
that Eq. (8) gives rise to bright- and dark-soliton solutions for
ε = +1 and −1, respectively, i.e., for positive and negative
values of the mismatch, δ > 0 and δ < 0. Equation (8)
conserves three dynamical invariants, viz., the momentum,
Hamiltonian, and norm:

N =
∫ +∞

−∞
|V (ζ )|2dζ. (9)

Stationary solutions to Eq. (8) (in particular, solitons) are
looked for in the usual form:

V (ζ,t) = e−iχtW (ζ ), (10)

where real function W (ζ ) satisfies the equation

d2W

dζ 2
= −χW + ε

√
1 − W 2W ≡ −dUeff

dW
, (11)

with effective potential Ueff = (1/2)χW 2 + (ε/3)
(1 − W 2)3/2. Substituting such stationary solutions back
into Eqs. (6) and (7), one can reproduce the respective
solutions in the framework of the underlying RABR model.
In particular, it is worthy to note that real stationary solutions
W (ζ ) correspond, according to Eqs. (6) and (7), to complex
stationary states of the material polarization, i.e., those with
an intrinsic chirp.

Another noteworthy finding reported below, which directly
pertains to the relation between solutions to the NPSE (8)
and solutions of the underlying system of Eqs. (1) and (2), is
that when, in the course of the dynamical evolution governed
by Eq. (8), |V (ζ,t)| attains the critical value, |V | = 1, i.e.,
according to Eq. (6), the polarization attains its critical value,
|P | = 1, the further evolution of the system leads to switching
from the stable branch of relation (3) to the unstable one, i.e.,
from w = −

√
1 − |P |2 to w = +

√
1 − |P |2. If this happens,

the subsequent use of Eq. (8) for the slowly varying field
becomes irrelevant, because the decay of the unstable state
may be fast, making it necessary to get back to the use of the
full system (1), (2) (which is beyond the scope of this work).

Asymptotic equations for a single slowly varying amplitude
can also be derived near other edges of the two gaps that may be
occupied by solitons in the full system of Eqs. (1) and (2). How-
ever, in other cases the eventual equation reduces to the usual

cubic nonlinear Schrödinger equation (CNLSE). On the other
hand, it is relevant to compare the NPSE in the form of Eq. (8)
with the equation which was first derived, under the same name
(NPSE), as the one-dimensional asymptotic form of the Gross-
Pitaevskii equation (GPE) for the wavefunction of a self-
attractive Bose-Einstein condensate (BEC) trapped in a cigar-
shaped potential [17]. In the notation similar to that adopted
here, the BEC equation (a.k.a. the Salasnich equation) is

iVt + Vζζ + 1 − (3/2)|V |2√
1 − |V |2

V = 0. (12)

Both equations (8) and (12), give rise to a singularity when
the local amplitude attains the critical value, |V | = 1. In the
case of Eq. (12), this singularity leads to the collapse of the
wavefunction, which is a property inherited from the full GPE
for the self-attractive BEC in the three-dimensional space [17].
The purport of the singularity in Eq. (8) is demonstrated below:
Hitting the critical amplitude, the system switches into the
unstable phase, which is represented, in terms of the underlying
RABR model, by square root (3) with the upper sign.

Another type of the NPSE was derived in Ref. [18] as the
effective one-dimensional reduction of the GPE for the self-
repulsive BEC. It seems as Eq. (8) with ε = +1 and

√
1 − |V |2

replaced by
√

1 + |V |2. Of course, such an equation does not
give rise to bright solitons. Nevertheless, it can generate bright
gap solitons, if this nonlinearity is combined with a periodic
linear potential (the optical lattice) [19].

The rest of the paper is organized as follows. In Sec. II,
we report analytical results for bright and dark solitons in
Eq. (8) with ε = +1 and −1, respectively, as well as for
cnoidal waves in the former case and for the switch of the
system into the unstable phase in both cases. In that section we
also report results of simulations confirming the stability and
instability of the bright solitons, as predicted in the analytical
form by means of the Vakhitov-Kolokolov criterion. Simu-
lations of two-soliton states and collisions between moving
bright solitons are reported in Sec. III. The paper concludes
in Sec. IV.

II. ANALYTICAL RESULTS

A. Bright solitons

Solutions to stationary equation (11) can be represented by
means of the formal energy integral:(

dW

dζ

)2

+ χW 2 + 2ε

3
(1 − W 2)3/2 = const. (13)

For bright solitons, with W (|ζ | = ∞) = 0, which corre-
spond to ε = +1, as said above, and, accordingly, const = 2/3
in Eq. (13), W (ζ ) attains its maximum value (A) at the center
of the soliton, where dW/dζ vanishes. Therefore, amplitude A

can be found by setting dW/dζ = 0 in Eq. (13) with ε = +1:

A2 = 3

2

[
1 − 3

4
χ2 −

√(
1 − 3

4
χ2

)2

− 4

3
(1 − χ )

]
. (14)

While the bandgap where bright solitons may reside is,
formally, semi-infinite in the framework of Eq. (8): χ < 1,
the solitons actually exist in a finite interval, 2/3 < χ < 1,

023807-2
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FIG. 1. The solitonic profiles corresponding to χ = 0.67 and
χ = 0.99 (dashed and solid curves, respectively). The numerically
found solutions are indistinguishable from, severally, the exact
“quasipeakon” solution (15) found for χ = 2/3 and the approximate
solution (17), which is relevant for 1 − χ � 1.

in which squared amplitude (14) varies from 1 to 0. At the
limit point of χ = 2/3, the soliton solution can be found in an
explicit form:

Wχ=2/3(ζ ) = 2 tanh

[ |ζ |√
3

+ ln(
√

2 + 1)

]

× sech

[ |ζ |√
3

+ ln(
√

2 + 1)

]
. (15)

The expansion of solution (15) around zero is

Wχ=2/3(ζ ) = 1 − (1/3)ζ 2 + (1/6)
√

2/3|ζ |3 + O(ζ 4). (16)

As seen from here, a peculiarity of this solution is that, while
both W (ζ ) and its first two derivatives are continuous at ζ = 0,
the third derivative, d3W/dζ 3, suffers a discontinuity, jumping
from −√

2/3 to +√
2/3 as ζ crosses zero. In this sense, this

exact solution may be called a quasipeakon, usual peakons
being solitons with a jump of the first derivative at the center
[21].

In the limit of 1 − χ → 0, the smallness of amplitude
(14) suggests expanding the radical in Eq. (8), which reduces

the equation to the usual CNLSE, and the soliton solutions,
accordingly, take the following form:

V = 2
√

1 − χe−iχtsech(
√

1 − χζ ). (17)

Solitons close to those given by Eqs. (15) and (17) are
displayed in Fig. 1.

The stability of the solitons can be predicted by means of
the Vakhitov-Kolokolov (VK) criterion, dN/dχ < 0, where
N is the norm defined by Eq. (9) [22]. The numerically
calculated curve N (χ ) for the entire soliton family is displayed
in Fig. 2, along with the amplitude A(χ ), as given by
analytical expression (14) (which completely coincides with its
numerical counterpart), and the soliton’s width L(χ ), defined
as L2 ≡ N−1

∫ +∞
−∞ ζ 2W 2(ζ ) dζ . It is seen in Fig. 2(a) that the

VK criterion predicts the stability of the solitons in interval

χcr ≈ 0.7120 < χ < 1, (18)

and instability in the remaining part of the existence region,
2/3 < χ < χcr.

Direct simulations of the evolution of perturbed bright soli-
tons, performed in the framework of Eq. (8), corroborate this
prediction: Strong perturbations added to VK-stable solitons
gradually fade, leaving the soliton intact, as shown in Fig. 3(a).
On the other hand, the evolution of perturbed VK-unstable
solitons does not lead to their immediate destruction. Rather, as
shown in Fig. 3(b), the amplitude of the soliton grows, crossing
the critical level |V | = 1. Then formal continuation of the
simulations shows a blowup [see, e.g., the panel corresponding
to t = 4 in Fig. 3(b)], which is a manifestation of the fact that
the model as a whole becomes unstable after hitting the critical
level (see below).

B. Cnoidal waves

In addition to the bright solitons, a subfamily of exact
periodic solutions in the form of cnoidal waves (expressed
in terms of the Jacobi’s elliptic functions) can also be found
from energy equation (13) with ε = +1, by setting const = χ

on its right-hand side. First, in the case of

0 < χ < 2/3, (19)

the period of the cnoidal solution is defined as an interval of
coordinate ζ in which a continuously varying elliptic function,

FIG. 2. The norm (a) and amplitude and width (b) of the soliton versus its intrinsic frequency χ . According to the VK criterion, the solitons
are stable at dN/dχ < 0.
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FIG. 3. (a) Self-cleaning of a stable soli-
ton with χ = 0.9, to which a strong random
perturbation was added at t = 0. (b) The
evolution of a slightly perturbed soliton with
χ = 0.69, which belongs to the VK-unstable
subfamily. The crossing of the critical level,
|V | = 1, implies the transition into the unsta-
ble phase. The subsequent blowup indicates
the loss of the system’s stability.

sn(ζ/
√

3,k) with modulus

k =
√

(1/2)[1 + (3/2)χ ], (20)

takes values that are not too small:

(
√

2k)−1 ≡ (1 + 3χ/2)−1/2 � sn(ζ/
√

3,k) � 1. (21)

In this interval, the solution is

W (ζ ) = 2ksn(ζ/
√

3,k)dn(ζ/
√

3,k), (22)

where dn is the other standard elliptic function, and the entire
solution is built as a chain of the so defined periods. Note that
k given by Eq. (20) takes values 1/

√
2 < k < 1 if χ belongs

to region (19). As follows from Eqs. (22) and (21), at junction
points between adjacent periods, where the left inequality
in Eq. (21) turns into the equality, the solution attains the
critical value, W = 1, and its derivative vanishes, dW/dζ = 0,
hence the matching at the junctions is continuous for both
W (ζ ) and dW/dζ , as well as for d2W/dζ 2 [according to
Eq. (11), d2W/dζ 2 = −χ at W = 1]. Only the third derivative
is discontinuous at the junction, jumping between −√

χ and
+√

χ . In this sense, these cnoidal solutions are built as periodic
chains of quasipeakons, cf. the exact soliton solution [21] of
the same type. Note also that the bright solitons do not exist in
the entire interval (19); i.e., the existence regions of this type
of the cnoidal waves and solitons are separated.

Exact solutions for cnoidal waves take a different form at
χ > 2/3 (recall the solitons exist in the region of 2/3 � χ < 1,

i.e., the cnoidal waves may coexist with the solitons in this case,
although the cnoidal solutions exists also at χ > 1, where the
solitons cannot be found). In this case, the solution is built of
elliptic functions sn and cn with modulus

k =
√

2[1 + (3/2)χ ]−1 (23)

[cf. Eq. (20)]. Note that expression (23) is the inverse of (20),
and it takes values k < 1 for χ > 2/3. The period of the cnoidal
solution is now defined by inequalities

1/
√

2 � sn[
√

(1/6)[1 + (3/2)χ ]ζ,k] � 1 (24)

[cf. Eq. (21)], and the solution is

W (ζ ) = 2sn[
√

(1/6)[1 + (3/2)χ ]ζ,k]

× cn[
√

(1/6)[1 + (3/2)χ ]ζ,k]. (25)

At junction points between adjacent periods, W again at-
tains the critical value, W = 1, the first derivative vanishes,
dW/dζ = 0, the second derivative is continuous, taking value
d2W/dζ 2 = −χ , while the third derivative jumps between
values ±√

χ [cf. the jump of the third derivative in expansion
(16) for the “quasipeakon”].

Actually, the quasipeakon solution (15) corresponds to the
limit form of both cnoidal families at the border between
them, χ = 2/3. We stress that the above exact cnoidal-wave
solutions, which depend on the single parameter χ , represent
only particular cases of a general family of periodic solutions,
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which depend on two parameters, χ and const in Eq. (13) (and
cannot be expressed in terms of the Jacobi’s elliptic functions).

C. Dark solitons

An obvious condition necessary for the stability of dark
solitons is the modulational stability of the continuous wave
(CW) states,

VCW = e−iχt
√

1 − χ2, (26)

with χ taking values −1 < χ < 0. A straightforward analysis
demonstrates that all CWs (26) are indeed stable, if ε = −1 in
Eq. (8).

Solutions for dark solitons, V (ζ,t) = e−iχtW (ζ ), which
approach CW (26) with frequency χ at ζ → ±∞, can be
found as solutions to Eq. (13) with ε = −1 and const =
χ − (1/3)χ3. A straightforward analysis demonstrates that,
in the limit case of χ = 0, the solution takes a peculiar form
of a compacton-shaped dark soliton:

W (ζ ) =
⎧⎨
⎩sn(ζ/

√
3,1/

√
2)

√
2 − sn2(ζ/

√
3,1/

√
2), at |ζ | <

√
3K(1/

√
2),

1, at |ζ | �
√

3K(1/
√

2),
(27)

where the modulus of sn is 1/
√

2, and K(1/
√

2) is the
corresponding value of the complete elliptic integral of the first
kind. Previously, dark compactons were reported in several
discrete models [20], but we are not aware of solutions similar
to that given by Eq. (27) in continual models.

D. The switch into the unstable phase

The crossing of the critical amplitude level, |V | = 1, by an
evolving solution can be studied in an analytical form too. To
this end, a near-critical solution is looked for as

V (ζ,t) = 1 − [v1(ζ,t) + iv2(ζ,t)], (28)

where functions v1 and v2 are real and imaginary parts of small
perturbations around V = 1, i.e., v2

1,2 � 1. The substitution of
this expression into Eq. (8) and a straightforward asymptotic
expansion yields the following equations:

(v2)t − (v1)ζ ζ − ε
√

2v1 = 0, (29)

(v1)t + (v2)ζ ζ = 0. (30)

Solutions to Eq. (29) make sense if v1(ζ,t) does not become
negative.

1. The case of ε = −1

First, we consider this issue for Eq. (8) with ε = −1, which
admits stable CW states. In this case, a family of exact solutions
to asymptotic equations (29) and (30) can be looked for in the
following form:

v1(ζ,t) = (1/2) (βζ 2 − at)2,
(31)

v2(ζ,t) = (1/2)[bt2 + ctζ 2 + (γ /2)ζ 4],

with constants a,β,b,c,γ . Here t = 0 is defined as the moment
of time at which v1 vanishes for the first time, i.e., the critical
value |V | = 1 is attained, in the framework of the asymptotic
approximation. Note that the choice of the ansatz for v1 in
the form of the full square in expression (31) guarantees that
v1(t,ζ ) remains positive, as it must be. The substitution of the
ansatz into Eqs. (29) and (30) gives rise to the following exact
relations:

b = (1 − 2β)a, c = −a2, γ = (1/3)aβ,
(32)

a =
√

2β(1 − 6β),

where β remains an arbitrary parameter, taking values 0 <

β < 1/6.
Ansatz (31), subject to conditions (32), yields an exact

solution to Eqs. (29) and (30) with ε = −1, provided that√
2v1(ζ,t) is realized, when the ansatz is substituted into

Eq. (29), as βζ 2 − at , but not as |at − βζ 2| (the latter
expression cannot provide for a solution). An explicit form of√

1 − |V |2, as given by Eqs. (28), (31), and (32), with regard
to the above-mentioned realization of

√
2v1(ζ,t), is√

1 − |V |2 ≈
√

2v1(ζ,t) = βζ 2 −
√

2β(1 − 6β)t. (33)

As follows from Eq. (33),
√

1 − |V |2 does not vanish (i.e.,
|V | < 1 holds) at t < 0, which is the precritical stage of the
evolution. At the critical moment of time, t = 0,

√
1 − |V |2

vanishes at point ζ = 0. Then, as seen from Eq. (29), at t > 0
(at the postcritical stage)

√
1 − |V |2 vanishes at two points,

ζ0(t) = ±
√

2(β−1 − 6)t . In the instability domain between
these points,

−
√

2(β−1 − 6)t < ζ < +
√

2(β−1 − 6)t, (34)

which emerges at t = 0 and expands with time as
√

t ,
expression (33), i.e., eventually, square root (3) [see Eq. (6)],
switches from the stable (lower) branch to the unstable (upper)
one. Further evolution of the system is expected to be strongly
affected by the presence of the instability domain and should
be studied by means of direct simulations of the full system of
Eqs. (1) and (2), which is is beyond the scope of this work.

2. The case of ε = +1

In the case when the bright solitons exist, i.e., ε = +1, the
critical level, |V | = 1, is attained at the center of quasipeakon
(15). In this case, it is not possible to find an exact solution
to Eqs. (29) and (30) describing the crossing of |V | = 1 by a
perturbed peakon, unlike the above solution given by Eqs. (31)
and (32). However, taking into regard expansion (16) of the
quasipeakon around its center, and the fact that its frequency is
χ = 2/3, an approximate nonstationary solution can be sought
for, at small |ζ | and |t |, as

v1 = [(1/
√

3)|ζ | − at]2 + O(ζ 4),
(35)

v2 = (2/3)t +
√

2/3t |ζ | − (1/
√

2)at2 + O(|ζ |3,tζ 2),
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FIG. 4. (Color online) An example of the breather generated by the two-soliton initial condition in the case of χ = 0.99 (the fundamental-
soliton solution is suddenly multiplied by 2 at t = 100): (a) the three-dimensional image; (b) the contour plot in the (t,ζ ) plane.

where a > 0 is an arbitrary constant, and the square root is
realized as follows:√

1 − |V |2 ≈
√

2v1(ζ,t) ≈ (
√

2/3)|ζ | −
√

2at (36)

[cf. Eq. (33)]. As seen from Eq. (35), at t → −0 this
approximate solution describes a small perturbation in the
form of a cuspon introduced at the central point, ζ = 0. At
t > 0, Eq. (36) demonstrates that the square root switches
into the unstable branch in the respective instability domain,

|ζ | <
√

3at , which expands linearly with t [cf. Eq. (34)]. As
said above, Eq. (8) cannot be used after the switching into the
unstable phase.

III. DYNAMICS OF BRIGHT SOLITONS

It was mentioned above that, in the limit of 1 − χ → 0,
Eq. (8) goes over into the CNLSE. A well-known peculiarity of
the latter (integrable) equation is the existence of higher-order

FIG. 5. (Color online) Outcomes of collisions between identical stable solitons with χ = 0.96, observed with a gradual increase of the
collision velocity c. A transition from the merger to quasielastic collisions is observed at c = cmin ≈ 0.07.
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FIG. 6. The velocity separating quasielastic collisions and the
merger of identical in-phase solitons, versus the intrinsic frequency
of the soliton χ . The inset zooms the region of small 1 − χ . The
solid and dashed portions of the curve correspond, respectively, to
the merger of the colliding solitons into breathers remaining in the
stability domain (at |V | < 1) and to the case when the pulses produced
by the merger (at c < cmin) attain values |V | = 1 and thus switch into
the unstable phase.

soliton solutions (breathers), the simplest one, two-soliton,
being obtained by the multiplication of a fundamental soliton
by 2 at the initial moment [23]. This circumstance suggests
to simulate the evolution of so produced double pulses in the
framework of Eq. (8), if the initial fundamental soliton is taken
with 1 − χ small enough. A typical example is displayed in
Fig. 4, which demonstrates that, in this case, Eq. (8) indeed
supports robust breathers of the two-soliton type, although
some emission of radiation is observed too.

Collisions between moving solitons are another natural
dynamical problem [24]. The corresponding simulations were
carried out, as usual, by taking a pair of far separated identical
stable solitons [those with χ > χcr; see Eq. (18)] and setting
them in motion with velocities ±c by the application of the
“kick”, i.e., multiplying each soliton by exp(±icζ/2). Figure 5
demonstrates that, as might be expected, the collisions are
quasielastic if c exceeds a certain minimum velocity, cmin,
while, at c < cmin, the colliding solitons merge into a single
pulse that features irregular intrinsic oscillations (as seen from
the figure, the quasielastic collisions may result in a change of
the velocities).

In fact, the latter outcome is observed only for χ � 0.96,
i.e., close enough to the CNLSE limit. At χ < 0.96, the merger
produces pulses whose amplitude exceeds the critical level,
|V | = 1 (not shown here in detail), which is followed by

the switch of the pulse into the unstable phase, as outlined
above.

The velocity separating quasielastic and inelastic collisions
cmin is shown as a function of χ in Fig. 6. Naturally, cmin

increases with the decrease of χ , as this implies the growth
of the amplitudes of the colliding solitons, and thus moving
farther from the integrable CNLSE limit, where collisions
between solitons are completely elastic.

We also simulated collisions between solitons with a phase
shift of π between them. In that case, as might be expected, the
colliding solitons always demonstrate a quasielastic rebound,
irrespective of the values of χ and c (not shown here).

Finally, three-soliton collisions (between two moving soli-
tons and a central quiescent one) were considered too. The
results for them (not shown here) are similar to those pre-
sented above for collisions between two solitons: quasielastic
passage of fast solitons and the merger of slowly moving
ones.

IV. CONCLUSION

This work aimed to present a physically relevant variant
of the NPSE (nonpolynomial Schrödinger equation), which
naturally appears in the model of the RABR (resonantly
absorbing Bragg reflector), as the equation for gap solitons
residing near the edge of the bandgap. The equation features
the nonlinearity in the form of the radical term. Previously,
different forms of the NPSE were derived as models of the BEC
dynamics in Refs. [17] and [18]. A full family of bright-soliton
solutions to the present NPSE was obtained in an implicit form,
the ultimate solution being the explicitly found “quasipeakon.”
Cnoidal waves in the form of a chain of quasipeakons were
found too. The stability of the bright solitons is correctly
predicted by the VK criterion, which separates the family into
stable and unstable parts. The ultimate form of the dark-soliton
solution, shaped as a “dark compacton,” was also obtained.

The instability has a peculiar form in the present model: It
occurs when the amplitude of the wave field attains the critical
value (|V | = 1), which is followed by the switch of the system
into an unstable phase (it corresponds to the inverted atomic
population unsupported by the external field), in terms of the
underlying RABR model. The passage of the system through
the instability threshold was investigated analytically.

The dynamics of the stable bright solitons was further
explored by means of direct simulations. In particular, two-
soliton breathers were found, and the border between the
merger and mutual passage of colliding solitons was identified.
The merger may lead either to the formation of robust
irregularly oscillating pulses or to the switch into the unstable
phase.
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