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We examine quantum statistics of optical photons emitted from atomic ensembles which are classically
driven and simultaneously coupled to a two-level atom via microwave photon exchange. Quantum statistics and
correlations are analyzed by calculating second-order coherence degree, von Neumann entropy, spin squeezing
for multiparticle entanglement, as well as genuine two- and three-mode entanglement parameters for steady-state
and nonequilibrium situations. Coherent transfer of population between the radiation modes and quantum-state
mapping between the two-level atom and the optical modes are discussed. A potential experimental realization
of the theoretical results in a superconducting coplanar waveguide resonator containing diamond crystals with
nitrogen-vacancy color centers and a superconducting artificial two-level atom is discussed.
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I. INTRODUCTION

Primary requirements of successful quantum information
technology, in particular of large-scale distributed quantum
networking, is to have efficient and reliable means of stor-
age [1], processing [2], and dissemination [3] of quantum
resources. These tasks can most likely be solved in different
modules, designed and optimized for their ideal operation. The
composite quantum information device would be then a hybrid
structure of such subsystems [4]. As the individual modules
can have different time and energy scales of operation, the
fundamental challenge is to merge them together congruously.
After the recent dramatic developments in hybrid systems of
spin ensembles and superconducting cavities [5—7], an essen-
tial step toward distributed quantum information processing is
to find means of coherent coupling of single microwave and
optical photons [8].

In this article we consider an atomic three-level ensemble,
with the so called A-type level scheme [9,10]. We argue
that such a system can be a promising setup for controllable
exchange of quantum resources between energetically remote
modules in a hybrid quantum information device. The basic
idea is to exploit the presence of an extra energetic component
in the A scheme to bridge the large energy gap between the
other two components. In particular, we envision a typical
case where one component is a two-level atom, corresponding
to the stationary quantum hardware and quantum information
unit (qubit). Itis coupled to the A system by a cavity field in the
microwave domain. The other component could be a remote
quantum communication node such as a satellite or quantum
repeater along an optical fiber so these require coupling to
the A system in the optical domain. Hence, by choosing the
extra available transition also in the optical domain, we can
consolidate these two domains. The A system could play a
double-faceted role. It can serve as the quantum memory in
terms of the pure or, together with the two-level atom, hybrid
spin ensemble qubits [11]. In addition, it becomes a mediator
of communication between the stationary quantum hardware
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and the quantum communication channels for optical flying
qubits interconnecting remote nodes of a quantum network.

Due to dipole selection rules, A-type transitions can happen
only in certain systems, either lacking, or with explicitly
broken, inversion symmetry, such as artificial atoms [9,12],
semiconductors [13—-15], or chiral molecules [16,17]. Alter-
natively, one of the transitions can be of magnetic dipole or
electric quadrupole type in the A scheme [18-20]. Such weak
transitions are collectively enhanced for strong coupling due
to the ensemble [11]. We specifically consider the latter case of
magnetic dipole assisted A scheme, though our results would
be valid in other cases, too.

Some quantum statistical properties of single isolated A-
type atomic ensembles have been explored recently [10,21].
Coupling of atomic ensembles, in particular, three-level A-
type ensembles to a two-level atom has been discussed in the
context of quantum-state mapping from quantum memories to
charge qubit [22] in transmission line resonators [23-26]. In
this article we examine quantum coherence and correlations of
the optical photons emitted by a A-type ensemble coupled to a
two-level atom in a microwave cavity. We also investigate the
case of two A-type ensembles. Equilibrium and nonequilib-
rium situations are separately examined. Conditions of photon
antibunching, particle entanglement [27,28], genuine bipartite
and tripartite mode entanglement, W state [29] are revealed.
Furthermore, quantum-state mapping between the two-level
atom and optical modes, as well as coherent transfer of
population between the radiation modes are found.

This article is organized as follows. In Sec. II we describe
the model system and by eliminating the collective atomic
states, we derive the effective Hamiltonians for two-level
atom and radiation modes. In Sec. III, we present our results
and discussions for the single and two-ensemble cases in
the steady-state and nonequilibrium situations. In Sec. IV, a
potential experimental system for physical implementation of
our results is described. Specifically, we consider an extension
of recently realized nitrogen-vacancy (N-V) centers in dia-
mond crystals strongly coupled to superconducting coplanar
waveguide resonators (CPWG) [5]. Similar electron spin
ensemble to on-chip superconducting cavity couplings, specif-
ically coupling of Cr** spins in ruby and N substitution (P1)
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FIG. 1. (Color online) Identical three-level atoms in the ensemble
interact with two quantized (indicated by a and b) and one classical
(indicated by £2) electromagnetic fields in A scheme. The microwave
photons further couple the atomic ensemble to a single two-level
atom. The classical drives on C-A transition and on the cavity field
are not shown.

centers in diamond, are also observed in parallel efforts [6].
Finally, in Sec. V, we conclude.

II. A-TYPE ATOMIC ENSEMBLE COUPLED
TO A TWO-LEVEL ATOM

A. Model Hamiltonian

We consider a collection of N identical three-level atoms
interacting with three electromagnetic fields in a A-type
transition scheme delineated in Fig. 1. The atomic ensemble is
further coupled to a two-level atom through microwave photon
exchange. The upper and lower levels of the two-level atom
are respectively denoted by |e) and |g). The lowest level |C)
is coupled to the intermediate level | B) by a magnetic dipole
transition of rate g, while the transitions from the highest level
|A) to the lower doublet | B) and |C) are optical electric-dipole
transitions of rates 2 and g,, respectively. We further suppose
that optical fields are traveling waves while the microwave
field is a standing wave of a cavity that contains the two-level
atom and the atomic ensemble.

Our model can be conceived as a modest generalization of
the case of a A-type atomic ensemble, resonantly coupled to
the optical fields, which is studied for the bipartite entangle-
ment of the quantized fields [10]. On the other hand, such a
seemingly innocent addition of two-level atoms generalizes
the system from two interacting linear oscillators to the case
of a linear oscillator coupled to a nonlinear oscillator and, as
such, can cause remarkable changes in the quantum statistical
properties of the fields. In comparison to A-type ensemble
coupled to two-level atom [30], A-type scheme allows for
effective interaction between a and b modes. This effective
interaction leads to correlations between the photon modes,
so-called mode entanglement, which can be characterized by
the entanglement entropy.

On the other hand, pairwise or multiparticle entanglement
requires nonlinear interactions and cannot be obtained by
simple coupled linear oscillators. Inclusion of two-level atoms
brings back the missing nonlinearity and anharmonicity to
the A-type atomic ensemble. In such a system we can
enjoy the benefits of collective enhancement of coupling
coefficient by the ensemble together with strictly nonlin-
ear effects such as photon blockade or antibunching or
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multiparticle entanglement which is characterized by the spin
squeezing [27,28].

Furthermore, the coupled linear oscillator models can be
viewed as nonlocal or long-range interactions which may arise
as hopping or tunneling couplings. Introduction of the two-
level atom brings the local or short-range interaction into the
picture. Competing effects of localization and delocalization
can be examined in terms of mode and particle entanglement
when the two-level atom is present. Finally, from a practical
point of view, the model has all the ingredients (memory,
processor, bus and flying qubits) in the microwave and optical
frequency domains. It allows for a compact examination of the
coherent coupling of these modules for distributed quantum
information purposes.

In addition, we take into account additional external drives
and consider the system as open with all the decay channels
due to cavity losses or spontaneous emission decays, which
causes subtle effects in particular in the steady state. In addition
to that, we also examine the case of two distant ensembles
to analyze genuine three-mode entanglement possibilities, in
particular to look for W-state generation among microwave and
optical photons. The question of how to realize these models
in a practical and recent system will be subject to Sec. IV
while the numerical simulations will use the corresponding,
experimentally available, set of parameters.

The system can be described by a model Hamiltonian H =
Hy + H{ + Hp, where (in units of 71)

W, .
Ho=Y  w,alag + wpb'b + 7001 +3 w.RY, (1)
- .

xJ

H, = gob' +Q Z Ry;ei(lgd';f_”"’)
J

+3 g Ry ar + ¢, Y Rytb+He., ()
Jik j
Hy =y Z Riiiéei(k:";"_m[) + Epe™ b +He.  (3)
j

Here, Pauli spin-1/2 operators for the two-level atom o =
|g)(e] and o, = |e)(e| — |g)(g| respectively stand for the
lowering and the inversion operators. The labels x = A,B
and j =1,...,N denote the corresponding energy levels
and the index of the atom in the ensemble. The frequencies
w,;,wp,wa,0p,wo are respectively the frequencies of the
electromagnetic fields and atomic transitions relative to the
lowest level |C). Probe field frequencies are denoted by @4
and @, Effective drive strength of the microwave cavity and
the Rabi frequency of the drive for the |C) to |A) transition
are represented by E;, and 4, respectively. Population
and transition operators of single atoms in the ensemble
are respectively represented by RY) = |x);;(x| and RY) =
[x)ji{yl,x #y with x,y = A,B,C. Optical and microwave
photon annihilation (creation) operators denoted by aj,b
(ai,bT), respectively.

Cavity photon operator b implicitly depends on the wave
number of the cavity mode. The coupling coefficient g, is
assumed to be spatially homogeneous over the ensemble so
a mode-matching condition [10] only for the wave vectors
of the optical fields can be imposed such that k = k; = k4.
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Quantized optical field can be treated as single mode and
the coupling to the reservoir of the other modes can be
treated as a decay channel in the master equation for the
model system. More detailed conditions on three-dimensional
analysis of mode matching between free space light and
the atomic ensemble will be ignored for simplicity [31].
Suppressmg the constant global phase factor by [32] |A) —
exp (zkd )| A), we drop the k index from our notations and
further considerations.

There would be additional Langevin noise terms in the
Hamiltonian, corresponding to the coupling to the continuum
of other modes. These will be taken into account effectively in
the master equation formalism and shall not be shown here.

B. Quasispin wave picture of the model system

It is illuminating to portray the model system in terms
of collective excitation operators [33] A = X¢ga /«/_ N,B =
XCB/\/_ N,T = Xpa, where XXy = Zj.v_l R,,, is analogous
to the Hubbard operators [34] in strongly correlated systems.
In the ensemble, the set of Hubbard operators represent the
SU(3) symmetry of a spin-1 system. They can be associated
with the Gell-Mann fundamental representation of the SU(3)
Lie algebra by choosing U = X¢c4,V = Xpc and T = Xp4,
so U, V, and T form the three spin-1/2 subgroups. Each obeys
the SU(2) algebrawith [L,LT] = —2L3,L = U,V,T.They are
interdependent by the commutations such as [(vi,u']=—T1t.
Analogous to excitons and magnons, SU(2) algebras of U
and V subspins can be contracted to Weyl-Heisenberg algebra
h, to associate collective excitations with quasi-spin-wave
quanta [33]. The system space becomes a semidirect product
Lie algebra, SU(2)®%,. In the limit of low excitations to |A)
and |B), relative to N, V3 & N/2, and U3 &~ —N /2. With the
contraction parameter 1/+/N, the operators A = U/+/N and
B = V1/\/N become approximately bosonic. They become
independent, as the isospin subgroup is weakly populated.
The isospin is consistently represented by 7 = BTA.

Denoting the phases of the g,84,85.€2,Q24,E) by 6,.0,,
p.00,04, 0, respectively, they can be suppressed by b —
bexp (l@b) o — oexpli(f, —Hb)] B — Bexp[—i(6, + Qb)]
a— aexpli(6, +04)], and A — Aexp(—if,). Employing
a unitary transformation by U =exp(—iwgt) with
H — UTHU —iU'3,U, the Hamiltonian becomes

= Z wxxTx + a)bbTb + a)BBTB + %O’Z, 4)

x=a,A
H, = gob' + g,Ala+ g,B'b + Qe'®ATB + Hec., (5)

H, = Qe ™" AT + Epe™™'b 4 Hec. (6)

where the coupling coefficients g, ;, — VN, gaq.p are collec-
tively enhanced; ¢ = 0q + 04 — 6 — O, Wy A = Wa A — Wy,
and @, = @4 — wy. Even though it can play a curious role
in quantum correlations [10], for simplicity we take ¢ = 0.
We further assume a three-photon resonance condition @4 =
@4 — wg = @y for the classical driving fields.

C. Effective Hamiltonian for the model system

A A-type ensemble can induce an effective photon-photon
interaction mediated by the quasi-spin-wave background [10].
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In order to show that explicitly, let us introduce the normal
modes py+ = ut+A + vy B by the Bogoliubov transformation
[35] with the relations u_ = —v, and v_ = u, where uy =
VInE @ —wp)l/2n and n = /(w4 — wp)? + 422,

The model Hamiltonian can be rewritten as H = Hy +
H, + H,, where

" X w
Ho = waala +opb'bo+ > Quplps+ 2o, (D

A=+ 2
Hy=gob' + 3 pl(gma+gmb)+He, (8
A==+
Hy =" Que ™ p, + Epe”™'b + He. )

A==+

Here Q4 = (w4 + wp £1)/2, gar = &alts.&p1 = gpVs, and
Q AL = Q Al

Effective coupling between the electromagnetic modes can
be obtained by a unitary transformation to eliminate the
interactions between the electromagnetic and quasi-spin-wave
modes. We introduce an anti-Hermitian operator S

S= (na+y:b)p] —He., (10)

A==

where the unknown coefficients x; and y, are to be deter-
mined by the Frochlich-Nakajima canonical transformation
condition [36-38]

[Ho.S1=—" pl(gara + gnib) + He., (11)
A==+

which yields x;, = ga/(@. — Q) and y, = gp/(wp — 25).

Assuming 2 >> g,,g5, an effective Hamiltonian Hey =
exp (—S)H exp (S) can be written up to the second order in
X Yo

Heo — oo'al ot o 1
ot = @Wya'a+ wyb'b + 701 + g(ob" +H.c.)
+(E,e”'®'b + E,e™®\al — Ja'h +H.c.)

+) @ pipa+ Y Ouulplpy +He)
A A1

+Y (Giop) + Epe ™ pl +He) (12)
A

with A,u = £. The coefficients in H.y are listed in the
Appendix A. The indirect coupling between the quasi-spin-
wave modes and the electromagnetic modes is through their
common interaction with the two-level atom. In the large 2
limit, the quasispin waves are strongly off-resonant with the
two-level atom and practically uncoupled. More formally, in
the dispersive regime, 2 — wg ~ 2 > g, employing another
Frochlich transformation, such an interaction can be reduced
to a Stark shift of a two-level atom resonance proportional
to the population of the quasispin normal modes that can be
neglected for weak excitations. Influence of such sequential
canonical transformation on radiation modes would be negli-
gible provided that Q2 > g, > g5, g. In addition, the effective
weak drive on the two-level atom would be negligible. The
effective Hamiltonian, keeping the leading terms only, is
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reduced to

0 — @p

n [6))
Her = (w, — @p)a'a + (o, — @p)b'h + 5O

+g(ob' +H.c) — J(@'b+He)
+ Ey(a" +a)+ Ey(b' +b). (13)

Here, three-photon resonance condition for the driving clas-
sical fields is employed and the Hamiltonian is written in the
frame rotating at @,. We further suppose that three-photon
resonance holds for the radiation fields such that w, =
wg + wyp, then w, — @&, = w, — @, = & is defined. We find
wy — @p = 6 — 8p. According to Fig. 1, 8, = wp — wo, A =
wg — wa, Ny = Wy — wa, Ay, = wp — wp, in terms of which
we express the three-photon resonance condition A, — A —
A, =0.

The Hamiltonian of Eq. (13) has a zero-eigenvalue solution
in the single excitation manifold, or the so-called dark state,
which is given by [30]

IDS) = (cos o — sinaa)'|vac), (14)

with o = —arctan(g/J). Presence of such a dynamically
fixed state has been exploited to propose an adiabatic transfer
protocol to map the quantum information stored in a molecular
A type ensemble to a charge qubit of two-level atom and vice
versa. Our treatment of cyclic ensembles reveals a complement
to this protocol by allowing quantum information transfer from
a two-level atom stationary qubit to an optical flying qubit.
A state (x|g) + yle))|00),, can be adiabatically transferred
into (x|0), + y[1)4)|g)|0),. The decoherence channels due to
two-level atom and the microwave cavity are suppressed. The
effective loss channel of the optical photon, transferred from
the spontaneous emission of the level | A) during the Frochlich
transform, is compensated with the effective drive E,. Taking
into account time-dependent interaction coefficients and time-
dependent canonical transformations, an optimal fidelity of the
state transfer can be characterized.

Alternative to the derivation based on sequential Frochlich
transformations as presented here, it is possible to get the effec-
tive Hamiltonian with a single-step Frochlich transformation
or by reducing a general four-color (a,b,A, B) polariton to
a two-color (a,b) one [10] for strong drive €2 conditions. It
is straightforward to generalize this model by either of these
methods to the case of a pair of cyclic atomic ensembles in
the microwave cavity, coupled to the same two-level atom. We
find

T @o
Heip = j;Z w,ala; + w,b'b + — %

+g(obt +He)— > Jialb+He)

j=1.2

+ > Ej(al +a;) + Ep(b' +b) (15)
j=1.2

for identical symmetric ensembles, w,; = w,, E£; = E,, and
Jj=J.

The single ensemble effective model reduces to the Jaynes-
Cummings (JC) model for the optical mode in the dispersive
limit of the microwave cavity. The two-ensemble model
becomes a two-site Bose-Hubbard (BH) model, with pure
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and cross-Kerr interactions of the type (aj'ai)z,i =1,2 and

alTalazTaz. A common proposal to realize a BH dimer is to use
JC-BH systems of tunnel coupled nonlinear cavities, where
the nonlinearity is provided by a two-level atom in each of
them [39,40]. In contrast to such direct methods to realize
atom-optical analogs of Josephson networks, here there is
only one two-level atom providing shared nonlinearity by
each optical mode, which simplifies architecture of identical
homogeneous coupled subsystems.

The BH dimer can be described as a pseudospin system with
quadratic nonlinearities using pseudospin Schwinger operators
Sy = aIaQ,SZ = (aIal - a;az)/Z. When sufficiently strong
nonlinearity present, it leads to multiparticle entanglement
between the distant optical modes via the so-called axis
twisting spin-squeezing route [27,28]. The question of whether
multiparticle entanglement can still be found in the nondis-
persive regime is not as obvious to answer due to lack of
immediate mapping onto a spin model. We shall explore
that case numerically in the following section, together with
other types of quantum correlations as well as with quantum
statistical properties of radiation modes in the effective models.

Generalization of these models beyond two ensembles is,
in principle, possible. However, the quasi-spin-wave-mediated
effective tunnel coupling here is long range beyond nearest
neighbors and hence a direct relation to simple Bose-Hubbard
models is not immediate.

III. RESULTS AND DISCUSSIONS

Assuming the effective model remains Markovian and
Born-Markov approximation is applicable, dynamics can be
investigated by a quantum master equation

p = —i[H.p] + ;xm[x]p +yDlolp + %D[az]p. (16)

Here «, is the photon loss rate of the mode x = a,b and y,
and y, are respectively the relaxation and pure dephasing
rates of the two-level atom. Dissipation terms D[x]p =
(2xpxt — xTxp — pxTx)/2 are the Liouvillian superoperators
for damping in Lindblad form.

Frochlich transformations used in the derivations of the
effective models influence the decay rates. In the leading order,
we estimate k, ~ ya(g./ )%, where y4 is the excited state
decay rate of the A-type atom. We choose g,/ 2 = 0.1 so
kg = 0.01y4. We assume k, = k. In addition, we suppose
E, = E, = 0.1k, which corresponds to the weak driving
condition for which the empty cavity photon number is 0.01
on resonance. Such strict equalities are to reduce the number
of independent parameters in the simulations but not crucial
in practice. It is sufficient to arrange field-atom detunings and
the driving field strengths. (The formulas in the Appendix A
can be referred) to ensure sufficient effective drive E, can be
translated from A to a so that the optical radiation can survive
in the steady state against the decay channels.

We numerically solve the master equation using the “Quan-
tum Optics Toolbox™ [41] and determine the steady-state and
dynamical behavior of the system. Our typical results will
be reported below for the cases of single and two-atomic
ensembles separately. For all cases we fix J/27 = 1 MHz.
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FIG. 2. (Color online) Steady-state populations (a) n, and (b) n,
and (c) their relative fractional population n,, = (n, — n,)/(n, + np)
of the optical and microwave modes at J/2w =1 MHz, §, = J,
kp =Ko/ = (2m)0.4 MHz, y,/2mr = 0.02 MHz, y,;/2m = 0.3 MHz.
Fock spaces for the radiation modes are taken to be four dimensional.

Dashed lines indicate the probe resonances with the single excitation
manifold. g/27 and §/27 are in megahertz.

(&)

A. Single atomic ensemble
1. Steady-state coherence and correlations

Taking 6, =J, kp =k, =2m)0.4 MHz, y/2n =
0.02 MHz, y,/27 = 0.3 MHz, the steady-state solution of
the master equation is determined, in a truncated Fock space
of three photons in each mode, for a range of g/27 € {0,4}
MHz and § /27 € {—5,5} MHz.

Populations of the radiation modes are shown in Fig. 2
in the (8,g) phase space. Dashed lines indicate the probe
resonances with the single excitation manifold. The relatively
low transmission along a particular resonance is due to our
choice of equal drive strengths. For a simple illustration, let us
consider §, = 0 for which

&, a7
= —a— —o,
qp X %
1
= — (~Ja+ Kb+ go), (18)
1= V2K &

are the dressed atom-polariton operators [42] of the single
excitation manifold. For our choice of §, = 0, q}, |vac) is the
dark state of the manifold. The states generated by the ql are
with £K energies, where K = /g2 + J2. For g¢ < J we find
a=(q++q-)/~/2and b = (g, + g-)/+/2 so the combined
drive terms for the a and b modes becomes v/2E, (g4 + qi) if
E, = E,. In that case neither g_ nor gp are driven and hence
they cannot survive to steady state. Figure 2 confirms this
argument as it exhibits that only the bright polariton branch is
the upper one, while the lower two remains in the dark. With
the increase of g, a mode drives mainly the gp polariton. This
is seen in Fig. 2 as the bright middle polariton branch. The
upper branch of ¢, is more strongly driven relative to g_ and
correspondingly associated with the bright b line in Fig. 2(b).
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One can selectively populate different polariton branches; for
example, taking E, = —E, yields bright b mode along the
lower polariton branch.

Figure 2(c) is the behavior of population fraction defined
tobe w = (n, — np)/(ng, + np), withn, = (xTx),x = a,b. As
long as g < J there is no distinct radiation phases in the
(6,8) space. When g > J, however, radiation in the system
is dominated by the microwave mode along the upper and
lower polariton branches. In between, there is a wedgelike
region about the middle polariton branch, where the radiation
is dominated by the optical mode. The main effect of nonzero
8 would be to change the slopes of the probe resonance lines,
and as such the widths of the optical and microwave phases,
but the above descriptions would be valid.

We characterize quantum statistical coherence properties
of the radiation modes in the steady state in terms of the
second-order coherence function at zero time delay,

2(0) = (a‘a’aa) (19)
¢ (alay?
the von Neumann entanglement entropy [2],
S = —Tr(pa log; pa), (20)
and the genuine two-mode entanglement parameter [43],
Aap = [@'B) > — (atabib). (1)

Here p, = Trp[Tr,(pss)] is the reduced density matrix of
optical mode a evaluated by tracing out atomic (o) and
microwave (b) degrees of freedom. § is an entanglement
measure for pure bipartite states. As we have three subsystems,
we can interpret it as a measure of impurity in the steady state,
analogous to linear entropy. On the other hand, we find that
the two-level atom is weakly excited everywhere in the §,g
phase space for the steady state. Thus, S bears the signs of
profound quantum correlations between the radiation modes,
especially in the g < J regime, where it should be a reliable
measure of mode entanglement. A more clear signature of
genuine two-mode entanglement can be found when 1, > 0.
Mode entanglement is due to correlations in the occupation
number space in the second quantization framework. In the first
quantization or in the particle picture, scattering of particles
can lead to multiparticle entanglement. Though we do not
have such direct particle interactions for photons, effective
interactions that lead to photon blockade effect [44,45] can
yield similar multiparticle entanglement of photons. We want
to explore if increased particle correlations among the photons
can be found with the increasing anharmonicity parameter g
in regimes of sub-Poisson statistics. To characterize particle
entanglement, we use a spin-squeezing parameter [27,28],
generalized to the case of dissipation [46], defined to be

»  (NALP
S = ()2 + (J) @

When &2 < 1 the state is said to be particle entangled, so
it has nonseparable density matrix in the first quantization.
Here the pseudospin operators Jy , . are the usual Schwinger
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FIG. 3. (Color online) Same as shown in Fig. 2 but for (a)
the von Neumann entanglement entropy S, (b) genuine two-mode
entanglement parameter ., and (c) the excited-state population
O =0l Ay 1S multiplied by 10° and o,, is multiplied by 10°
for visibility. Dashed lines indicate the probe resonances with the
single excitation manifold. g /27 and 6/27 are in megahertz.

representation for the two bosonic modes a and b,

Jy = Ha'b + ab'), (23)
Jy = 3(a'b — ab'), (24)
J. = Ya'a - bib). (25)

(N) = (a'a + b'b) is the total number operator subject to
losses. The squeezing is in general defined for an arbitrary
axis, which makes it possible to optimize. However, it is more
practical to examine a particular axis in the laboratory frame,
which we choose to be the x axis.

According to Fig. 3, S is strongest about My = (g,8) ~
(J/2,J). For g > J, it decreases but occurs predominantly
along the polariton branches. The decrease with g is
due to reduction of the Hilbert space dimensionality. All
three subsystems, two-level atoms and the radiation modes,
are excited about the M, point, which can be seen in Figs. 2—
3. The three-component atom-cavity “molecular” structure
reduces to two-component forms as g increases. The middle
and right polariton branches become dominated by the a and b
modes, respectively. Two-level atom excitation is mainly along
the right branch. The middle figure indicates that genuine
two-mode correlations are weakest about M, and stronger
along the middle branch. The opposite behavior of X,, and
S confirms the strong influence of the atomic component on S.
Aap < Oreflects that a-b correlations are atom mediated rather
than genuine. Though not visible in the scale of the figure,
Aap > 0 is found in the vicinity of (§ = 1,g = 0) point, for
which decay channels of the two-level atom is turned off and
true two-mode entanglement is survived, though barely, in the
steady state.

The second-order coherence functions for the modes a,b
together with the spin-squeezing parameter of multipartite
entanglements are shown in Fig. 4. We plot — loglo[gﬁ(O)],
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FIG. 4. (Color online) Same as shown in Fig. 2 but for (a) second-
order coherence functions gﬁ(O), (b) gi(O), and (c) the spin-squeezing
parameter £2. These are plotted as — log,,[g2(0)], — log,,[g7(0)], and
—logy(€%). g/2m and §/27 are in megahertz.

—log,,[g#(0)], and — log,(£2) so their positive values respec-
tively mean sub-Poisson statistics for modes a,b and particle
entanglement of optical and microwave photons.

The behavior of the g7(0) for g > J is typical in the JC
model for g < J, g2(0) ~ g2(0) < 0. The equivalence of the

gz(t) to Mandel Q parameter [47] associates antibunched
photons with g? < 0 with sub-Poissonian statistics. The only
significantly populated antibunching region for mode a is
about § ~ —0.5, at the beginning of the optical domain.
The other two antibunching regions of the optical mode are
along the microwave domains and hence relatively weakly
populated. The coherence properties of the microwave photon
are transferred to the optical one via their common interaction
with the two-level atoms. Collective enhancement of the
interaction coefficients induces the bosonic (linear oscillator)
character to the A-type ensemble, which is harmful for
sub-Poisson photon statistics. By addition of the two-level
atom, the dressed system regains its lost anharmonic character.
Enhancement of both J and g optimizes the antibunching of the
optical photons. Despite relatively small coupling constants,
the minimum g2(0) ~ 0.8 and g7(0) ~ 0.1 are within the
same range with two-level nonlinear oscillators. A promising
route to enhance these numbers could be to consider a more
efficient source of anharmonicity, such as the N-type four-level
system [48].

Nonlinearity of the JCM is associated with the anharmonic
spacing of the energy levels. One prominent effect of anhar-
monic level spacing is photon blockade [44], which is the
suppression of the sequential absorption of two photons into
the system. In our case the anharmonicity influences the normal
modes of the coupled a,b modes similar to a case of photon
blockade in a two-mode cavity. The degree of second-order
coherence is equivalent to the Mandl Q parameter which is
a relative measure of number fluctuations. Photon blockade
is associated with sub-Poisson statistics of the antibunched
radiation. Since the normal mode transformation is a rotation
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in the mode space, the sub-Poisson statistics that are found in a
normal mode can be translated into the original modes. Such a
quantum noise description of the effect allows us to appreciate
the localization of the relatively strong particle correlations
about the polariton branches.

Due to strong dissipation channels and relatively weak
coupling strengths, the steady state exhibits a low level of
quantum correlations among the subsystems. On the other
hand, some of its promising features can be found in early
time quantum dynamics of the system. Our objective in the
next section would be to go beyond steady state and explore
some nonequilibrium cases for our model.

2. Nonequilibrium coherence and correlations

We investigate dynamics of quantum correlations among
the radiation modes in the single ensemble case for the initial
state |(0)) = |11g). Truncating the Fock space for each
radiation mode at seven photons, the quantum master equation
is solved by the direct integration.

To comprehend clearly the effect of g on the correlation
dynamics, we first consider the case x,,kp,,Ys =0 and,
accordingly, E,,b = 0. We choose §, = 0 for which the probe
resonance with the upper polariton branchis at § = /J2 + g2.

By calculating the &2, we find that there is no multiparticle
entanglement for g < J. We examine &2 for ¢ > J in Fig. 5.
We plot —log, £2 so any positive value of it would be
the indicator of the particle entanglement. The strongest
multiparticle correlations exist when g ~ J. Further increase
of g gives weaker squeezing. While the entanglement happens
earlier at larger g, its duration severely decreases with g.

In the regime g < J lacking multiparticle entanglement,
there is strong mode entanglement as depicted in the first
column of Fig. 6, where we plot the S together with
the fidelities F; = Tr(|3;)(;|p) of the states [j—o,. 4) =
[11g),|10e),]20g),|02g),|01e), respectively. For g ~ O there
are two maximally entangled two-particle states [10]. The one
appearing at the peaks S ~ 1.5 is |¢¥) = (|20g) + |02g) £+
i|11g))/~/3. It is entangled in three-dimensional space so
the maximum S =log,(3) ~ 1.5, whereas the one at the
peaks S ~ 1 is of the form |¢) = (|20g) + |02g))/+/2 and
is entangled in two-dimensional state space. At regular times

2 4 6 8 10

FIG. 5. (Color online) Time and g dependence of &2 when there
is no dissipation in the system for an initial state [ (0)) = |11),|g)
atd, = 0and § = /g2 + J? with J /27 = 1 MHz. In the figure g /27
is in MHz and ¢ is in microseconds.
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FIG. 6. (Color online) Time dependence of S and fidelities
F;,j =0,1,2,3,4 of the states |11g),|10e),|20g),|02g),|01e), re-
spectively. There is no dissipation in the system and the initial state is
[V (0)) = |11)plg). 8, =0and § = /g% + J? with J /27 = 1 MHz
are used. In the figure 7 is in microseconds. The left, middle, and right
columns are for g/2m = 0,1,10 MHz. Dash-dotted curves in the first,
second, and third rows are for S, F,, and Fj.

the system is disentangled to |v). Strong and long-lived mode
entanglement can be found when g ~ J as shown in second
column of Fig. 6. Splitting of the degenerate states helps
to preserve the three-dimensional structure of the subspace
of entanglement to ensure the highest available S ~ 1.5. In
addition, destruction of the disentanglement ensures that high
S can be maintained relatively longer in comparison to the
g ~ 0 regime. For g > J, according to the last column of
Fig. 6, the dynamical behavior of S resembles qualitatively
the g ~ 0 regime but for the lower S ~ 1 values. The states
at these points are constructed by |11g) and |Ole) for the
middle and lower peaks and by [10e) and |02g) for the
higher peaks. They are both in two-dimensional-state spaces so
that S ~ 1.

We now examine the behavior of correlations in the
presence of dissipation. A typical result for our simulations
is shown in Fig. 7, indicating the dynamical behavior of

2
wn 1
0 0
4
> 5
0 10 g

FIG. 7. (Color online) Time and g dependence of von Neumann

entropy for an initial state | (0)) = |11),,|g) at § = \/g* + J? and
8y = 0. In the figure g/27 is in megahertz and ¢ is in microseconds.

The decay rates are «,/2m,k;, /27,y /27w = 0.1 MHz.
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1.5

FIG. 8. (Color online) Same as shown in Fig. 7 but for «, /27 =
0.4,k,/2m = 0.4,y4/2w = 0.3 MHz and §, = J.

S for the same parameters with the lossless case but for
kaq/2m,kp /27, /2w = 0.1 MHz. If we use the larger decay
rates, the same as those used in the steady-state analysis,
and take the same §, = J with the steady-state case, we
find the result shown in Fig. 8. We see that the features
of mode entanglement discussed in dissipationless case is
vastly available in the case of moderate damping. In the larger
damping case, except the early times, entanglement cannot
be obtained. Some signatures of the prolonged entanglement
duration are still found in the g ~ J even under such strong
damping conditions.

Figures 9 and 10 show that multiparticle entanglement can
still be found at certain g values at particular time domains for
weaker damping situations, whereas no spin squeezing and
entanglement remain in the larger dissipation case.

B. Two atomic ensembles

We shall now consider the case of two identical, symmetri-
cally placed cyclic ensembles. In contrast to a-b coupling,
there is no direct a;-a, interaction now. We did not find
multi-partite entanglement between the photons of the a; and
a, modes. We focus on mode entanglement and population
dynamics in this case. Since the system has three mode
radiation modes, we take into account the possibility of
genuine three-mode entanglement. We use an extended set

o
e

FIG. 9. (Color online) Same as shown in Fig. 7 but for the
squeezing parameter &2.
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FIG. 10. (Color online) Same as shown in Fig. 8 but for the
squeezing parameter &2,

of mode correlation parameters [43]

Ay = lalb)? — (alaib'h), (26)
Aoy = [{alb)? — (alasb'h), 27)
Ao = |(alw)? — (alaialay). (28)

When any two of them become simultaneously positive,
genuine three-mode entanglement is found. Typical example
is the so-called three-parity W state [29], which is defined to
be W = (]100) + |010) + |001))/\/§. In our case the Hilbert
space is enlarged by the two-level atom. We denote basis states
with |ny,np,n,,s), where nj »,n, are the occupation numbers
of the radiation modes a; »,b and s = e, g.

We solve the density matrix equations using quantum
trajectory method. We take 25 trajectories and truncate Fock
space at two photons in each radiation mode a;,,b. We

fix 8§, =0 and § = v/ J* + g° for a given g for which the
probes are in resonance with the upper polariton branch
of the single excitation manifold. For arbitrary A there are
four such branches now due to additional optical degrees of
freedom in comparison to the single-ensemble case with three
polariton branches. We explore dynamical evolution of two
initial preparations of the system: (i) |y(0)) = |010g) and
(i) [ (0)) = [100g).

In the first case, our simulations reveal that when g < J, the
population of the microwave cavity photon is symmetrically
split into to the optical modes, as shown in Fig. 11. The effect
is an optical analog of coherent population trapping [49]. At
large g > J, splitting is suppressed and the cavity photon is
makes predominantly localized interactions with the two-level
atom. To comprehend this effect let us write the dark state [DS)
in the single excitation manifold for the two-ensemble model
as follows:

IDS) = —Jol — ——a - —a2> lvac),  (29)

1
VI + g2 ( V2
with |vac) = |000g) being the vacuum state of the compos-
ite system. For g > J, |DS) becomes |DS) ~ —(]100g) +
|001g))/ﬁ, whereas for g < J it gets |DS) & |000¢). This
suggests that in the regimes where the long-range interaction
J dominates over the short-range interaction g, the dark state
|000e) is inaccessible by the initial state |(0)) = |010g). As
such, |(0)) yields only a coherent transfer of b population

023805-8



QUANTUM COHERENCE AND CORRELATIONS OF OPTICAL ...

@ (b)
0

10

o
-
N
w
o

1 2
t t t

w

FIG. 11. (Color online) Time dependence of populations of the
radiation modes (a) n, = (ala;), (b) n, = (b'b), and (c) n, = (ala,)
for an initial state |(0) =|010g). We take J,,/2m =1 MHz,
5b = 0,5 = \/g2 + JZ, K12 = (271’)04 MHZ, )//27'[ =0.02 MHZ,
Ve/2wr = 0.3 MHz, E, = 0.1k,,x = 1,2,b.

to the a; , modes. According to Fig. 11 population transfer is
complete in about # ~ 1 us. Population exchange is a coherent
process happening at regular time intervals of every 2J. At
lower damping rates, such as y,k1 2., /2m ~ 0.1 MHz, we find
a few more cycles of transfer.

When the tunneling from b to a; » is complete, the system
radiates genuine two-mode entangled optical photons which
can be verified by Fig. 12. We verified that S~ 1 is a
reliable bipartite entanglement signature at the corresponding
times for low (y,k125/2m ~ 0.1 MHz) damping. During
the course of transfer, at about # ~ 0.5 us all three modes
are populated. At such times, as the excited state of the
two-level atom remains in the dark, a three-parity W state with
genuine three-mode entanglement is found. The corresponding

(b) (©
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FIG. 12. (Color online) Same as shown Fig. 11 but for the genuine
mode entanglement parameters (a) A2, (b) Aap, and (¢) Ayp.
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FIG. 13. (Color online) Same as shown in Fig. 11 but for an initial
state |y (0) = |110)|g).

S ~ 0.7 is relatively lower than the maximally entangled
two-mode state. Due to its robustness against single-particle
losses relative to Greenberger-Horne-Zeilinger (GHZ) states
[50,51] (|JGHZ) = (]000) + |111))/«/§) and its potential role
in quantum networks, W states have appealing features in
quantum information science. They are proposed for bipartite
entanglement distillation [52]. Our results provide a promising
setting to realize these goals.

In the g > J case, |DS) =~ —(|100g) + |001g))/«/§ re-
mains in the dark. The initial state is predominantly coupled
to |000e). The radiation energy is trapped in the microwave
cavity () mode and exchanged locally with the two-level atom.
Associated Rabi oscillations are shown in the middle figure of
Fig. 11. Mode entanglement parameters practically vanish in
this case, as shown in Fig. 12.

We consider an asymmetric populated initial state to show
that instead of two-mode entanglement of optical modes,
optical- and cavity-mode entanglement can be emphasized. For
this aim we start with |4(0)) = |110g). Population dynamics
at various g are depicted in Fig. 13.

This localization of the cavity photon in the g > J Rabi os-
cillations regime can be used to block an optical mode to access
the other distant optical mode and, as such, the corresponding
distant ensemble. The localizations of the radiation energies
in g > J regime can be seen as blocking of an optical mode
interacting with an ensemble to access a distant ensemble and
the corresponding optical mode via the microwave nonlinear
cavity. In the g < J limit, the b mode still splits into two
but its tunneling into a; is balanced with the tunneling of a;
into b. There is no net population current between the a; and
b modes so we see no change of population of a; mode in
Fig. 13(c), except its usual decay. Accordingly, 1, < 0 and
A1p < 0, as indicated by the white regions about ¢ ~ 0.5 us
in Figs. 14(a) and 14(c), whereas Fig. 14(b) demonstrates that
there is genuine two-mode entanglement between the a, and b
modes at this time. In contrast to the previous W state arising at
this time with three-mode entanglement, the initial imbalance
of the populations in the present case effectively removes one
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FIG. 14. (Color online) Three-mode correlation parameters that
can be used to reveal genuine three-mode entanglement in the
evolution of an initial state |y (0) = |110)|g).
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particle from the W state to distill or concentrate a two-mode
entanglement from it. At # = 1 us the situation is similar to
the previous symmetric initial state and we see two-mode
entanglement between the optical a; and a, modes. The effect
can be viewed as the presence of dynamically distinct and
transferable bipartite entanglement phases in the multimode
system. While we consider here only the simplest symmetric
and identical two-ensemble, the time-dependent, controllable
different interaction coefficients J;, J», and g allow for more
rich coherent information and population transfer protocols.

IV. PROPOSAL OF EXPERIMENTAL IMPLEMENTATION

In order to realize the model Hamiltonians discussed in
the preceding sections, now we shall consider a straightfor-
ward extension of a recent experiment demonstrating strong
coupling of an N-V center ensemble to a coplanar waveguide
resonator [5]. The setting is shown in Fig. 15, where two
diamond crystals and a transmon qubit [53-55] are strongly
coupled to microwave stripline cavity [23]. Diamond crystals
containing color center defects serve as the quantum memory,
and the transmon qubit serves as the quantum hardware
for rapid quantum information processing. The microwave
cavity photons serve as the local data bus. By interfacing this
device with external optical fields, such a stationary quantum
information unit would have access to optical flying qubits

/ e
=

FIG. 15. (Color online) Transmon qubit and two diamond crystals
couple to microwave stripline cavity of lenght L and width d.
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for quantum networking and communication at free space
communication wavelengths.

Strong coupling of a single diamond with N-V centers to
a superconducting CPWG resonator has been shown recently
[5]. We propose a a straightforward extension of the physical
system of Ref. [5] to the case of two diamond crystals. In
order to place the diamond crystals to locations where the
magnetic field is strong and homogeneous, and the transmon
qubit to a similar location but for the electric field, a L = A
cavity is considered suitable for our purpose. The microwave
wavelength for the fundamental frequency of the cavity
w1 /2w ~ 6 GHz is A ~ 50 mm . The crystals are assumed at
the same size of 3 x 3 x 0.5 mm?>. The canonically quantized
magnetic field of the fundamental quasi-TEM mode of the
cavity is given in the laboratory (cavity) frame by

B(x.y.2) = B1(x.y)(b + b') cos % (30)

where B 1 (x,y) is the transverse field distribution. Placement
of the crystals A/2 apart, at the magnetic field antinodes of
the fundamental mode along the cavity axis (x), allows for
sufficiently strong magnetic coupling to the cavity mode as
well as adequate space for optical access to each crystal. At the
same time, a transmon qubit placed in the middle of the crystals
would be at the electric field antinode of the fundamental
cavity mode. It is now well established that, under certain
conditions on the Cooper-pair box and circuit QED system,
the Jaynes-Cummings model can describe the coupling of the
qubit to the single mode cavity [53,56].

In order to determine the conditions to obtain the model
Hamiltonians we have used in the preceding sections, we shall
focus here on the relatively less explored N-V center coupling
to the cavity; in particular, we examine if such a coupling can
be described by the A-type transition model.

The diagram shown in Fig. 16 describes the relevant energy
levels of a negatively charged N-V center [57,58]. The ground-
state manifold is 3 A, with zero-field splitting D ~ 2.87 GHz;
the excited state is 3 E separated from the ground level by the
zero phonon line at 637 nm; and there is a metastable state
' A with nonradiative transitions. Further splittings of the 3E
level are on the order of 2.6 and 2.3 GHz for *E, and E,,
respectively.

Electric dipole (E1) and magnetic dipole (M1) selection
rules forbid an immediate realization of Raman-type (A)
transitions in the given energy-level diagram, let alone a
A transition. On the other hand, optical Raman-induced

ZPL

1 ST

FIG. 16. (Color online) Energy-level diagram of negatively
charged N-V center. ZPL is the zero phonon line at 638 nm (1.945 eV)
and ZFS is the zero-field splitting at 2.87 GHz.
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FIG. 17. (Color online) Energy-level diagram of a negatively
charged N-V center. ZPL is the zero phonon line at 638 nm (1.945 eV)
and ZFS is the zero-field splitting at 2.87 GHz.

spin-flipping processes [59-61] have been realized in addition
to spin-conserving (cyclic) transitions [62] in recent exper-
iments. To comprehend how this happens, detailed recent
studies of the excited level reveal that among the potential spin-
spin and spin-orbit interactions that can influence the excited
level structure, it is the local strain-induced level mixing that
allows for the essential non-spin-preserving transitions for an
optical A scheme. Using external magnetic or electric fields or
specifically engineered N-V centers, one can thus produce the
level combinations for such transitions. To make our discussion
concrete, we generalize the A-transition generation protocol
using external electric fields [63] to the case of the A transition.
Typical electric field strengths of several megavolts per meter
are experimentally used [61]. Under a strong electric field the
level structure of the negatively charged N-V center is shown in
Fig. 17. Here, both cyclic (spin-preserving) and spin-flipping
transitions can simultaneously happen.

Optical fields are right circular polarized. E1 and ESR
selection rules allow us to obtain cyclic transitions in this single
N-V molecule in a hexagon scheme, where all nodes can be
accessed starting from any other node, as shown in Fig. 17(b).
The upper level A is an excited level generated by the
mixed states by the electric field. The intermediate levels are
|my = —1,m; =1) and |my = +1,m; =), denoted by |—)
and |+), respectively. The lowest levels are |m; = 0,m; =1)
and |my = 0,m; =), denoted by | 1) and | | ), respectively.
Coupling of the cavity field to the ground state 3 A manifold is
described by an anomalous Zeeman interaction of the form

H:ZoiTDU,-—i—MBZEiTg&i, 31

where up is the electronic Bohr magneton and g is a
diagonal tensor with elements (g,,g1,g) with g, =2.0024
and g = 2.0028 in a frame where the quantization axis (z)
is chosen to be the symmetry axes of the N-V molecule. In
the C3, symmetry of diamond, one can find four of such axes
corresponding to four crystallographic classes NV — f, f =
1,2,3,4. We work within a particular class, but omit its label
(f) for the sake of notational simplicity. Expressions for
different classes can be obtained by using spherical tensor
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operations. The nuclear Zeeman term is too weak and thus
is ignored. Depending on the relative density of surrounding
nuclei ('4N,'5N,'3C), quadrupole and hyperfine interactions
can impose significant decoherence on the central electronic
spin [5]. Their contribution can be attributed to our effective
loss terms in the master equation treatment we used. The first
term is the zero-field Hamiltonian, with D being the zero-field
splitting tensor, which is diagonal in the molecular frame with
the elements (D, ,D,, D). It simplifies to Hzgs = Do2, up
to a constant, with D = 3D, /2 ~ 2.87 GHz. The index i =
1,...,Nyistheindex of N-V defects at location r= (xi,yi,2i)
in the laboratory (cavity) frame. We shall consider a single
crystal case first. .

_ Writing the cavity field as B(7) = B;(b + b!), with
B; = B 1 (x;,y;) cos (rz; /A), the Hamiltonian becomes in the
ground-state basis

H=DY Xi+gsb+b)X,: + X1 +He) (2)
i=+
where we neglected the small Zeeman shift, which is on the
order of kilohertz for a cavity field in the order of nT, next to the
D ~ GHz. The generalized Hubbard operators are introduced
to be

X,y = B_LRil)“ (33)
Bi— i)
Xy = ZB_LRT-H (34)
Xio =Y RY. (35)
Here, B;+ = B, + B;, and
Bi= Y (B +B). (36)

i

In the large N y and weak excitation limit, for a quasiuniform
magnetic field distribution, we can employ the group con-
traction method as before to get a bosonic representation for
the Hubbard operators such that Xy ~ B, and X4_ ~ B_.
Consistently, they form the Schwinger representation of the
remaining isospin subgroup so we take X _ ~ Bl B_ which
allows for replacing X, + X__ with Bi B, + B' B_ in the
zero-field splitting term of the Hamiltonian.

The interaction of the excited state with the optical fields
can be described in terms of the collective operators as well. To
make this consistently with the microwave transitions we first
make the usual bosonization of ground level to excited level
|A) transition via X4 4 ~ X4 ~ A.Here we implicitly assume
the populations in degenerate ground levels are large and the
A mode is weakly excited. Then consistency with the isospin
groups is satisfied by taking their Schwinger representations
as X 4+ = ATBy. To achieve this limit adequately, we demand
that the optical fields are to be made sufficiently homogeneous
and isotropic over the diamond substances. This may be
accomplished by suitable confocal microscopy. The total
Hamiltonian in this bosonic limit describes again a cyclic
transition system which is reduced from a hexagon to a
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diamond scheme, as shown in Fig. 17(c). The degeneracy of
intermediate levels allows us to employ a simple multilevel
Morris-Shore transformation [64—66] in the form B = (B_
B.)/+/2 and B' = (B_ — B,)/~/2. Geometrically, this folds
the diamond scheme into a delta-type cyclic transition as
shown in Fig. 17(d), where B’ is uncoupled from the system.

Even though we have described how to get a cyclic
N-V ensemble, our analysis so far is limited to a single
crystallographic class. To complete our discussion let us
now address the case of all N-V classes. For that aim
we make use of slightly more complicated Morris-Shore
transformations.

The Hamiltonian, including all the N-V classes, is

4 4
H =, Z A}Af + wp Z B}B + a)aaTa + a);,bTb
f=1 r=1
» 4
0 t T
+=0: + 80’0 + He) + 0 Z(Afo +H.c.)
f=1
4
+) (8arbB} + gagaAl + He). (37)
f=1
We find that under the conditions
Bm2 _EA2 BB _ BA3  EB4 Bad (38)
8B1 841 8B1 8A1 8B1 8A1
only two quasi-spin-wave modes can be coupled to the
electromagnetic modes. These so-called “bright” modes are
given by collective bosonic modes

Z g4r L, (39)

where
(40)

The uncoupled, “dark” modes are listed in Appendix B. After
that we arrive at our starting Hamiltonians, Egs. (4) and (5)
in Sec. II. A simple way to realize the dark quasi-spin-wave
modes is to make the interaction coefficients g4 and ggs
equal for each N-V class. This is the case in the experiment of
strong coupling of the N-V center and superconducting cavity.
By choosing a particular placement of the diamond crystal
over the cavity substrate for which the cavity magnetic field
makes effectively equal angles for the four quantization axes of
the N-V classes, the Zeeman interaction coefficients become
equal [5]. The collective enhancement of the interactions
would depend on Ny, which we may assume Ny = N /4.
Finally, the case of two diamond crystals can be immediately
generalized from these results, where only the magnetic field
would change a sign at the location of the other crystal half
wavelength away.

The typical parameters in these models are, according to
recent experiments as discussed in Ref. [67], as follows. Qubit
decoherence times are on the order of a few microseconds,
in particular, that for the transmon is about ~4 us [53].
For T; ~7pus and T, ~ 500 ns, relaxation and dephasing
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rates are respectively y; /2w ~ 0.02 MHz and y, /27 ~ 0.31
MHz and the resonance frequency of the qubit is tunable in
the ranges wy ~ 5-15 GHz. The stripline cavity loss rate is
kK/2mr = wp/2r Q ~ 5 kHz at wp/2m =5 GHz in a cavity
with Q factor Q = 10°. The cavity frequency is adjustable
in the range of usually about w,/2mr = 5-10 GHz. Coupling
strength between the cavity and the qubit can be adjusted
in the ranges g ~ 5-200 MHz. In our numerical simulations
we choose our parameter ranges to be compatible within
these practical values. In particular, we fix g,/ = 0.1 so
J =—-0.1gy,E;, = 0.1Q4. For g, = (2)11 MHz of Ref. [5],
we take J /2w = 1 MHz. We assume €24 and the detunings are
adjusted to make E, = E,. Ej, = «/Neaykp with N, = 0.01
is cavity photon number for the empty microwave cavity
on probe resonance under weak drive conditions. We use
y = y1/2nr = 0.02 MHz and y /27 = 0.3 MHz. We consider
ranges of g/2m up to 10 MHz and §/2n7 within (-5,5)
MHz. To take into account the conditions of experiment
Ref. [5] we use «;/2m = 0.4 MHz, while the effective loss
of optical modes is chosen to be the same k, = kj, which
corresponds to ys/2m ~ 40 MHz for the effective decay
rate of the excited N-V center, which is reasonable with the
experiments [68].

The quantum master equation we have used can be reduced
from a more general Bloch-Redfield master equation [69,70]
under low temperature conditions [71].

V. CONCLUSION

Summarizing, we have investigated quantum statistical
properties of optical radiation from A-type cyclic atomic
ensembles placed in a microwave cavity and coupled to a
two-level atom. In particular, quantum coherence and quantum
correlations of the emitted optical photons are examined.
Effective models describing the system analogous to coupled
driven, dissipative linear and nonlinear resonators are obtained
under Frochlich transformations.

It is shown that analogous to the adiabatic transfer protocol
between stationary qubits [30], the quantum information
can be transferred directly between the stationary qubit and
the optical flying qubit. The proposed system completes
the quantum memory and quantum hardware state transfer
protocols by interfacing them with quantum communication
channels. In addition, it is found that quantum coherence
characteristics can be transferred between the microwave and
optical fields.

Furthermore, it is shown that distant entanglement between
two optical modes can be realized in the case of two-cyclic
atomic ensembles. In addition, conditions of three-mode
entanglement are also revealed. Controllable particle and mode
entanglement for the optical modes or between the optical and
the microwave photons is shown to be realizable on demand.

Finally, diamond crystals with N-V centers in supercon-
ducting coplanar waveguide resonators coupled to transmon
qubits are proposed to physically realize the model system.
The parameters used in numerical simulations are justified
for the proposed system. Under a strong electric field, it is
described that a single N-V center allows for a particular
hexagon-type cyclic transitions. Using a group contraction
method for the ensemble case, the transition type reduces to
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a diamond type. For a general treatment of the N-V center,
taking into account all four crystallographic classes and using
generalized multilevel Morris-Shore transformations, a further
reduction to a A-type cyclic scheme is obtained.

We hope our work can inspire and contribute to ongoing ef-
forts for interfacing optical networks with quantum memories
and information processing units.
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APPENDIX A: COEFFICIENTS OF THE EFFECTIVE
HAMILTONIAN

Here we list the coefficients in Eq. (12) explicitly.

== w, + Al
@, ==, + g, Z p—— szk (A1)
2

wb == wp + &, Z m, (A2)

8a8b 1 1
J = , A3
2 ;ukvk(wb_gk"‘w_a_g)\) ( )

U) v, U)v)

Q=Q , (A4
P= gagb;<wb_m wﬂ_gx) (A4)

1 givkvﬂ gzu,\uu
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U Uy
E =E,+Q _— A8
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where A, u = +.
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In the Q > A limit, these coefficients can be approximated

to be
. 1 g A
w, «aT 5, A, 2 (A10)
: lg 3A
a)b%a)b—za Ab+T (A11)
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V2Q Q
Qa8 A
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E, = E, - b8 [ AT (Ap + A/2) (A17)
Q 1692
Qy A Epgp Ay +3A/4
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APPENDIX B: DARK QUASI-SPIN-WAVE MODES

Here we list the dark quasi-spin-wave modes that are
uncoupled from the N-V ensemble Hamiltonian

B34 BI12
B =-5 ————(gp1B1 + gp2B2) — (gB3B3 + gpaBy4)
gB8B12 8B8B34
(B1)
B — 8B2 B, — 8Bl B, (B2)
gB12 8B12
B"=58p 8B p, (B3)
8B34 8B34
where we define
8812 = /851 + &5 (B4)
883 = /853 + &34 (BS)

The same definitions and dark modes for the A-mode can be
simply obtained by replacing B — A in these equations.
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