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X-ray propagation microscopy of biological cells using waveguides as a quasipoint source
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We have used x-ray waveguides as highly confining optical elements for nanoscale imaging of unstained
biological cells using the simple geometry of in-line holography. The well-known twin-image problem is
effectively circumvented by a simple and fast iterative reconstruction. The algorithm which combines elements
of the classical Gerchberg-Saxton scheme and the hybrid-input-output algorithm is optimized for phase-contrast
samples, well-justified for imaging of cells at multi-keV photon energies. The experimental scheme allows for
a quantitative phase reconstruction from a single holographic image without detailed knowledge of the complex
illumination function incident on the sample, as demonstrated for freeze-dried cells of the eukaryotic amoeba
Dictyostelium discoideum. The accessible resolution range is explored by simulations, indicating that resolutions
on the order of 20 nm are within reach applying illumination times on the order of minutes at present synchrotron
sources.
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I. INTRODUCTION

Holographic projection imaging with multi-keV x-ray
radiation in combination with tomographic reconstruction
has a unique potential for lensless three-dimensional image
reconstruction [1–4], bringing together the earlier concepts
of geometric magnification [5] by a divergent beam and
the principle of in-line holography [6]. The sample can be
reconstructed as in reference-beam holography [7] by a direct
(single-step) backpropagation. However, the image quality
is severely limited by the well-known twin image problem
of (in-line) holography. Experimental remedies used in the
past include the recording of multiple holograms at various
detector-to-sample positions [2,3], or a complete knowledge
of the illumination function [8], both followed by iterative
phase retrieval.

Here we show that the quasispherical wave front exiting
from a two-dimensional x-ray waveguide (WG) [9,10] can
be used advantageously for holographic image recording
from an unstained biological cell, extended by a robust and
quickly converging iterative reconstruction scheme applied to
a single holographic image. The very high beam confinement
substantially below 20 nm, which is possible using new-
generation x-ray WGs [11–13], leads to stable reconstructions
for weakly scattering biological objects without complete
knowledge of the complex valued illumination function, even
in the presence of intensity fluctuations. The method is well-
adapted for the experimental situation of an essentially pure
phase-contrast specimen, and takes photon noise effects into
account quantitatively.

Compared to coherent diffractive imaging (CDI) with plane
waves [14–16], holographic recording is not a priori limited
to samples of finite support and enables a significantly faster
object reconstruction, compared to the slow convergence
of many iterative reconstruction algorithms. If, in addition,
some empty beam regions are present around the sample,
we find that remaining artifacts due to well-known zeros in
the contrast transfer function (CTF) of free-space propagation
in the Fresnel regime [17] can be almost fully suppressed.

As we show below, this leads to phase reconstructions with
low and quantifiable errors. Moreover, using quasispherical
wave fronts exiting the WG, the detector pixels can be filled
much more evenly than for plane wave illumination, avoiding
complications associated with a high dynamic range of the
signal, in particular pixel saturation and loss of information
due to beam stops. Finally, by holographic interference, a weak
scattering amplitude can be amplified high above background
signals of residual scatter, dark current, or readout noise.

II. EXPERIMENTAL DETAILS

The experiment (for a schematic of the setup, see Fig. 1) was
performed at the ID22-NI undulator beamline of the European
Synchrotron Radiation Facility (Grenoble, France). Pink-
beam undulator radiation with a photon energy of 17.5 keV
(�E/E � 0.02) was focused horizontally and vertically by
two Kirkpatrick-Baez (KB) mirrors down to lateral dimensions
of Dhorz = 129 nm full width at half maximum (FWHM) and
Dvert = 166 nm. The WG system, placed into the focus of the
KB mirrors, consisted of two planar high-transmission, one-
dimensionally confining WG structures [11], glued onto each
other in a crossed geometry (see Fig. 1). The autocorrelation
FWHM, calculated from the empty WG far field, was below
20 nm along all directions [13]. Thus, the illumination of the
sample can be interpreted as that of an effective source with a
lateral extension well below the WG guiding core dimension
(35 nm in both directions).

Freeze-dried cells of the eukaryotic amoeba Dictyostelium
discoideum were placed on a thin polyimide film at a distance
z1 = 8.83 mm from the WG exit plane, as determined with
an on-axis optical video microscope (see Fig. 1). Before
the experiment, the cells of the D. discoideum wild-type
strain AX2-214 were allowed to adhere onto a thin polyimide
film (Mitegen, USA) before rapid freezing in liquid ethane
to prevent crystallization of the phosphate buffer solution
(2 g/L KH2PO4, 0.36 g/L Na2HPO4 · 2H2O, pH 6.0). After-
wards, the cells were freeze-dried in a commercial freeze-drier
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FIG. 1. (Color) Experimental setup. The x-ray beam is focused
by two KB mirrors onto the system of two crossed planar WGs with
a layered guiding core structure for optimized transmission. Two-
dimesional-beam confinement is achieved by crossing a horizontally
confining planar waveguide (HPWG) upstream with a second,
vertically confining waveguide (VPWG) downstream. The sample
holder (S) with freeze-dried D. discoideum cells attached to a thin
polyimide film is placed at a distance z1 from the WG system. The
cells (for an optical micrograph, see inset on the upper right, scale
bar 5 µm) can be visualized during the experiment using an optical
video microscope (V) with a drilled lens to allow for the passage of
the x-ray beam. An area detector is placed at a distance z2 � z1 away
from the sample to collect the intensity diffracted from the sample.

(Christ, Germany) and used for imaging. Further details of the
preparation process are described in [18].

The detector, a single-photon counting device [19]
(Maxipix, ESRF) without readout noise and a pixel width of
�D = 55 µm, was placed z2 = 3.09 m away from the sample.
The position of the sample is already well in the far field
of the WG source, leading to a simplified description of the
illuminating wave at the sample plane as a product of an ideal
spherical wave and the Fourier transform of the WG exit wave
field [20]. Within the paraxial approximation, the imaging

experiment can then be described in a well-known equivalent
parallel-beam geometry [9,17] with a demagnified detector
pixel size of �D/M and a (de)magnification factor of M =
(z1 + z2)/z1 as well as an effective sample-detector distance
zeff = z1z2/(z1 + z2) = z2/M . Note that here z2 � z1, so that
zeff � z1 = 8.83 mm and M � z2/z1 = 351.

A total of 451 intensity distributions I (n) were collected
with the sample in the beam at an exposure time of 0.2 s for
each measurement, along with 451 empty images I

(n)
0 with

equal exposure time. The images were collected in a sequence
(I (1),I

(1)
0 ,I (2),I

(2)
0 , . . .) with short time delays on the order of

1 s between exposures, facilitated by the fast piezo sample
stage (PI, Germany) and the short readout time of the detector.
Following this approach, fluctuations and long-term drift in the
WG exit wave were eliminated successfully. The normalized
intensity distribution shown in Fig. 2(a) was calculated as
Ī (x,y) = ∑

n I (n)/
∑

n I
(n)
0 . During a total illumination time

of 90.2 s with and without a sample in the beam, respectively,
a total fluence of ca. 2.8 × 106 ph/µm2 and a dose of ca.
0.8 × 103 Gy were applied to the sample, based on calculations
presented in [22].

Note that the fluence at the sample, the quantity which
mainly determines the dose and obtainable resolution [22],
increases quadratically with z−1

1 in the present setup and can
thus easily be varied experimentally without the need to change
the illumination time. The maximum total flux exiting the
WG was on the order of 6 × 108 ph/s (depending on the ring
current and coupling of the KB focus into the WG). This flux
corresponds to only 5.2% of the KB flux impinging onto the
WG entrance [13]. This can be explained by the high numerical
aperture of the KB beam coupled into the WG system and the
relatively low degree of spatial coherence in the KB focus.
Note that assuming an idealized plane wave illumination, finite
difference simulations yield a transmission of 90.4% for the
present WG geometry and photon energy [13].

A correction of residual low frequency-variation in the nor-
malized intensity distribution was performed independently
for the vertical and horizontal direction through division by the
mean intensity fluctuations in the regions outside the cellular

(a) (b) (c)

FIG. 2. (Color) Holographic intensity diffracted from freeze-dried D. discoideum cells, normalized by the empty WG intensity (a). Iterative
reconstruction of the object phase, obtained after 200 GS iterations (b). Phase reconstruction obtained with a modified HIO scheme for pure
phase objects as described in the main text (c). The boundary of the support area was determined from a holographic reconstruction and is
marked here by a dashed blue line. The color bar is scaled in rad and also mg/cm2, indicating the projected effective mass density of the
cells [21]. A line scan through a globular region of higher density is indicated in the upper cell by a thin black line and reproduced in the inset
on the lower left (open circles), along with a model curve (red solid line; see main text).
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area, as determined from sums over empty columns and rows,
respectively.

III. ANALYSIS

Following [22,23] with parameters adapted to the photon
energy of the present experiment, the expected phase shift and
amplitude attenuation of an unstained 3-µm-thick biological
object with a protein volume content of 50% is �φ = 0.13 rad
and A = 1.04 × 10−4, respectively, characterizing a cell as an
essentially pure (and quite weak) phase object.

Diffraction effects within the sample are negligible, as long
as the sample thickness �z obeys [24]

�z <
r2

λ
, (1)

where r denotes the lateral resolution of the experiment and
λ the x-ray wavelength. Equation (1) denotes the maximum
depth of focus of the experiment, that is, an upper limit of the
projection approximation. Consequently, at a sample thickness
of 5 µm diffraction effects do not have to be taken into account
for lateral resolutions r � 27 nm.

Obviously, condition (1) is easily met in the present
case (see below for a discussion on the resolution), and the
exit wave ψout in the plane directly behind the sample can
be written as a product of the incident wave ψin and the
sample transmission function χ . ψin is given here by the
WG far field, which is approximately invariant under further
free-space propagation, apart from geometric magnification.
In the equivalent geometry described before, the recorded
intensity at lateral position (x,y) is then given as I (x,y) =
|Dzeff [ψin(x,y)χ (x,y)]|2 � |ψin(x,y)|2|Dzeff [χ (x,y)]|2, where
Dzeff denotes the two-dimensional Fresnel propagator over
the distance zeff along the optical axis. If the sample wave
is written as χ (x,y) = 1 + τ (x,y), one recovers the stan-
dard nomenclature of in-line holography, with the reference
wave R(x,y) = Dzeff [ψin(x,y)] � ψin(x,y), the object wave
O(x,y) = ψin(x,y)Dzeff [τ (x,y)], and the detected intensity
I = |R + O|2. The measured signal, normalized by the inten-
sity I0(x,y) = |Dzeff [ψin(x,y)]|2 � |ψin(x,y)|2 of to the empty
beam, which is obtained in a separate measurement, is then
given by

Ī (x,y) � |ψin(x,y)|2|Dzeff [χ (x,y)]|2/|ψin(x,y)|2
= |Dzeff [χ (x,y)]|2. (2)

Backpropagation of Eq. (2) leads to a single-step holographic
reconstruction of the normalized intensity Ī (x,y), which is,
however, intrinsically spoiled by the so-called twin image.

A. Application of a Gerchberg-Saxton algorithm

A possible alternative to recover the object function χ (x,y)
is given by iterative methods. Notably, in the present case of
a pure phase object the object amplitude |χ (x,y)| is equal to
unity in the object plane. The corresponding knowledge of
the object wave amplitude in the sample and detector plane
strongly simplifies the reconstruction problem and allows for
the application of the well-known Gerchberg-Saxton (GS)
algorithm [25]. A GS reconstruction of the experimental
hologram, starting the iteration with a plane wave as an initial

guess, is shown in Fig. 2(b). 200 iterations were used here, as a
compromise between the general quality of the reconstruction,
which improves with the iteration number, and the amount of
noise introduced into the reconstruction from the noisy data.
The reconstruction error was measured here by the misfit

d2(|χ̃n|2) := 1/N
∑
(x,y)

[|χ̃n(x,y)|2 − Ī (x,y)]2 (3)

between the reconstructed and measured holographic intensity.
Here χ̃ (x,y) = Dzeff [χ (x,y)] denotes the near-field propa-
gated object wave and N denotes the number of points (x,y),
or pixels, at which Ī was measured.

B. A hybrid-input-output scheme applied to the phase

A significant improvement of the reconstruction was then
achieved by application of a modified version of the classical
hybrid-input-output (HIO) algorithm [26] for pure phase
objects, which can be regarded as an extension of the scheme
proposed in [27], where an update of the current amplitude
|χn| was suggested according to

|χn+1| = |χn| − β(|χ ′
n| − 1), (4)

slowly pushing |χn| toward 1. |χ ′
n| denotes the amplitude

of the nth iterate after application of the detection plane
constraint, that is, χ ′

n := PM (χn) with PM (χn) = D−zeff [
√

Ī ·
exp(iϕ(χ̃n))] denoting the modulus replacement operation in
the detection plane and ϕ(z) := arg(z) for any z ∈ C. For the
present analysis, a phase constraint was added to the update of
the amplitude, namely,

ϕ(χn+1(x,y))

=
{

ϕ(χn(x,y)) − γ ϕ(χ ′
n(x,y)) ∀ (x,y) /∈ S

min{ϕ(χ ′
n(x,y)),0} ∀ (x,y) ∈ S.

(5)

The support area S ⊂ R2 can be determined here very
accurately from a single-step holographic inversion of Eq. (2).
Similar to the amplitude constraint (4) the phase constraint (5)
causes a gentle decrease of the phase to a constant C (C = 0
was chosen here) in the area, where no object is located. The
phase inside the support area, however, is left untouched, as
long as it is not larger than C, allowing for phase changes
�ϕ(x,y) in one direction only, as expected for objects with
|�ϕ(x,y)| < π . The speed of convergence is determined by
the feedback parameters γ ∈ [0,1] and β ∈ [0,1].

The phase reconstruction shown in Fig. 2(c) was obtained
by averaging the complex reconstructions from 25 independent
runs of the modified HIO algorithm, which stopped at an
average iteration number of Nit = 2347 and showed a very
small distribution of the resulting phase values with a standard
deviation below 3.5 × 10−4 rad in each pixel. As an initial
guess a numerically generated realization of the random
function

R =
{

1 + a0ZJ exp(iφ0ZJ ) if (x,y) /∈ S,

1 + a0ZJ exp[i(φ0ZJ − 0.1)] else,
(6)

assigned to each pixel at position (x,y), was used. The
parameters a0 and ψ0 were chosen as a0 = φ0 = 0.2 and
equally distributed pseudorandom numbers on the interval
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J = [−0.5,0.5] were used for ZJ . The algorithmic feedback
parameters were set to β = γ = 0.2 in the present example.

The maximum experimentally determined phase change of
ca. 0.14 rad due to the freeze-dried cells is in agreement with
expected values (see above). As described earlier [21] in the
present case of a pure phase object the reconstructed phase
distribution can be rescaled into a projected electron or, for
light biological materials, mass density map [see additional
color-bar scaling in Fig. 2(c)] with a density range well
in agreement to what has been found before for unstained
(bacterial) cells [21].

In the reconstruction shown in Fig. 2(c) several subcellular
features are visible. While it cannot be excluded that some
features such as the rather large void areas could be due to
possible ruptures in the freeze-drying process, characteristic
and abundant globular features of several hundred nanometers
in size are attributed to mitochondria, providing chemical
energy for the highly active and mobile state in which the
cells were fixated. A simple spherical model [see Fig. 2(c)]
with a mitochondrion mass density of 1.35 g/cm3 is in coarse
agreement with a reported value of 1.315 g/cm3 for the dry
density from rat liver mitochondria [28]. For the mitochon-
drion marked in Fig. 2(c) a sphere diameter of 0.64 µm was
assumed and, to account for the finite experimental resolution,
the resulting projected density profile was convoluted by a
normal distribution with a FWHM equal to the pixel size of
157 nm.

C. Treatment of experimental noise

Experimental noise in the diffraction data can significantly
disturb the results of iterative reconstruction schemes [29].
These are based on the implicit assumption that the measured
intensity is a noise-free representation of the diffracted
intensity, when the Fourier amplitude of the current iterate in
Fourier space is replaced with the measured amplitude during
each iteration. To prevent possible overfitting of the noise in the
diffraction data a modified version of the modulus replacement
operator PM was used in [21] which projects the current iterate
χn onto a sphere with finite radius D > 0 around the closest
element of the modulus constraint set. The algorithm leaves
the amplitude |χ̃n| unchanged, as soon as χn falls within the
sphere of radius D. An optimum value for D can be estimated
from the noise statistics of the measured data.

In the present case a similar modified modulus operator was
used, but now applied to the image intensity rather than the
amplitude [21] with the intensity metric as defined in Eq. (3).
The detection plane intensity of the updated χ ′

n at position
(x,y) thus reads

|χ̃ ′
n(x,y)|2 :=

(
1 − D

d

)
Ī (x,y) + D

d
|χ̃n(x,y)|2 (7)

if d > D. The algorithm was stopped as soon as d � D. The
full modified detection plane operation is thus given as

χ ′
n = D−zeff [|χ̃ ′

n| exp(iϕ(χ̃n))]. (8)

To find an optimum value for the parameter D one needs
to consider the noise statistics of the experimental data.
This enters the modulus replacement operator here as the
normalized intensity distribution Ī (x,y), that is, the measured

intensity I (x,y) of the Fresnel-diffracted exit wave behind the
sample, divided by the intensity of the empty beam I0(x,y).
Both I (x,y) and I0(x,y) are Poissonian random variables,
but in order to discriminate the weak sample-signal from
the empty beam, they both were measured at a high absolute
count number (on the order of 105 counts per pixel) and can
then be well-described as normally distributed quantities with
means 〈I (x,y)〉, 〈I0(x,y)〉, respectively, and approximately
equal standard deviations σ = √〈I0(x,y)〉. Henceforth, the
brackets 〈· · ·〉 without an index denote an average over the
ensemble of all possible values (realizations) of I (x,y) and
I0(x,y).

According to error propagation of Gaussian random vari-
ables the normalized intensity

Ī (x,y) := I (x,y)

I0(x,y)
(9)

then has a mean and variance of

〈Ī 〉 ≈ 〈I 〉
〈I0〉 (10)

〈(Ī − 〈Ī 〉)2〉 ≈ σ̃ 2 = 2

〈I0〉 , (11)

respectively, which are true for every position (x,y), at
which I (x,y) and I0(x,y) have been measured. Note that
experimentally only realizations of Ī and Ī0 can be measured
at each position and that the expectation values 〈Ī 〉 and 〈Ī0〉
can only be obtained approximately in a measurement.

The (unknown) expectation value 〈Ī 〉 can be identified
with the current guess |χ̃n(x,y)|2 of the “true” intensity in
Eq. (7); similarly the random variable Ī can be identified
with the measured value Ī . From Eqs. (3) and (11) and these
identifications we can thus infer that

〈d2〉 = 1

N

∑
(x,y)

〈[Ī (x,y) − |χ̃n(x,y)|2]2〉

= 1

N

∑
(x,y)

2

〈I0〉 (x,y)
. (12)

In an experiment we can only measure realizations of the
summand 2/I0(x,y) and then obtain the noisy sum

1

N

∑
(x,y)

2

I0(x,y)
→ 1

N

∑
(x,y)

2

〈I0〉 (x,y)
= 2

〈I0〉 , (13)

which, however, converges against the result on the right
for long measurement times and under the assumption that
〈I0〉 (x,y) is constant; that is, the detector is illuminated
uniformly by the WG beam. A natural choice for the threshold
parameter D is thus Dth = √

2/ 〈I0〉, providing a criterion
when to stop the algorithm.

For feedback parameters β = γ = 0.2, the smallest D for
which convergence (in the sense of reaching a stop criterion)
could be achieved within a reasonable amount of time (<5000
iterations) was found to be D = 1.06Dth. The minute deviation
from one can be caused by the not strictly uniform illumination
function, which has been assumed in the derivation of Dth.
D = 1.06Dth was then used for all reconstructions, including
those obtained from simulated data, in order to make the results
better comparable.
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D. Reconstruction errors

To study reconstruction errors in the obtained phase map
of the freeze-dried cells a phantom object was generated
with similar size and scattering power as the cells, that is,
a maximum phase shift and amplitude attenuation of �ϕ =
0.13 rad and A = 1.04 × 10−4, respectively. The phantom
object was subject to the same total fluence and the same
experimental parameters (z1, z2, etc.) as used in the real
experiment. The reconstruction was performed with the same
set of algorithmic parameters (β, γ , etc.) as used for the
experimental data. The simulated phantom phase is depicted
in Fig. 3(a), while the reconstructed phase map is shown in
Fig. 3(b), indicating strong agreement between simulation and
reconstruction. Note that the original phase map is shown
here with the full simulated resolution, that is, a pixel size
of 39 nm. From this phase map a hologram was simulated
and subsequently interpolated to the experimental pixel size.
The reconstruction is shown with the same pixel size as the
experimental reconstruction shown in Fig. 2(c). The root
mean square (rms) deviation between the simulated and
reconstructed phantom phase within the support area was
0.012 rad with a largest absolute phase deviation of 0.038 rad.
These values are significantly above the standard deviation of
the reconstructed phase in each pixel, taken over the ensemble
of 25 reconstructed object transmission functions, from which
the final result was generated as the mean.

For weak objects the free-space Fresnel-propagator Dz can
be regarded as a spatial filter with zero-frequency response
to the incident phase map at spatial frequencies νn = √

n/λz

(n ∈ N0) [17]. The associated phase-contrast transfer function
[PCTF; cf. Fig. 3(d)] is thus characterized by zeros at these

FIG. 3. (Color) Phase map (a) of a simulated object transmission
function for an unstained biological cell with parameters as used in
the real experiment and (b) iterative reconstruction obtained with
the modified HIO scheme described in the main text. The angular
averaged power spectral density (PSD) of the simulated phase map
is shown as a red line in panel (c). For comparison, the PSD of
the reconstruction from the simulated data is plotted (blue line)
along with a PSD of a reconstruction from modeled data with 10
times more simulated flux (black line). The HIO scheme successfully
recovers the spatial frequency component marked by an arrow, where
there is a zero in the phase-contrast transfer function (PCTF) (d).
Notably, an increase in simulated flux results in the recovery of more
unconstrained frequencies.

spatial frequencies, which are not encoded in the diffraction
pattern |χ̃(x,y)|2, given a complex object wave χ (x,y).

One way to recover these frequencies is the simultaneous
iterative reconstruction from diffraction patterns obtained at
various distances z, as demonstrated very successfully before
[2,3]. However, one might be forced to keep the incident dose
as small as possible, especially in high-resolution tomographic
mode, to prevent radiation damage, or measurements at
different propagation distances might not even be possible,
such as in applications at free-electron lasers, where the sample
is severely damaged after exposure to a single incident pulse
train. In such situations one has to recover phase information
from a single “holographic” image. From the comparison of a
simulated phase distribution of a biological cell and its power
spectral density (PSD) on the one side, with the iterative
reconstruction of the simulated data and the corresponding
PSD (see Fig. 3) on the other side, it becomes evident that the
lost frequencies can be recovered to a very large extent, using
the modified HIO reconstruction scheme described above.
Only residual local maxima are present at unconstrained
frequencies in the reconstructed PSD. We attribute this effect
to the analyticity of the Fourier transform of a complex two-
dimensional function with a compact support. In such a case an
analytic continuation of the Fourier transform is possible given
its knowledge on a finite area, a phenomenon which can lead to
so-called “bandwidth-extrapolation” [30]. It helps here to fill
out missing information due to zeros in the PCTF. Importantly,
by increasing the number of incident photons (here by a factor
of ten), the unconstrained frequency components are recovered
even better [see black line in Fig. 3(a)].

We also explored the effect of an increased fluence on the
sample just by increasing the geometrical magnification and
leaving the total photon number the same as in the present
experiment. To demonstrate an associated increase in spatial
resolution (see below), the phantom chosen here was a Siemens
star with amplitude transmission of 1 and a maximum phase
change of �ϕ = 0.13 rad. In Fig. 4 the PSDs corresponding
to the simulated Siemens star test pattern [see Fig. 5(a)],
its holographic reconstruction and its iterative HIO-based
reconstruction are shown. While the PSD of the holographic
reconstruction has characteristic minima at frequencies of
zero-contrast transfer, such artifacts are almost completely
removed in the iterative reconstruction based on the modified
HIO scheme.

E. Spatial resolution

If sample scattering is weak and no scattered photons are
detected outside the WG exit wave field, the spatial resolution
is determined by the wave field opening angle, limiting the
resolution roughly to the beam diameter at the WG exit
plane [20]. In the present experiment, however, the resolution
was rather limited by the relatively large defocus distance z1

dictated by steric constraints of the positioning devices. The
resulting (half-period) resolution on the order of one to two
pixels (with an effective pixel size of 157 nm) thus has to be
assessed in view of the very low dose of ca. 0.8 × 103 Gy
and confirms previous results with similar parameters [21].
In addition, the modest resolution is associated in the present

023804-5



K. GIEWEKEMEYER et al. PHYSICAL REVIEW A 83, 023804 (2011)

FIG. 4. (Color) The power spectral density (PSD) of a simulated
object transmission function for a weakly scattering Siemens star
test pattern is shown in comparison to the PSD of the holographic
and the iterative reconstruction from the simulated data, based on
the modified HIO scheme (a). See Fig. 5 for the corresponding real-
space images. Although the zeros of the contrast transfer function
have a strong influence on the holographic reconstruction, in this
case the iterative reconstruction is essentially free of such artifacts,
and the object transmission function is recovered for nearly all spatial
frequencies. The phase-contrast transfer function corresponding to
the simulated experimental geometry is shown in panel (b).

case with a relatively large field of view of ca. 38 × 38 µm
from a single measured diffraction pattern.

To demonstrate the resolution range that can in principle be
achieved with the present WG and detector parameters, aside
from the instrumentation constraints, we have performed sim-
ulations on a Siemens star phantom object [see Fig. 5(a)] with
phase shifts alternating between ϕ � −0.10 and ϕ � −0.13
rad in the light and dark stripes, respectively. The geometric
magnification was adjusted to 9 times the magnification of
the real experiment, by decreasing z1 to ca. 1 mm, leading
to a pixel size of 17.5 nm. The total number of photons,
4 × 109, in the simulated WG exit field was set equal to that
of the experiment. The WG exit wave field was modeled as
a Gaussian with an intensity FWHM of 10 nm, resulting in
an average fluence of 2.2 × 108 ph/µm2 at the sample. A

FIG. 5. (Color) Original phase map from a simulated Siemens
star test pattern with a phase difference of 0.03 rad between the light
and dark stripes (a), together with the holographic (b) and iterative
reconstruction (c), using a modified HIO scheme. Scale bars indicate
250 nm.

comparison of the simulated and the iteratively reconstructed
phase map is shown in Fig. 5, indicating a quantitative
reconstruction. The rms deviation between the reconstruction
and the phantom phase within the area of the Siemens star was
found to be 0.008 rad. While the holographic reconstruction
is severely distorted at frequencies corresponding to zeros in
the PCTF, the iterative reconstruction, applied here with the
same algorithmic parameters as used for the experimental data,
is free of such artifacts. A comparison of the power spectral
densities of the original object phase and the reconstruction
indicates a (half-period) resolution close to the pixel size of
the hologram, 17.5 nm [see Fig. 4].

F. Coherence requirements

The coherence requirements for propagation-based diffrac-
tive imaging using x-ray WGs as quasi-point-sources have
been discussed in detail before [31] and we shortly re-
view the main considerations in the context of the present
experiment.

A particular advantage of the present setup is the es-
sentially full spatial coherence of the beam incident on the
sample, provided by the very small source diameter of the
WG exit wave field [13]. On the other hand, the bandpass
�λ/λ � 0.02 of the pink-beam undulator radiation that is
coupled into the WG leads to a rather limited longitudinal
coherence length. However, the propagation-based imaging
process will not be affected by this spread in wavelength,
as long as

�λ

λ
� 1

λzeffν2
, (14)

considering the problem in one dimension here for clarity.
Given an effective pixel size of �, the largest possible (full-
period) spatial frequency that can be resolved is 1/(2�) (the
Nyquist frequency), so that the maximum allowable bandpass
becomes

�λ

λ
� 4�2

λzeff
. (15)

With 4�2/(λzeff) � 0.16 this is still fulfilled in the present
experimental situation. However, for higher resolution a lower
bandpass is desirable which can be achieved by using a
crystal monochromator. For the novel dedicated setup [32]
installed at the beamline P10 of the PETRA III storage ring
at DESY in Hamburg, Germany, the intensity loss due to the
monochromator will be tolerable due to the extremely high
brilliance of the synchrotron source.

IV. CONCLUSION

In summary, we have demonstrated WG-based x-ray
microscopy of unstained biological cells. The method takes
advantage of a new generation of crossed high-transmission
planar WGs allowing for beam confinement below 15 nm
and, together with optimized iterative reconstruction schemes,
allows for stable and fast reconstructions of the sample
transmission function, with small and quantifiable errors. The
possible resolution range has not been fully exploited yet, but
simulations with realistic parameters indicate that resolutions
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in the range of the WG beam confinement are possible, even
for relatively weak contrast values. The reconstruction scheme,
using only one holographic image without detailed knowledge
of the illumination, is widely applicable in propagation-based
hard-x-ray imaging of biological objects and underlines the
simplicity and dose-efficiency of the method. It also opens up
possible applications at new x-ray free-electron laser sources
presently commissioned or constructed.
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