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Quantum-entanglement-initiated super Raman scattering
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It has now been possible to prepare a chain of ions in an entangled state and thus the question arises: How will
the optical properties of a chain of entangled ions differ from say a chain of independent particles? We investigate
nonlinear optical processes in such chains. Since light scattering is quite a versatile technique to probe matter,
we explicitly demonstrate the possibility of entanglement-produced super Raman scattering. Our results suggest
the possibility of similar enhancement factors in other nonlinear processes like four-wave mixing.
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Dicke in 1954 [1] predicted that if a collection of two-level
atoms is prepared in a collective state where half the atoms
are in the excited state and half the atoms are in the ground
state then the spontaneous emission from such an initial state
is proportional to the square of the number of atoms [2]. Dicke
introduced collective description of a system of N atoms.
The collective system can be considered in the state |N

2 ,M〉
where as usual M = −N

2 , . . . , + N
2 in steps of unity and N

2 is
the net spin of the collection of atoms. The state |N

2 ,0〉 exhibits
super-radiance. The origin of super-radiance is difficult to see
as in the state |N

2 ,0〉 there is no macroscopic dipole moment
whereas such a dipole is required for a radiation rate that is
proportional to N2. It turns out that the super-radiant state
|N

2 ,0〉 has very interesting quantum correlations. Denoting the
spin operator associated with each two-level atom as �si , then
the correlation between the ith atom and j th atom can be
shown to be [3]

〈s+
i s−

j 〉 − 〈s+
i 〉〈s−

j 〉 ∼= 1/4. (1)

The radiation rate in Dicke’s work is proportional to∑
i,j 〈s+

i s−
j 〉 which would be proportional to N2 as all the

atomic correlations are of the order of unity. Thus it is
clear that the Dicke super-radiance arises from quantum
correlations in the state that he introduced. Somehow the fact
that in the Dicke state there are strong quantum correlations
between the individual atoms has not been appreciated much
until recently. There is a considerable revival of interest in
super-radiance. Scully and coworkers have been examining
the case of single-photon super-radiance [4–7]. There are
also studies [8] on the behavior of large spins (value 3) in
electromagnetic fields. It also turns out that the Dicke states
have very strong quantum entanglement. The entanglement
character is easy to see for the case of two two-level atoms
with the two states labeled as |e〉,|g〉. In this case the state |1,0〉
that Dicke considered would be |1,0〉 = 1√

2
[|e1,g2〉 + |g1,e2〉].

This state, also known as the Bell state or the EPR state, is
clearly entangled. For three atoms one of the Dicke states is
|3/2,1/2〉 which in current language would be the W state

1√
3
[|e1,g2,g3〉 + |g1,e2,g3〉 + |g1,g2,e3〉]. The W state is also

known to be fully entangled and this state is important in
considerations of single-photon super-radiance [4–7]. Thus
a number of recent works [9–14] have also shown how the
Dicke states for a small number of atoms can be prepared
in the laboratory. The question that we address in this article
is: Are there processes such as nonlinear optical processes

other than spontaneous emission where systems prepared in
Dicke-like states can lead to enhancements in the efficiency of
the process? As a new paradigm in the study of nonlinear
optical processes we consider the well-known process of
Raman scattering and demonstrate how its efficiency can
be enhanced depending on the quantum entanglement in
the initial state in which atoms are prepared. We consider
specifically Raman processes as light scattering is a versatile
technique to probe the properties of quantum systems. We
initiate our demonstration of super Raman scattering using
the preparation of atoms in a W state. We then present the
most general argument for super Raman scattering. We give
enhancement factors in a number of special cases. Some of
our results can be tested using the W state of chains of trapped
ions [15,16] while other results depend on the progress toward
entanglement of qutrits. Our results, in contrast to Dicke’s
work on spontaneous emission, are applicable to scattering
processes and by choosing scattering geometry can be made
free from the standard complications of multimode quantum
electrodynamics. It will be clear from our discussion that a
whole body of nonlinear processes can be enhanced by using
entangled states of the medium.

Consider the second-order process of Raman scattering as
shown in Fig. 1 . The usual method of the calculation of
the transition probability consists of the examination of the
transitions in a single atom. The final transition probability
is obtained by multiplying the result by the number of atoms
as one assumes that the initial state is a factorized state. We
proceed differently as the states that we deal with are entangled
states. The transition probability for the Raman process can
be calculated by second-order perturbation theory [17], where
we replace in the standard expression various states by the
entangled states

�R = 2π

h̄

∣∣∣∣∣
∑

l

〈i|H1|l〉〈l|H1|f 〉
Ei − El + h̄ω+

∣∣∣∣∣

2

δ(Ei + h̄ω+ − Ef − h̄ω−),

(2)

Note that the entangled states can be written in terms of the
states of the individual atoms. In Eq. (2) El is the energy
of the entangled lth state and H1 is the interaction between
the atomic system and the radiation fields denoted by E. The
H1 has the form – �d · �E:

�E(�r) = E+ε̂+ei�k+·�r + E−ε̂−ei�k−·�r + c.c. (3)
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FIG. 1. Raman scattering: |i〉, |l〉, and |f 〉 represent the initial
state, the intermediate state, and the final state, respectively. A circular
polarized photon with polarization ε+ and frequency ω+ is absorbed,
and a circular polarized photon with polarization ε− and frequency
ω− is emitted. All the states |i〉, |l〉, and |f 〉 are the entangled states
of the N -atom system.

The field E+ is the applied field whereas E− is the scattered
field. Initially E− is not present. This is to ensure that
the reverse scattering involving the absorption of E− does
not occur. The origin of E− is quantum in nature as it is
generated via scattering. However it is well known that the
transition probability can be calculated by assuming this to
be a prescribed field and at the end of the calculation factors
like density of states can be included. In Eq. (3), �d is the dipole
moment operator for the N -atom system:

�d =
∑

α,a,b

( �d)ab|a〉αα〈b| + c.c. (4)

The sum in (4) is over all the states and the states of the
αth atom are denoted by |a〉α . Clearly the dependence of
the transition probability �R on the number of atoms is
determined by the matrix elements in (2). If the scattering
geometry is chosen so that the incident and scattered fields
lie in a plane perpendicular to the plane of atoms, then all
the phase factors like ei�k·�r can be set to unity. This simplifies
our discussion considerably though it is always interesting to
study the interferences arising from such phase factors [18].
Before we derive the general result we would like to illustrate
our key idea with a simple example. This will demonstrate
how the enhancement can arise. Consider for illustration first
a system of three atoms which are prepared in an entangled
W state:

|i〉 = 1√
3

(|g−,g−,g+〉 + |g−,g+,g−〉 + |g+,g−,g−〉), (5)

in which any two atoms are in the state |g−〉. Here the states
like |g−,g−,g+〉 are the factorizable states like |g−〉|g−〉|g+〉
for individual atoms. The W state is an example of a collective
state. We are specifically choosing Zeeman states so that we
make use of the light polarization to select specific transitions.
Let us consider the absorption of a photon with polarization
ε+ and scattering of a photon with polarization ε−. Clearly an
atom in the state |g−〉 would be transferred to the state |g+〉
via this scattering event. The final state would be one in which
two atoms are in the state |g+〉. Thus we expect the final state
to be a W state of the type

|f 〉 = 1√
3

(|g+,g−,g+〉 + |g+,g+,g−〉 + |g−,g+,g+〉). (6)

It should be kept in mind that now we are investigating
a Raman process which starts from an entangled state and
ends at an entangled state. Since the efficiency of the Raman
process is determined by the nature of all the states involved
in the transition, we next examine the intermediate state in the
process, which clearly will be

|l〉 = 1√
6

(|eo,g−,g+〉 + |g−,eo,g+〉
+ |eo,g+,g−〉 + |g−,g+,eo〉
+ |g+,eo,g−〉 + |g+,g−,eo〉). (7)

Note that all the states |i〉, |l〉, |f 〉 are normalized. The final
state obtained from (7) by the scattering of a photon with
polarization ε− would be the one given by Eq. (6). Having
elaborated the initial, final, and the intermediate state relevant
for the Raman process we can evaluate the matrix element in
Eq. (2). A simple calculation then shows that

〈l|H1|i〉 =
√

2 ( �d · �E+),
(8)

〈f |H1|l〉 =
√

2 ( �d · �E−)∗,

where �d is the dipole matrix element between the excited state
and the ground states. For simplicity we set these equal.

Note the presence of the numerical factors
√

2 in both the
matrix elements in (8). This would lead to a factor 4 in the
transition probability. We have thus shown that the transition
probability for three atoms is four times that for a single atom
if the atoms are prepared initially in the entangled state (5). For
the standard case where atoms are prepared in the factorized
state |g− . . . g−〉 the transition probability would be three times
that for a single atom. Clearly the use of the entangled W state
has produced an enhanced Raman transition, the enhancement
factor being 4/3 for three-atom system. For N atoms prepared
initially in a W state this argument leads to a factor 2(N − 1)
instead of the factor N (N � 2) in the transition probability.
Thus the usage of the entangled W state enhances the transition
probability for the Raman process by a factor E = 2 − 2/N .
This prediction can possibly be tested using the W state
for eight trapped ions as in the work of the Innsbruck
group [15].

We next consider the scattering cross section for the
second-order process following an argument similar to those
of Dicke using collective operators and collective states. Let us
consider essentially a three-level scheme for the second-order
process with the initial state |i〉, the final state |f 〉, and the
intermediate state |l〉. These would be entangled states of the
type discussed in the context of W states. These states can
be written as collective states. We have previously labeled the
states of a single atom as |g−〉,|g+〉,|eo〉. We can now specify
the collective states of the N -atom system by the number of
atoms in each of these states. We thus write the collective state
as |n−,ne,n+〉, where ne atoms are in the state |e〉. Note that
n− + ne + n+ = N [19]. In this notation the state (5) would
be |2,0,1〉 and the state (6) would be |1,0,2〉. Let us introduce
the collective operators Sab, defined in terms of the operators
for individual atoms as

Sab =
∑

α

|a〉αα〈b|, (9)
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where a, b refer to any of the states |g−〉, |eo〉, |g+〉. These
collective operators satisfy the SU(3) algebra,

[Saa′ ,Sbb′ ] = Sab′δa′b − Sba′δab′ ; (10)

and can be represented in terms of the harmonic oscillators as
Saa′ = c

†
aca′ , where c′s

a satisfy Bosonic commutation relations.
From this representation it can be shown that these collective
operators have the properties

S+−|n−,ne,n+〉 =
√

n−(n+ + 1)|n− − 1,ne,n+ + 1〉,
(11)

Se−|n−,ne,n+〉 =
√

n−(ne + 1)|n− − 1,ne + 1,n+〉,
etc. For a second-order Raman process, we have

|n−,ne,n+〉 ω+→ |n− − 1,ne + 1,n+〉
ω−→ |n− − 1,ne,n+ + 1〉. (12)

Hence the numerical factor giving the enhancement over
a single atom can be obtained from the matrix ele-
ments of 〈n− − 1,ne + 1,n+|Se−|n−,ne,n+〉 and 〈n− − 1,ne,

n+ + 1|S+e|n− − 1,ne + 1,n+〉. The result is

E = n−(n+ + 1)(ne + 1)2/N. (13)

Several important conclusions can be drawn from Eq. (13).
First of all if all the atoms are in the initial state, i.e.,
n− = N , n+ = ne = 0, then as expected E = 1. For an initial
W state with n− = N − 1, ne = 0, n+ = 1, E = 2 − 2/N , a
result derived earlier in this paper. Further if ne = 0, n− =
n+ = N/2 then E = N (N + 2)/(4N ) ∼ N . The last result is
reminiscent of the Dicke result on super-radiance.

A new aspect of the enhancement for the second-order
process is the appearance of the factor (ne + 1)2. This suggests
that much larger enhancement factors are possible by preparing
the system initially in a collective state such that part of the
population is present in the intermediate state |l〉. In particular
if we consider Dicke-like states involving the ground state
and the intermediate state |l〉, i.e., n− = ne = N/2 then E

is of the order of N2. This exceptional enhancement comes
from the fact that the entanglement properties of the state are
used twice once in absorption and once in emission. Further
note that if we start with a W state prepared such that
n− = N − 1,ne = 1,n+ = 0 then the enhancement factor (13)
becomes E = 4(1 − 1

N
).

We conclude this paper by discussing further possibilities.
We have shown how the entangled character of the states
involved in the second-order process leads to enhancement
in the efficiency of the optical processes. Our results on
W states basically use the entanglement among the qubits
as the collective states involved in the transitions are either
|i〉, |l〉 or |l〉, |f 〉. Such an entanglement among the qubits has
been extensively studied [15,16,20] and can thus be utilized
in testing some of our predictions. The more general case
involves the entanglement of qutrits which is beginning to be
studied [21–26]. It is clear from our results on second-order
Raman processes that other nonlinear optical processes in
systems prepared in suitable entangled states would exhibit
enhancement over those obtained in systems without entan-
glement. More generally our results point out to the need
of developing the theory of nonlinear optical susceptibilities
for systems prepared in entangled states as the conventional
susceptibilities are derived assuming a model where the atoms
interact with fields in an independent fashion [27]. Finally we
note that it would also be interesting to examine efficiencies
for nonlinear optical processes by replacing the classical fields
by entangled fields [28].
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[24] G. Lima, E. S. Gómez, A. Vargas, R. O. Vianna, and C. Saavedra,
Phys. Rev. A 82, 012302 (2010).

[25] R. A. Bertlmann and P. Krammer, Phys. Rev. A 78, 014303
(2008).
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