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Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice
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By direct numerical simulation and variational solution of the Gross-Pitaevskii equation, we studied the
stationary and dynamic characteristics of a cigar-shaped, localized, collisionally inhomogeneous Bose-Einstein
condensate trapped in a one-dimensional bichromatic quasiperiodic optical-lattice potential, as used in a recent
experiment on the localization of a Bose-Einstein condensate [Roati et al., Nature (London) 453, 895 (2008)].
The effective potential characterizing the spatially modulated nonlinearity is obtained. It is found that the
collisional inhomogeneity has influence not only on the central region but also on the tail of the Bose-Einstein
condensate. The influence depends on the sign and value of the spatially modulated nonlinearity coefficient. We
also demonstrate the stability of the stationary localized state by performing a standard linear stability analysis.
Where possible, the numerical results are shown to be in good agreement with the variational results.
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I. INTRODUCTION

Since Anderson predicted a localization of noninteracting
electron wave in solids with a disorder potential 50 years ago
[1], the Anderson localization has been observed and studied
extensively in optics [2] and acoustics [3] and in Bose-Einstein
condensates (BEC). In the study of Anderson localization in
a BEC, disorder laser speckles [4] and quasiperiodic optical
lattices (OL) [5] have been used. Random speckle potentials
are produced when light is reflected by a rough surface
or transmitted by a diffusive medium [6]. Billy et al. [4]
observed the exponential tail of the spatial density distribution
when a 87Rb BEC was released into a one-dimensional (1D)
waveguide in the presence of a controlled disorder created
by a weak laser speckle. A bichromatic OL is realized by a
primary lattice perturbed by a weak secondary lattice with
incommensurate wavelength [7], and this system corresponds
to an experimental realization of the Harper [8] or Aubry-
André model [9]. Roati et al. [5] studied the localization of a
noninteracting 39K BEC in a bichromatic OL. There have been
many theoretical studies of localization using the numerical
solution of the Gross-Pitaevskii (GP) equation [10] as well
as using the Bose-Hubbard model [11] in addition to the
experimental studies under different conditions on disorder
[12]. There have been studies of localization in two and three
dimensions [13] and of the destruction of localization with the
increase of nonlinear repulsion [14,15].

A Feshbach resonance (FR) driven by a magnetic [16] or
optical [17] field allows one to vary the atomic interaction of a
BEC in a controlled fashion [18], thus creating a noninteracting
as well as a weakly interacting BEC for the study of Anderson
localization. Fedichev et al. [19] predicted that the spatial
variation of the laser field intensity by proper choice of
the resonance detuning can lead to a spatial dependence of
the atomic interaction, creating the so-called “collisionally
inhomogeneous” BECs. The theoretical prediction has been
demonstrated experimentally by Theis et al. with the 87Rb
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BEC [17]. Sakaguchi and Malomed studied the formation of
solitons in such BECs [20]. There have been studies of matter-
wave bright and dark solitons of the cubic-quintic nonlinear
Schrödinger equation with time- and space-dependent nonlin-
earities [21] in a collisionally inhomogeneous environment,
and of dynamical effects of a bright soliton BEC with local
and smooth space variations of the two-body atomic scattering
length [22]. There have been studies about how to introduce a
space dependence in the nonlinear interaction of the BEC in
a controlled way [23]. There have also been studies of soliton
oscillations [24] and dynamical trapping and transport [25] in
collisionally inhomogeneous BECs.

Here we combine the two interesting settings, namely,
the bichromatic OL and a collisionally inhomogeneous BEC
(with a spatially modulated nonlinearity), to study the statics
and dynamics of a localized BEC in this setup. We assume
that the spatial dependence of the nonlinearity, induced by
the external magnetic field of the OL, has the same form
as the bichromatic OL, i.e., the nonlinear coefficient in the
GP equation is proportional to the OL intensity [20,26]. We
study the effects of the spatially modulated nonlinearity on
the shape of the density envelope, and the stability of the
stationary localized states. The numerical results are shown
to be in good agreement with the variational results, where
applicable. On the other hand, the tail region of the stationary
localized states is examined, where we find exponential decay
in space indicating localization in a weak disorder potential.
We study the location oscillation (oscillation of the center)
and breathing oscillation of the localized states, induced by
appropriate perturbation, employing numerical simulation of
the GP equation.

In Sec. II we present a brief account of the 1D GP equation
and the bichromatic OL potential used in our study, and
a time-dependent variational analysis of the GP equation
under appropriate conditions. We obtain a set of coupled
evolution equations for the parameters of the localized state.
The effective potential characterizing the spatially modulated
nonlinearity is also described. In Sec. III we investigate the
effects of the spatially modulated nonlinearity on the central
and tail regions of a stationary localized BEC by a numerical
solution of the GP equation using the split-step Fourier
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spectral method. For the central region, we demonstrate the
stability of the localized states by performing a standard linear
stability analysis. In Sec. IV the oscillation dynamics of a
collisionally inhomogeneous BEC in a bichromatic OL is
studied numerically. In Sec. V we present a brief discussion
and concluding remarks.

II. ANALYTICAL CONSIDERATION OF LOCALIZATION

We consider a cigar-shaped quasi-1D BEC with inhomo-
geneous atomic interaction described by wave function u(x,t)
satisfying the following dimensionless 1D GP equation [27,28]

i
∂u

∂t
= −1

2

∂2u

∂x2
+ g(x)|u|2u + V (x)u, (1)

with normalization
∫ ∞
−∞ |u|2dx = 1. The space variable x,

time t , and energy are expressed in transverse harmonic oscil-
lator units a⊥ = √

h̄/(mω), ω−1 and h̄ω, where m is the mass
of an atom and ω is the angular frequency of the transverse trap.
As in the experiment of Roati et al. [5], the potential V (x) is
taken to be a bichromatic OL of incommensurate wavelengths:

V (x) =
2∑

l=1

Al sin2(klx), (2)

with Al = 2π2sl/λ
2
l ,(l = 1,2), where λl’s are the wavelengths

of the OL potentials, sl’s are their intensities, and kl = 2π/λl

the corresponding wave numbers. In this investigation, we
take the incommensurate ratio of the two components [29]
k2/k1 = (

√
5 − 1)/2 ≈ 0.618033989 . . . . In the actual

experiment of Roati et al. [5], however, the parameter is
k2/k1 = 1.1972 . . .. Without losing generality, we further
take λ1 = 10, and s1 = 10, s2 = 0.3s1 which is roughly the
same ratio s2/s1 as in the experiment of Roati et al. [5].

By means of the FR technique controlled by properly
designed configurations of external optical fields [20,26],
the spatial variation of laser-field intensity I (x) produces
the spatial variation of the atomic scattering length. As the
potential V (x) is also proportional to laser-field intensity,
it is reasonable to assume the spatial dependence of the
atomic scattering length is similar to V (x). Then, the atomic
scattering length can be given as as = as0 + cV (x); here
V (x) is the same as Eq. (2), as0 is scattering length of the
corresponding collisionally homogeneous system, and c is a
constant coefficient related to the optical intensity and may be
either positive or negative. Thus, the nonlinear coefficient g(x)
in Eq. (1) has a spatial dependence of the form

g(x) = ε0 + ε

2∑
l=1

Al sin2(klx). (3)

The nonlinearity ε0 is given by [27] ε0 = 2as0N/a⊥ with N the
number of atoms, and ε = 2cN/a⊥ is the spatially modulated
nonlinearity coefficient. Because the intensity-independent
nonlinear coefficient ε0 may be altered independently of
the other parameters [18], in order to focus our attention
on the effect of the spatially modulated nonlinearity on the
localization of the BEC, we let ε0 = 0 in the following.

Usually, the BEC localized states formed on a bichromatic
lattice may occupy many sites of the OL potential [5,30]. For

certain values of the parameters, however, potential (2) leads
to localized states confined practically to a single site of the
OL potential. When this happens, a variational approach for
solving the GP equation is useful. To apply the variational
approach to the localized BEC, we adopt the following
variational ansatz:

u(x,t) = 1

π1/4

√
N

w
exp

[
− (x − x0)2

2w2

]

× exp{i[γ (x − x0) + β(x − x0)2 + φ]}, (4)

with w as the spatial width of the localized state centered
at x0, γ is the linear phase coefficient, β is the chirp,and φ

is the phase. These are time-dependent parameters [30]. The
Lagrangian of the system is [31,32]

L(t) =
∫ ∞

−∞

[
i

2

(
u∗ ∂u

∂t
− u

∂u∗

∂t

)
− 1

2

∣∣∣∣∂u

∂x

∣∣∣∣
2

− 1

2
g(x) |u|4 − V (x) |u|2

]
dx

= N

(
γ ẋ0 − 1

2
β̇w2 − φ̇

)
− N

2

(
1

2w2
+ γ 2 + 2β2w2

)

+ N2LM + NLV, (5)

where the overhead dot denotes time derivative, the star
denotes complex conjugation, and

LM = ε

4
√

2πw

2∑
l=1

Al

[
cos(2klx0) exp

(
− k2

l w
2

2

)
−1

]
, (6)

LV = −1

2

2∑
l=1

Al

[
1 − cos(2klx0) exp

( − k2
l w

2
)]

. (7)

We use the variational Euler-Lagrange equation

∂L

∂σ
− d

dt

∂L

∂σ̇
= 0, (8)

where the variational parameters are σ = φ,x0,γ,β, and
w. The first variational equation using σ = φ yields N =
constant. We take this constant to be unity and use it in the
subsequent equations. The other choices of σ respectively lead
to the following equations:

γ̇ = − ε

2
√

2πw

2∑
l=1

Alkl sin(2klx0) exp

(
− 1

2
k2
l w

2

)

−
2∑

l=1

Alkl sin(2klx0) exp
( − k2

l w
2
)
, (9)

ẋ0 = γ, (10)

ẇ = 2βw ≡ F (w,β), (11)

β̇ = 1

2w4
− 2β2 + 1

w

∂LM

∂w
+ 1

w

∂LV

∂w
≡ G(w,β). (12)

The Hamiltonian of the BEC is

H = ẋ0
∂L

∂ẋ0
+ φ̇

∂L

∂φ̇
+ β̇

∂L

∂β̇
− L

= 1

2

(
1

2w2
+ γ 2 + 2β2w2

)
− LM − LV . (13)
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Equations (11) and (12) determine the evolution of the width
w once x0 is known. Equations (9) and (10) determine the
evolution of center x0 once the width w is known. To study the
dynamics of the localized state, we insert Eq. (9) into Eq. (10)
to get an anharmonic effective potential Veff :

d2x0

dt2
= −∂Veff

∂x0
≡ − ∂

∂x0
(VeffM + VeffV), (14)

VeffM = −ε

4
√

2πw

2∑
l=1

Al cos(2klx0) exp

(
− k2

l w
2

2

)
, (15)

VeffV = −1

2

2∑
l=1

Al cos(2klx0) exp
( − k2

l w
2
)
. (16)

The effective potential has two terms. The second term on the
right-hand side of Eq. (14), VeffV, arises from the bichromatic
OL and contributes to an attractive well, if |x0| is small enough.
The first term, VeffM, is induced by the spatial modulation of
the nonlinearity and is actually a pseudopotential [33]. The
pseudopotential is quasiperiodic and is a potential barrier or
well depending on the sign and value of the coefficient ε.

III. STATIONARY LOCALIZED STATE

The stationary states are obtained by setting the time
derivative in Eqs. (9)–(12) to zero. Then the simplest solution
of Eqs. (9) and (10) is x0 = 0 and we consider below an
immobile localized state at origin (x0 = 0) with γ = 0.
Equations (11) and (12) determine w and can be written as

β0 = 0, (17)

1 + εw0

2
√

2π

2∑
l=1

Al

[
1 − (

1 + k2
l w

2
0

)
exp

(
− 1

2
k2
l w

2
0

)]

− 2w4
0

2∑
l=1

Alk
2
l exp

( − k2
l w

2
0

) = 0. (18)

The effective potential felt by a stationary localized state at
x = x0 = 0 is obtained from Eqs. (14)–(16) and is plotted in
Fig. 1 where the width w is obtained by solving numerically
Eq. (18). With the increase of ε, the strength of both disorder
and the quasiperiodic effective potential increases.

To understand the effects of the coefficient ε, we obtain
the stationary localized states by solving Eq. (1) numerically
with real-time split-step Fourier spectral method with a space
step 0.04 and time step 0.0001. We checked the accuracy of
the results by varying the space and time steps and the total
number of space and time steps. To compare with numerics,
the variational width is obtained by solving Eq. (18).

Typical numerical and variational results for the density,
width, and Hamiltonian of the localized state at x = 0 are ex-
hibited in Fig. 2 for −1 � ε � 1. The variational Hamiltonian
is obtained from Eq. (13) and the numerical Hamiltonian is ob-
tained from H = ∫ ∞

−∞[|u′|2/2 + g(x)|u|4/2 + V (x)|u|2]dx.
Figures 2(a) and 2(b) exhibit the density of the stationary
localized states corresponding to ε = −1 and 1, respectively.
Figures 2(c) and 2(d) exhibit the variation of w and H
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FIG. 1. (Color online) The dimensionless effective potentials Veff

“felt” by an immobile localized state for different ε from Eqs. (15)
and (16) where the width w is calculated from Eq. (18).

with ε. The numerical width w in Fig. 2(c) is
√

2 times the
root-mean-square (rms) size of the BEC. Figure 2 indicates that
the numerical results are in good agreement with the variational
results. Figure 2(c) shows that the width decreases and Fig. 2(d)
shows that the Hamiltonian increases with the change of ε

from negative to positive. The dependence of the variational
width on ε can be qualitatively understood as follows. The
height of the central well of the effective potential increases
with increasing ε as shown in Fig. 1. Hence the central
part of the localized state with a Gaussian shape becomes
narrow with the increase of ε, as can be seen from Figs. 2(a)
and 2(b). The variational Gaussian ansatz only represents
this central part and hence the variational width decreases
with increasing ε. However, the numerical width (rms size)
shown in Fig. 2(c) receives nontrivial contributions from both
the central Gaussian part and the extended exponential tail
of the wave function [viz. Fig. 4(a)], making it difficult to
predict even qualitatively the variation of the numerical width
with ε. It is interesting to compare these results with those
of a collisionally homogeneous condensate where a constant
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FIG. 2. (Color online) Numerical (lines) and variational (chain of
symbols) densities |u|2 of the localized BEC versus x for (a) ε = −1,

(b) ε = 1. (c) Numerical (solid lines) and variational (dashed lines)
dimensionless widths w versus ε and (d) Hamiltonian versus ε. (All
quantities are dimensionless.)
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negative (attractive) nonlinearity leads to a reduction of the
width and a constant positive (repulsive) nonlinearity increases
the width of the localized state [15]. The numerical width is
larger than the variational width in Fig. 2(c) due to the long
exponential tail of the numerically obtained BEC (viz., Fig. 4).
Also, the difference between the variational and numerical
widths increases for larger values of ε, because for larger ε the
exponential tail is more pronounced resulting in a larger width
(viz., Fig. 4).

It is important to investigate the stability of the stationary
state governed by Eqs. (17) and (18) against perturbation by
a standard linear stability analysis. Introducing small fluctua-
tions around the stationary solution (w0,β0), w′(t) = w(t) −
w0,β

′(t) = β(t) − β0, and linearizing Eqs. (11) and (12)
indicated by them, a set of two linear equations are obtained:

dw′(t)
dt

= Fw(w0,β0)w′(t) + Fβ(w0,β0)β ′(t), (19)

dβ ′(t)
dt

= Gw(w0,β0)w′(t) + Gβ(w0,β0)β ′(t), (20)

where the subscripts w and β denote a derivative with respect
to the respective variable. Assuming the solution of w′(t) and
β ′(t) in exponential form, ∼ exp(E t), the eigenvalue E is

2E = Fw(w0,β0) + Gβ(w0,β0)

± {[Fw(w0,β0) + Gβ(w0,β0)]2

+ 4Fβ(w0,β0)Gw(w0,β0)}1/2. (21)

From Eqs. (11) and (12), we find Fw(w0,β0) = 0,Gβ(w0,

β0) = 0, and

Fβ(w0,β0) = 2w0, (22)

Gw(w0,β0) = − 2

w5
0

+ 2w0

2∑
l=1

Alk
4
l exp

( − k2
l w

2
0

)

+ ε

4
√

2πw4
0

2∑
l=1

Al

[
−3+(

3+2k2
l w

2
0 +k4

l w
4
0

)

× exp

(
− 1

2
k2
l w

2
0

)]
, (23)

which leads to the eigenvalues

E = ±[Fβ(w0,β0)Gw(w0,β0)]1/2. (24)

To investigate the stability, Eq. (18) is first solved to get w0

as a function of ε. This result is then inserted in Eqs. (22)
and (23) to get Fβ(w0,β0) and Gw(w0,β0). The graphical
representation of the two functions is shown in Figs. 3(a)
and 3(b). In the case of a small coefficient ε, we can find
that Gw(w0,β0) < 0 and Fβ(w0,β0) = 2w0 > 0. Thus, both
the eigenvalues from Eq. (24) must be imaginary, and the
localized state from Eqs. (17) and (18) is stable against small
perturbation.

Anderson localization in a weakly disordered potential is
characterized by a long exponential tail of the localized state.
For collisionally homogeneous condensates, the experimental
[5] and theoretical [15] investigations have demonstrated
that the localized BECs have an exponential tail for weakly

1.9
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F
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0,β
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w
(w

0,β
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FIG. 3. (Color online) (a) The dimensionless functions Fβ(w0,β0)
and (b) Gw(w0,β0) versus ε. It shows that the signs of the two
functions are opposite for −1 � ε � 1.

interacting or noninteracting BEC in a quasiperiodic OL. In
order to observe the effect of spatially modulated nonlinearity
on the tail region, we plot in Fig. 4(a) the density distribution
|u|2 of the stationary BEC on log scale. As we see, the long
exponential tail extends from x ≈ ±2 to x ≈ ±20, whereas
the central part of density for |x| < 2 represents a Gaussian
distribution. By an exponential fitting of the exponential
function ∼exp(−|x|/L) to the tails of density distribution,
the localization length L vs ε is illustrated in Fig. 4(b) which
shows that L increases nonlinearly with ε. An increase in ε

represents a decrease in disorder thus resulting in larger values
of localization length.

IV. DYNAMICS OF LOCALIZED STATE

To get further insight into the effects of the spatially modu-
lated nonlinearity ε on the localized states, we now study some
dynamics of the localized state. First, we study numerically
the oscillation of the localized states in an external potential.
According to Eqs. (14)–(16), the motion of the localized BEC
can be approximately regarded as that of a particle inside an
effective potential Veff . Because of the exponential tail and
elasticity of the localized state, although the variational results
may not be good for the dynamical evolution, they can provide
a qualitative physical understanding of the dynamics using
the effective potential. To study the motion of the localized
state, first we create a stationary localized BEC with spatially
modulated nonlinearity in the bichromatic OL. Successively,
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FIG. 4. (Color online) (a) The numerically obtained dimen-
sionless density |u|2 vs dimensionless x for different ε. (b) The
dimensionless localization lengths L vs ε. The localization length
L is obtained by exponential fitting to the tails of density distribution
with ∼exp(−|x|/L).
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FIG. 5. (Color online) The center of the localized state x0 vs
time t (both dimensionless) during the location oscillation initiated
by suddenly introducing an initial momentum p0 = 0.1 by the
transformation u → u0 exp(ip0x) for ε = (a) 1, (b) 0, and (c) −1:
numerical result (full line) and variational result (dotted line).

at t = 0, we suddenly introduce an initial momentum p0 = 0.1
by u(x) → u0(x) exp(ip0x), where u0 is the wave function of
the stationary localized BEC. From the experimental point
of view, the initial momentum can be given by suddenly
moving the OL [34]. It is found that after the perturbation,
the density envelope suffers an abrupt change but remains
localized. Actually, the localized BEC is an elastic object
and not a rigid one. Hence, both the center and the density
distribution of the localized state perform oscillations.

The evolution of the center x0 of the localized BEC as ob-
tained from numerical simulation (full line) is shown in Fig. 5
where x0 is obtained by an instant Gaussian-function fitting to
the central region of the density distribution. The variational
results are also shown in this figure. The top, middle, and
bottom panels correspond to ε = 1,0, and −1, respectively.
We find that, in general, the oscillation of the localized state
could be quasiperiodic after an initial damping, which can be
explained on the basis of energy conservation. Because of the
deformation of the density envelope, a part of the initial kinetic
energy is converted into elastic energy of deformation and this
leads to the damped oscillation. This deformation will be larger
for large ε(=1), when the localized state is loosely bound
with large exponential tail [viz. Fig. 4(a)]. Consequently, an
oscillation of the center x0 with rapidly varying amplitude
is found denoting easy periodic transfer of energy between
location oscillation and deformation. For small ε(= −1), the
localized state is more compact and tightly bound, so that it
can be treated like a rigid object. The exchange of energy is
less probable in that case, and a periodic oscillation of the
center x0 with constant amplitude is found. Eventually, the
energy of deformation is liberated leading to an increase in
the amplitude of oscillation. During the subsequent oscillation
cycle, the conversion between the kinetic energy and elastic
strain energy causes the quasiperiodical movement of the
localized state. In the variational formulation the exchange
of kinetic energy to the energy of deformation is not allowed,

and the resultant oscillation is of a fixed amplitude without
damping. Nevertheless, the numerical frequency of location
oscillation is in agreement with the variational frequency
within an estimated error of about 2.5%. As pointed out in
Sec. III, a positive ε leads to a tighter trapping and vice
versa. Then, with the same initial velocity, the tighter trapping
causes the localized state to oscillate with larger frequency and
smaller amplitude, and a weaker trapping leads to a smaller
frequency and larger amplitude of oscillation as indicated in the
numerical results of Fig. 5. The variational frequency follows
the same trend as ε is changed from positive values to negative
values.

Next we consider a breathing oscillation of the localized
BEC, started by suddenly changing the strength of the
secondary lattice s2 from 3 to 3.5 at t = 0. We investigate
how the breathing oscillation of the localized BEC is changed
by the spatially modulated nonlinearity. Then, the nonlinearity
in Eq. (1), g(x), also changes with the new OL potential. We
present numerical results in Figs. 6(a), 6(b), and 6(c) for the
time evolution of the width w of the localized state for ε = 1,0,
and −1, respectively. The variational equations (11) and (12)
were solved to obtain the oscillation of the central part, and
this result is shown in Fig. 6(d) for ε = 0. (The Gaussian
variational ansatz without any exponential tail only carries
information about the central part.) There are two regions of the
localized state which oscillate with two distinct frequencies: (i)
the central region with Gaussian distribution and (ii) the outer
tail with exponential distribution. The net result is the harmonic
oscillation of the width with a small frequency and large
amplitude due to the oscillation of the exponential tail, which
is modulated by rapid oscillation coming from the central
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FIG. 6. (Color online) Numerical (N) result for dimensionless
pulse width w of the localized state vs dimensionless time t during
breathing oscillation initiated by suddenly changing the strength of
the secondary lattice s2 from 3 to 3.5 for ε = (a) 1, (b) 0, and (c) −1.
We also show the variational result (V) of pulse width w from a
solution of Eqs. (11) and (12) with condition w(t = 0) = 0.9688 and
β(t = 0) = 0.
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Gaussian part. The variational frequency as obtained from Fig.
6(d) is found to be identical with the frequency of modulation
of the numerical width, which confirms that the modulation
in Figs. 6(a), 6(b), and 6(c) is coming from the oscillation of
the central part of the condensate. The renewed oscillation in
Figs. 5 and 6 confirms the stability of the stationary localized
BECs.

V. SUMMARY

In this paper, using the numerical and variational solution
of the time-dependent GP equation, we studied the stationary
and dynamic characteristics of a cigar-shaped localized BEC
with spatially inhomogeneous nonlinearity in a bichromatic
quasiperiodic 1D OL potential. This investigation reveals
that the spatially inhomogeneous nonlinearity produces a
pseudopotential which changes the strength of the disorder and
the height of the quasiperiodic effective potential felt by the
localized BEC. With a larger spatially modulated coefficient
ε, the localization length and Hamiltonian will be larger.

We also study the stability of the stationary localized state
using the linear stability analysis and find it is dynamically
stable under small perturbations. The stability is also verified
by numerical simulation. In respect to dynamics, we inves-
tigate the location oscillation (oscillation of the center) and
breathing oscillation of the localized BEC, and find that both
oscillations are quasiperiodic because of the quasiperiodic
effective potential. The frequency of quasiperiodic oscillations
of the center of the BEC increases as ε increases. For
the breathing oscillations, the two exponential tails also are
symmetric around the center at x = 0. The present study is
useful for an understanding of the statics and dynamics of
Anderson localization and for planning new experiments with
collisionally inhomogeneous BEC.
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