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We numerically model the evolution of a pair of coherently split quasicondensates. A truly one-dimensional case
is assumed, so that the loss of the (initially high) coherence between the two quasicondensates is due to dephasing
only, but not due to the violation of integrability and subsequent thermalization (which are excluded from the
present model). We confirm the subexponential time evolution of the coherence between two quasicondensates
∝ exp[−(t/t0)2/3], experimentally observed by Hofferberth et al. [Nature 449, 324 (2007)]. The characteristic
time t0 is found to scale as the square of the ratio of the linear density of a quasicondensate to its temperature,
and we analyze the full distribution function of the interference contrast and the decay of the phase correlation.
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I. INTRODUCTION

Dephasing and decoherence are phenomena at the heart of
many-body physics that are deeply related to such fundamental
problems as the crossover between quantum and classical
dynamics of complex systems [1], reversibility of physical
processes [2], or quantum information storage and process-
ing [3]. To better understand dephasing and decoherence
phenomena, we need systems which are, on one hand, simple
and theoretically tractable, but on the other hand, available
experimentally. In particular, ultracold, weakly interacting
bosonic atoms offer such an opportunity. In the present paper
we investigate numerically the time-dependent dephasing of
ultracold atomic systems.

A system of identical bosons confined to one-dimensional
(1D) geometry is experimentally realizable with ultracold
atoms trapped on atom chips [4] or in an array of tight
waveguides formed by a 2D optical lattice [5]. The conditions
of one-dimensionality are smallness of the temperature with
respect to the energy quantum h̄ωr of the radial (harmonic)
Hamiltonian,

kBT � h̄ωr, (1)

and smallness of the product of the 3D s-wave atomic
scattering length as and the mean linear density n1D,

n1Das � 1. (2)

A 1D system of identical bosons interacting via contact
pairwise potential is describable in the second quantization
representation by the Hamiltonian

Ĥ =
∫

dz

(
h̄2

2m

∂ψ̂†

∂z

∂ψ̂

∂z
+ g1D

2
ψ̂†ψ̂†ψ̂ψ̂

)
, (3)

where m is the mass of the boson, ψ̂ = ψ̂(z,t) is the bosonic
annihilation field, and g1D is the effective coupling strength
of the 1D contact interaction (in what follows we assume
repulsive interaction, g1D > 0). The system described by this
Hamiltonian supplemented by periodic boundary conditions is
known to be fully integrable with the ground-state properties
and excitation spectrum in the thermodynamic limit given by
the well-known Lieb-Liniger model [6].

Recalling that the coupling strength satisfies g1D = 2h̄ωras

as long as as � lr ≡ √
h̄/(mωr) [7], we see that Eq. (2) requires

smallness of the mean interaction energy per particle with
respect to h̄ωr. Both Eqs. (1) and (2) mean small population
of radially excited modes, either by temperature or interaction
effects, respectively.

In fact, the radial degrees of freedom are always excited
virtually, with the excitation amplitude ∼n1Das. This leads to
the emergence of higher orders in ψ̂†ψ̂ (cubic, etc.) terms
in Hamiltonian, in addition to what is given by Eq. (3).
These terms, corresponding to many-particle (three-particle,
etc.) effective elastic collisions, violate the integrability and
lead to thermalization on a time scale of, at the longest,
∼1/[ωr(n1Da2

s /lr)2] [8]. Virtual radial mode excitations have
been studied even earlier, in the context of soliton decay [9]
or quasi-1D (macroscopic) flow of a degenerate bosonic gas
through a waveguide [10]. However, here we neglect this effect
in order to study purely integrable dynamics.

In what follows, we consider uniform (n1D = const for all
z) and weakly interacting (mg1D/h̄2 � n1D) systems, n1D =
〈ψ̂†

j (z,t)ψ̂j (z,t)〉 being the mean linear density of bosons.

For temperatures below Tqc ∼ (g1Dh̄2n3
1D/m)1/2/kB [11], a

weakly interacting system of bosons is in the quasicondensate
state [12], which means that the operator ψ̂ may be replaced
by a classical complex-valued field with a phase fluctuating
along z (density fluctuations in the practically important
long-wavelength range are suppressed via interactions). In
this regime, not only the phase coherence is maintained,
but also the density-density correlation function at zero
distance approaches 1 (instead of 2, the value characteristic
for a nondegenerate bosonic gas) [11]. The stationary two-
point correlation function of a quasicondensate at a finite
temperature is [13]

〈ψ̂†
j (z,t)ψ̂j (z′,t)〉 = n1D exp(−|z − z′|/λT ), (4)

where the thermal phase-correlation length is

λT = 2h̄2n1D/(mkBT ). (5)

Quantum noise is dominant on length scales shorter than
λT [mg1D/(h̄2n1D)]1/2 � λT [14]. Finite-temperature fluctua-
tions in degenerate bosonic gases in highly anisotropic traps
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have been extensively studied both theoretically [15,16] and
experimentally [17,18].

One of the fundamental questions related to the Lieb-
Liniger model is, how fast will two mutually decoupled
quasicondensates with equal mean linear densities n1D

decohere, if their initial fluctuations are highly correlated
〈ψ̂†

1(z,0)ψ̂2(z,0)〉 ≈ n1D? Each of the quasicondensates has
(upon tracing out the variables of another one) a finite tem-
perature T . The measure of coherence will be the coherence
factor

�(t) = 〈Re( exp{i[ϕ1(z,t) − ϕ2(z,t) − θov(t)]})〉, (6)

where ϕj (z,t) are the local phase operators for the condensate
labeled j . By θov(t) we denote the constant overall phase of
the system (the phase associated with the Goldstone mode)
defined by θov(t) = 2ωras

∫ t

0 dt ′
∫ L

0 dz[|ψ2(z,t ′)|4 − |ψ1

(z,t ′)|4], which was described by Lewenstein and You [19]
(with L the total length of the condensate). From now on, we
replace operators ψ̂1, ψ̂2 by complex random functions ψ1,
ψ2, whose fluctuations account for thermal noise.

We use “operational” definition (6) of the coherence
factor for two reasons: (1) density fluctuations are suppressed
by interatomic repulsion and therefore Eq. (6) is practi-
cally equivalent to the more traditional definition �(t) =
n−1

1D〈ψ∗
2 (z,t)ψ1(z,t)e−iθov(t)〉 (accounting for the correction to

the overall phase), and (2) in a time-of-flight interference
experiment, the relative phase is directly measured, while the
density fluctuations are much harder to detect. We retain the
symbol of the real part in Eq. (6), because (i) the imaginary
part of the expression in curly brackets becomes exactly zero
only after averaging over an infinite ensemble of realization
and is small but finite for real experimental data, and (ii) we
want to be consistent with the notation of Refs. [20,21].

The phase and density fluctuations in a quasicondensate
are calculated from the harmonic approximation to the exact
Hamiltonian (3). In the harmonic approximation, fluctua-
tions are Gaussian with zero mean, and hence Eq. (6)
reduces to

�(t) = exp
{− 1

2 〈[ϕ1(z,t) − ϕ2(z,t) − θov(t)]2〉} . (7)

In experiment [22], a subexponential decay of coherence

�(t) ≈ exp[−(t/t0)α] (8)

has been detected, with the numerical value of α statistically
consistent with the hypothesis

α = 2/3. (9)

Initially there was a single quasicondensate of 87Rb atoms
at the temperature Tin between 82 and 175 nK. Then it was
coherently split into two quasicondensates with the density
n1D each (the values of n1D were in the range from 20 to
52 µm−1). The splitting was made as adiabatic as possible,
so that the initial fluctuation in both quasicondensates just
after their full separation was almost identical. However, the
coherence factor then decayed rapidly as the hold time grew,
according to Eqs. (8), (9), with t0 ∼ 0.01 s, which is an order of
magnitude shorter than the expected thermalization scale for a
nondegenerate system of that density [8]. This obtained t0 was
in a fair agreement with the theory developed by Burkov et al.

[20], which is briefly described later, under the assumption
that the temperature of the two quasicondensates after the
splitting was approximately equal to Tin. However, the range of
parameter variations (the radial trapping frequency was chosen
to be either 2π × 3.3 kHz or 2π × 4.0 kHz) in Ref. [22] is too
narrow to reliably determine the dependence of t0 on n1D, T ,
and ωr.

II. THEORETICAL APPROACHES

The two existing theoretical descriptions [20,21] of
dephasing in 1D quasicondensates share the common basic
model but differ in technical tools to solve it. In both cases
two quasicondensates, described by Eq. (3), are separated
by a potential barrier wide and high enough to make their
tunnel coupling negligible and hence their time evolution after
splitting fully distinct. These quasicondensates are assumed
to have the same mean atomic density and are placed in
two waveguides with the same radial trapping frequency.
The temperature is low enough (kBT <∼ µ ≡ 2h̄ωrn1Das) to
consider only the phononic part of the elementary excitation
spectrum. Although static Eqs. (4), (5) hold also for kBT > µ,
the dynamic theories of Refs. [20,21] rely on the phononic
type of elementary excitations spectrum. In the case kBT > µ,
thermally populated particle-like modes contribute to the
system dynamics, and therefore we expect a deviation of the
law of coherence factor decay from the theoretical predictions
[20,21].

The quantum noise is fully ignored, and excitations are
represented by small-amplitude classical waves. Initially the
fluctuations in both quasicondensates are almost perfectly
correlated. (Initial small interwell fluctuations serve as a seed
noise, whose detailed properties are not “remembered” by the
system in the long-time asymptotic regime and thus do not
affect the final result.)

The theory by Burkov et al. [20] was based on deriva-
tion of a Langevin-type equation with the random source
term correlation and damping-term properties described by
a certain kernel obtained by resummation of diverging
diagrams describing the exchange of quasiparticles between
symmetric [ψ̂+ = (ψ̂1 + ψ̂2)/

√
2] and antisymmetric [ψ̂+ =

(ψ̂1 − ψ̂2)/
√

2] modes. Finally, Burkov, Lukin, and Demler
(BLD) obtained Eqs. (8), (9) with t0 = tBLD

0 ,

tBLD
0 = 2.61πh̄µK/(kBT )2, (10)

where K = π
√

h̄n1D/(2mωras) is the Luttinger-liquid param-
eter of the system. Initially, the symmetric mode is mostly
populated, its initial temperature being T+|t=0 ≈ 2T , and
only a very small number of excitations are present in the
antisymmetric mode because of slightly nonadiabatic splitting.
At large t , the temperatures of two modes equalize, T+ ≈ T− ≈
T . Thus, in a strict sense, Ref. [20] reproduces Eqs. (8), (9)
in the long-time asymptotic limit only, although in experiment
this subexponential coherence decay law was observed even
for t < t0.

The BLD theory has a weak point, however: it predicts
overdamping of modes with energies larger than µ2/(kBTK).
The damping rate of such modes is of the order of or larger
than their frequency. Probably, this result is associated with a
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possible technical overestimation of the resummed divergent
series. It also may stem from the assumption of the purely
linear dispersion law for elementary excitations [20] that
provides a large phase space available for products of a
splitting of one phonon in the positive mode to two phonons
in the negative mode. However, higher order corrections
to the linear phononic dispersion law make this process
energetically forbidden in 1D via a small but unavoidable
energy mismatch. Neglecting the latter fact may also result
in obtaining dynamics of the system that are too fast.
This motivated us to reconsider the problem and to put
forward an alternative explanation of the subexponential
dephasing.

We refer the reader to our previous paper [21] for the details
of the calculations, which are briefly summarized below.
We considered motion of pairs of compact wave packets of
phonons (with the localization size of the order of the carrier
wavelength 2π/k) in two random 1D media with relative
fluctuations of local parameters (density and flow velocity)
and follow their mutual dephasing, ascribing the obtained
dephasing rate to the elementary mode with the momentum
h̄k. The source of mutual dephasing is the dependence of the
phonon frequency ωk on the local density δn and flow velocity
δV fluctuations:

ωk =
(

c + dc

dn1D
δn + δV

)
|k|, (11)

where c = √
µ/m ∝ √

n1D is the speed of sound. Then we
assume that the contribution into the right-hand side of Eq. (11)
comes only from fluctuations with wavelengths longer than
2π/k (the influence of short-range fluctuations is averaged
out). In other words, a propagating wave packet “sees” the
fluctuations only on length scales longer than its carrier
wavelength.

We calculate the statistical properties (the local corre-
lation function at two different instants of time) of the
differences of the fluctuations related to the first and second
quasicondensates, i.e., of δn1 − δn2 and δV1 − δV2, in the
limit of asymptotically long time, when the symmetric and
antisymmetric modes mostly equilibrate. The estimation for
the dephasing rate �k for the two wave packets with the
momentum h̄k propagating in two parallel quasicondensates
gives

�k ∼ c|k|
[

5

8

∫ k

−k

dk′

2π

kBT

µn1D

]1/2

= ς

√
kBT

mn1D
|k|3/2. (12)

Here we estimate ς ≈ √
5/(8π ) ≈ 0.446. This estimation

stems from our sharp-cutoff assumption. A different model,
using some smooth function to eliminate the influence of
modes with momenta � h̄k, would give another value for ς .
However, later we shall see that ς ≈ 0.446 is quite a reasonable
value. Note that Eq. (12) does not predict overdamping of the
modes with the energies close to kBT <∼ µ: their damping rate
is less than their frequency by a factor ∼K.

The shorter the wavelength of a mode, the faster this mode
equilibrates. The integrated coherence factor is then

�(t) = exp

{
− mkBT

2πh̄2n1D

∫ ∞

−∞
dkk−2[1− exp(−�kt)]

}
. (13)

Since �k ∝ |k|3/2, we obtain by integration �(t) =
exp[−(t/t0)2/3] but with t0 = tMS

0 [21],

tMS
0 = κ

h̄3n2
1D

m(kBT )2
= κ

4

mλ2
T

h̄
, (14)

where κ ≈ 2.85 if we take ς = 0.446. Seems to be deeply
related that tMS

0 does not depend on c and, hence, on the atomic
interaction strength in the limit K � 1, seems to be deeply
related to the independence of the thermal correlation length
λT [Eq. (5)] on c in the static regime.

III. NUMERICAL MODEL

We directly simulated the time evolution of two 87Rb
quasicondensates by solving (by a split-step spectral method
[23]) two Gross-Pitaevskii equations with initial conditions
chosen randomly corresponding to Bose-Einstein statistics of
classical (thermal) excitations in phase and density waves.
The local phase φj and density nj , j = 1,2 values in the first
and second condensates are expressed through the respective
values for the symmetric and antisymmetric modes (the local
velocity is related to the phase as Vj = (h̄/m)∂φj/∂z. At t = 0
they are

φ1,2(z,0) = φ+(z,0) ± φ−(z,0)√
2

,

(15)

n1,2(z,0) = n1D + δn+(z,0) ± δn−(z,0)√
2

,

where the fluctuations for the positive and negative modes are
specified below.

A. Initial conditions: The splitting process

Exact values of these fluctuations depend on the details
of the splitting process and its nonadiabaticity. (For example,
for the regime of the linear decrease of the tunnel coupling
between two quasicondensates the population of phonons in
the negative mode is expressible via Bessel functions [24].)
However, without exact knowledge of the splitting process,
we can only give an estimation of the initial fluctuations. In
the present paper we approximate the initial populations of the
symmetric and antisymmetric elementary excitation modes by
thermal distributions with the temperatures T+ and T− = ηT+,
η � 1, respectively. In the course of subsequent evolution, the
temperatures of the positive and negative modes equalize and
approach [(1 + η)/2]T+.

The particular choice of this parameter (η = 0.1 in our
simulation) and the stability of our results against its variations
are discussed in Sec. IV.B. The initial fluctuations appearing
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in Eq. (15) are given by

δn±(z,0) = 2

√
n1D

L

∑
k

√
SkB

±
k cos(kz + ζ±

k ),

(16)

φ±(z,0) = 1√
n1DL

∑
k

1√
Sk

B±
k sin(kz + ζ±

k ),

where Sk = |k|/
√

k2 + 4mµ/h̄2. Here the sum is taken over
k = 2πMk/l, where Mk is a nonzero integer number run-
ning from −Mmax to Mmax. The phases ζ±

k are uniformly
distributed between 0 and 2π , and B±

k is a positive number
whose square has the exponential probability distribution
dP (|B±

k |2)d|B±
k |2 = 〈|B±

k |2〉−1 exp(−|B±
k |2/〈|B±

k |2〉).
In the present paper, we completely neglect the quantum

noise (zero-point oscillations of quantized local density and
phase), since taking it into account severely limits the time
scale of reliable numerical integration of equations of motion
of the system in the truncated Wigner approximation [25].
Since we take into account only classical (thermal) excitations,
we have

〈|B±
k |2〉 = kBT±√

h̄2k2

2m

(
h̄2k2

2m
+ 2µ

) , (17)

Here is the difference between our approach and that of
Bistritzer and Altman [26], who simulated the dephasing of
two quasicondensates with only quantum (T− = 0) fluctu-
ations in the antisymmetric mode at t = 0. Using pseudo-
random numbers ξ±

k,1 and ξ±
k,2 uniformly distributed between 0

and 1, we obtain the amplitude and phase of the excitation in
a given mode:

B±
k =

√
〈|B±

k |2〉| ln ξ±
k,1|, ζ±

k = 2πξ±
k,2. (18)

B. Numerical method

For obtaining reliable random numbers for the choice
of initial states, we employ the pseudo-random number
generator of Wichmann and Hill [27], implemented here as a
fourfold combined multiplicative congruential generator. We
use periodic boundary conditions with a simulation interval
length which is of the order of the longitudinal extension of
the condensate.

Then the time-dependent Gross-Pitaevskii equation is
solved by a fourth-order Fourier split-step method in which the
corresponding time-dependent coherence factor is calculated
and then averaged over a large enough sample of random
realizations of this simulation. The resolution of the Fourier
approximation is chosen such that the maximum energy of
the quasiparticle (corresponding to the shortest resolvable
wavelength) exceeds kBT , thus preventing the overestimation
of the interwell coherence.

We obtained reliable (stable and convergent) results in the
parameter range spanning over half an order of magnitude in
both the temperature T (from 30 to 100 nK) and the mean
densities n1D (from 30 to 100 µm−1) with an additional
constraint (to be discussed below). Reliable results were
obtained for a density-to-temperature ratio less than or of
the order of 1 nK−1µm−1. Further increase of this ratio
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FIG. 1. (Color online) Typical distribution of the relative phase
θ (z,t) = φ1(z,t) − φ2(z,t) along the quasicondensate axis at several
hold times between t = 0 and t = 0.25 s. n1D = 50 µm−1, T+ =
50 nK.

resulted in the appreciable dependence of the results on the
grid size, which we could not eliminate within a reasonable
range of the space and time steps. We also varied the
effective 1D coupling strength by increasing the radial trapping
frequency from 2π × 3 kHz to 2π × 9 kHz. Typical results are
shown in Fig. 1.

IV. NUMERICAL RESULTS

A. Full distribution function of interference

In Fig. 2 we illustrate the numerically obtained temporal
evolution of the two-condensate joint full distribution function
(FDF) in the spirit of Ref. [28]. On polar plots shown in
Fig. 2, the polar radius of a point gives the contrast C of
the interference fringes integrated over the sampling length
Lsam, and the polar angle is the phase � of such an integrated
interference pattern. The FDF (in arbitrary units) is shown as
a false color density plot.

Locally, the relative phase randomizes rapidly; we can see
that from Fig. 2(a). However, since the correlation length of
the phase in each quasicondensate is λT , the contrast does not
decrease significantly as long as Lsam <∼ λT . As we increase
the sampling length, the local phases become more and more
averaged out, and for the parameters of Fig. 2(b), the contrast
C begins to decrease first and then the distribution of � starts
to spread. Remarkably, even at times as long as 0.25 s there
are still many realizations yielding C close to 1.

Note that in our analysis we assumed equal mean atom
numbers in the two quasicondensates. The splitting process,
which always happens in finite time, causes fluctuations
of the relative number difference between two wells and
hence provides an additional mechanism for the global phase
diffusion [29,30]. Experimentally observed [22] high initial
phase coherence signifies uncertainty of the interwell atom-
number difference (otherwise the overall phase would be
completely random). However, the phase diffusion affects only
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FIG. 2. (Color online) Time evolution of the full distribution
function shown as a false-color density plot (dark-blue: zero density;
red: maximum density) derived from 3000 numerical runs, where
n1D = 50 µm−1and T+ = 50 nK. Increasing times from top to bottom,
between 0 and 0.25 s. Sampling length: Lsam = 6µm for left column,
Lsam = 50µm for right column. Units on the axes are dimensionless.

the global phase and not the coordinate-dependent noise and
correlation properties. The global phase can be eliminated
during the elaboration of experimental data and is therefore
not a major hurdle to experimental studies of dephasing.

B. Evaluation of the coherence factor

Upon evaluating our simulated data, we obtained a subex-
ponential decay of the coherence factor consistent with
Eqs. (8), (9) in a wide range of parameters (see Fig. 3). Before
proceeding further, we discuss our choice of the parameter η,
the initial ratio of the temperatures in the positive and negative

0.05 0.1 0.2 0.3
−1

−0.5

0

0.5

t  (s)

ln
 | 

ln
 (

 Ψ
/ Ψ

0 )
  |

0.6

0.5

0.4

0.3

0.2

Ψ
 / 

Ψ
0

FIG. 3. (Color online) ln | ln �| as a function of time for different
values of η = T−

T+ : η = 0.14 (red solid line), 0.1 (blue dashed line),
0.08 (cyan dash-dotted line), and 0.06 (green dotted line). Logarithmic
scale for time. Straight solid line with crosses at the ends shows slope
of 2/3. n1D = 50 µm−1, and T+ = 70 nK for all curves.

modes, and the sensitivity of our results to changes of this
parameter.

For all the simulations, presented beginning from Fig. 4,
we used η = 0.1. We choose this value because it gives the
initial contrast that agrees with the experimental data [22]
[�(0) ≈ 0.9 for a condensate of the length ∼100 µm]. A
description of the initial fluctuations beyond our model of
thermal fluctuations at temperature T− = ηT+ would require
a detailed knowledge of the splitting process.

We checked the sensitivity of our simulations to the choice
of the parameter η. A plot of ln | ln �| versus ln t is shown
in Fig. 3. Note that the slope of the subexponential decay
is varying only slightly. This means that the subexponential
decay with α = 2/3 is quite insensitive to initial conditions
within the given range of η. However, it remains unclear why
this regime, which appears as asymptotic in both existing
theories [20,21], sets in after a very short time (only a few
milliseconds).

We now turn to the question of the decoherence time and
how it scales with the different parameters of the 1D system.
In Fig. 4 we show numerically obtained values of t0 as a
function of n1D. In Fig. 5 we show a plot of t0 versus the ratio
n1D/T+. We discern two different ranges of parameters. If
n1D/T+ <∼ 1 nK−1µm−1, we observed a subexponential decay
of � with the value of α from the interval between 0.66 and
0.69. The corresponding decay time is fitted by the formula

t0 ≈ 6.4
h̄3n2

1D

m(kBT+)2
= 1.6

mλ2
T

h̄

∣∣∣∣
T =T+

. (19)

Since in our calculations we took η = 0.1, and hence the
temperature of both (+ and −) modes close to their equili-
bration is T ≈ 0.55T+, Eq. (19) corresponds to Eq. (14) with
κ ≈ 1.9, which agrees by the order of magnitude with κ ≈ 3
approximately evaluated in our theoretical model. Figure 4
shows the fitting of t0 by Eq. (19).

For n1D/T+ >∼ 1 nK−1µm−1, our numerical method starts
to fail. We are still able to fit the contrast decay by the
formula (8) with α � 0.7, but the corresponding values of
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FIG. 4. (Color online) Dephasing time t0 as a function of
mean density n1D for different values of temperature T+. Symbols:
simulation results, thin line: Eq. (19). T+ = 70 nK (blue asterisks and
cross) and 90 nK (red squares).

t0 do not obey Eq. (19) anymore, and we have instead t0 ≈
(m/h̄)λ1.67

T b0.33, where the length b depends on the grid size,
thus indicating a numerical artefact. A possible explanation
for such behavior is that for small temperatures and high
densities the interwell coherence persists for a long time,
and the numerical error in simulations accumulates faster
than the actual “physical” dephasing occurs, thus yielding the
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FIG. 5. (Color online) Dephasing time t0 as a function of the
ratio n1D/T+. Solid blue line: Equation (19). Symbols: simulation
results, up triangles: T+ = 50 nK, square: T+ = 60 nK, open circle:
T+ = 65 nK, down triangles: T+ = 70 nK, cross: T+ = 75 nK,
filled circle: T+ = 80 nK, diamonds: T+ = 90 nK. Inset: the ratio
of numerically obtained values of t0 to the values of t0 given by
the fitting Eq. (19). The deviation of this ratio by 15% from unity
(horizontal dashed line) for the leftmost point is due to temperature
high enough to significantly populate particle-like states and thus
violate the assumption of the phononic dispersion law underlying
Eq. (19). The next point shows the same tendency, but to less extent.
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FIG. 6. (Color online) �(t) for several values of radial trapping
frequency ωr, n1D = 50 µm−1, and T+ = 70 nK. ωr = 2π × 3 kHz
(blue diamonds), 2π × 6 kHz (green asterisks), and 2π × 9 kHz (red
squares).

dephasing time dependence on the grid size. This explanation,
while not yet fully corroborated, is at least in accordance with
the accelerated (α > 0.7) decay of simulated coherence in
the problematic parameter range. The blue cross in Fig. 4
corresponds to a parameter set from this regime.

In the case where kBT+ > µ, t0 starts to deviate from
Eq. (19). The reason is that the theory resulting in Eqs. (14)
or (19) is based on the assumption that only the phononic part
of the Bogoliubov spectra is occupied. This case corresponds
to the first two leftmost values of Fig. 5.

In the range of applicability of Eq. (19), we checked the
independence of our result on the interaction strength (see
Fig. 6 for a plot of � for different values of radial trapping).
The only differences visible in this comparison result from
statistical fluctuations. This independence of the time evolution
of the coherence factor on the interaction strength confirms the
validity of the theoretical model proposed in Ref. [21].

C. Correlation function

Additionally, we investigated correlation properties of
the interwell coherence, which are an important tool for
understanding the quasicondensate properties [14,31,32]. By
knowing the interwell coherence autocorrelation function,
one can, under Gaussian fluctuation assumption, numerically
construct distribution of the coherence factor (and the asso-
ciated phase of the integrated interference pattern) for any
sampling length. In contrast to these previous works, we deal
now with nonstationary correlation properties. We express the
autocorrelation function of the interwell coherence via a new
function �(z − z′,t) as

〈ψ̂†
1(z)ψ̂2(z)ψ̂†

2(z′)ψ̂1(z′)〉 ≡ n2
1D exp(−�), (20)

� being determined mainly by phase fluctuations (density
fluctuations are suppressed by interatomic repulsion in the
phononic regime). Analogously to Eq. (7), we may write

� = − 1
2 〈[ϕ1(z,t) − ϕ2(z,t) − ϕ1(z′,t) + ϕ2(z′,t)]2〉. (21)
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We calculate the right-hand side of Eq. (21) by generalizing
the formula obtained by Whitlock and Bouchoule [31], where
we set the interwell tunnel coupling to zero and assume that in
the transient regime, mean population of each antisymmetric
mode is given by its own temperature Tk(t), which depends on
the mode momentum h̄k and evolves in time approximately
as [21]

Tk(t) = T− − T+
2

exp(−�kt) + T− + T+
2

(22)

[cf. Eq. (13), where η = T−
T+

� 1 is neglected]. Thus we write

� = 2

π

∫ ∞

0
dk

mkBTk(t)

h̄2n1D
(1 − cos k|z − z′|). (23)

We expand cos k|z − z′| in series in powers of its argument,
perform integration over k for each term expressing the
integrals via the gamma-function �(s) = ∫ ∞

0 dxe−xxs−1, and
reassemble the obtained terms into hypergeometric series

nFm(b1, . . . ,bn; c1, . . . ,cm; x) = 1 + b1b2 . . . bn

c1c2 . . . cm

x

1!

+ b1(b1 + 1)b2(b2 + 1) . . . bn(bn + 1)

c1(c1 + 1)c2(c2 + 1) . . . cm(cm + 1)

x2

2!
+ . . . .

Finally, we arrive at the following expression:

� = 2|z − z′|
λT

[
1 − 4(1 − η)

3π (1 + η)
�(|z − z′|/a)

]
, (24)

where λT is to be evaluated at the equilibrated temperature T ≡
T∞ = (T+ + T−)/2. The new auxiliary function � depends on
z̃ = |z − z′|/a only, where

a =
(

kBT∞ς2t2

mn1D

)1/3

, (25)

and � can be expressed via hypergeometric series as
follows:

�(z̃) = 1

z̃

{
�

(
2
3

)
z̃2

2
3F4

(
1

6
,

5

12
,
11

12
;

1

2
,
5

6
,
7

6
,
4

3
; − 4

729
z̃6

)

− z̃4

24
4F5

(
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2
,
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4
,1,

5

4
;

5

6
,
7

6
,
4

3
,
3

2
,
5

3
; − 4

729
z̃6

)

+�

(
−2

3

)

×
[

1 −3F4

(
−1

6
,

1

12
,

7

12
;

1

6
,
1

2
,
2

3
,
5

6
; − 4

729
z̃6

)]}
.

(26)

where � changes significantly on a time scale t0. At
t = 0 we have � = [4η/(1 + η)]λ−1

T |z − z′| � |z − z′|/λT .
In the opposite limit t � t0 we have a → ∞, z̃ → 0 for
any finite coordinate difference, � → 0, and therefore � =
2|z − z′|/λT .

An important advantage of the autocorrelation function (20)
is its independence of the global phase diffusion [19,29,30].
Therefore the theoretical predictions for the autocorrelation
function (20) admit direct comparison to experiment, unlike
the contrast �, which needs a correction to the phase diffusion.
If the latter effect cannot be neglected, the direct comparison
of experiment to theory in terms of the contrast � is hindered,

FIG. 7. (Color online) Function � (dimensionless) that defines
the autocorrelation function of the interwell coherence Eq. (20) vs
the coordinate difference. Special symbols: numerical simulation
results. Lines: fitting with ς = 1.0. The quasicondensate parameters
are n1D = 40 µm−1, T+ = 30 nK. The time elapsed after the end of
the coherent splitting process is t = 0.1 s (asterisks, dashed line),
0.2 s (diamonds, solid line), and 0.5 s (crosses, dot-dashed line).

because unambiguous reconstruction of the global phase shift
from the measurements in each experimental run is practically
very difficult.

In Fig. 7 we display the simulated values of � and their
fitting by Eqs. (24)–(26) at various times t . The only fitting
parameter is ς , whose value is found to be ς ≈ 1.0, which is
in fair agreement with the value ς ≈ 0.74 that corresponds to
the numerical prefactor in Eq. (19) and is not too far from the
estimated value ς = 0.446.

D. Comparison to experiment

In the experiment [22] the temperature Tin before split-
ting was known, and the temperature Tf after splitting and
equilibration between the positive and negative modes was
estimated using the theory of Ref. [20]. Now we repeat the
same procedure using our Eq. (19). Recalling that η � 1, we
estimate Tf ≈ 0.5T+, where T+ is obtained from Eq. (19) and
t0 is given by the experiment for certain Tin and n1D. The
results are presented in Fig. 8. Surprisingly, the values of Tf

estimated from the two models of [20] and [21] are quite close
to each other and are similar to Tin. The radial frequency range
employed in [22] (from 2π × 3.3 kHz to 2π × 4 kHz) is too
narrow to allow unambiguous determination of the dependence
of t0 on ωr.

1. Relation between T+ and Tin under adiabatic
splitting conditions

Obtaining the relation between T+ and Tin is a subtle matter,
not covered by the existing theories. Here we propose a way
to estimate the ratio T+/Tin from simple considerations. The
adiabaticity of the splitting process means that the entropy
(but not the energy) is conserved. In other words, populations
of the momentum states should not change in the course of

023618-7



STIMMING, MAUSER, SCHMIEDMAYER, AND MAZETS PHYSICAL REVIEW A 83, 023618 (2011)

50 100 150 200

50

100

150

200

T
in

  (nK)

T
f  (

nK
)

FIG. 8. (Color online) Final temperature after equilibrating in
experiment extrapolated by Eq. (19) (open triangles) and by theory
of Ref. [20] (filled triangles). At radial frequency 2π × 3.3 kHz
(smaller symbols): background density n1D = 20 (left triangles),
34 (up triangles), and 52 µm−1 (right triangles). At radial frequency
2π × 4.0 kHz (larger symbols): background density n1D = 22 (left
triangles), 37 (up triangles), and 51 µm−1 (right triangles).

splitting. Just after the splitting most of the noise occurs in the
symmetric mode. However, the speed of sound in the positive
mode changes, as we show below.

Indeed, the speed of sound c is to be calculated from the
formula

mc2 = 4πh̄2as

m

∫
dx

∫
dy|�⊥(x,y)|4ntot, (27)

where �⊥(x,y) is the wave function (normalized to 1) of the
ground state of transverse trapping Hamiltonian. To lowest
order, we neglect the influence of the atomic interactions on
the transverse profile of the quasicondensate [10], in agreement
with our assumption of a truly 1D regime. Equation (27)
applies for both single- and double-well potential shape,
ntot = 2n1D being the total linear density of atoms in the
system.

The fundamental frequency of the transverse trapping
potential is ωr before splitting. Therefore initially

� in
⊥ (x,y) = (

√
πlr)

−1 exp
[ − (x2 + y2)/

(
2l2

r

)]
. (28)

The splitting is designed so that in the end the fundamental
frequency of the radial oscillations in each of the two
waveguides is again ωr. Therefore,

�as
⊥ (x,y) ≈ [� in

⊥ (x − w,y) + � in
⊥ (x + w,y)]/

√
2 (29)

is to be substituted into Eq. (27) to determine the speed of
sound after splitting. The separation 2w between the two
waveguides is so large that the overlap between the wave func-
tions localized near x = ±w,y = 0 is negligible, as it must be
in the zero-tunneling case. From Eqs. (27)–(29) one can easily
see that the speed of sound drops after splitting by

√
2.

As we discussed before, adiabatic splitting conserves
the mode populations. If the temperature is comparable to
the chemical potential, phononlike modes (with the energy
linearly proportional to the speed of sound) dominate. For each
momentum h̄k the ratio h̄c|k|/T should be the same before and
after the splitting (we denote the respective values of the speed
of sound by cin and cas). Therefore, we expect

T+
Tin

= cas

cin
= 1√

2
. (30)

However, T+ can be affected by nonadiabatic effects, which
are far beyond our 1D approach, such as heating via creation
of vortices in the course of splitting and their subsequent
decay [33] or heating by technical noise. Therefore it is
extremely difficult to reliably predict a priori the ratio T+/Tin

and, moreover, Tf/Tin.

V. CONCLUSION

To conclude, we simulated numerically the evolution of
two coherently split quasicondensates in a broad range of
experimentally feasible densities, temperatures, and effective
1D coupling strengths (radial trapping frequencies). We
reproduced the subexponential decay Eq. (8) of the interwell
coherence with α very close to the observed [22] and theoreti-
cally predicted [20,21] value 2/3. Our characteristic dephasing
time t0 varies quadratically with the ratio of the linear density to
the temperature (as long as kBT is smaller than the chemical
potential and thus only the phonon part of the elementary
excitation spectrum is thermally excited) and does not depend
on the 1D coupling strength. The latter fact has its static
counterpart—the independence of thermal phase-coherence
length λT of a quasicondensate on the speed of sound c [13]
[see Eq. (5)]. In other words, the typical dephasing time
scales as t0 ∼ mλ2

T /h̄, in accordance with our model [21]. This
conclusion is corroborated by analysis of autocorrelation of the
interwell coherence during the dephasing process. Although
comparison to the experiment [22] does not show the clear
preference of one of the two theories [20,21] over another,
our numerical simulations in a broad range of parameters
unambiguously support our theory [21].
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