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Bose-Einstein condensation with a finite number of particles in a power-law trap
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Bose-Einstein condensation (BEC) of an ideal gas is investigated, beyond the thermodynamic limit, for a
finite number N of particles trapped in a generic three-dimensional power-law potential. We derive an analytical
expression for the condensation temperature Tc in terms of a power series in x0 = ε0/kBTc, where ε0 denotes the
zero-point energy of the trapping potential. This expression, which applies in Cartesian, cylindrical, and spherical
power-law traps, is given analytically at infinite order. It is also given numerically for specific potential shapes as
an expansion in powers of x0 up to the second order. We show that, for a harmonic trap, the well-known first-order
shift of the critical temperature �Tc/Tc ∝ N−1/3 is inaccurate when N � 105, the next order (proportional to
N−1/2) being significant. We also show that finite-size effects on the condensation temperature cancel out in a
cubic trapping potential, e.g., V (r) ∝ r3. Finally, we show that in a generic power-law potential of higher order,
e.g., V (r) ∝ rα with α > 3, the shift of the critical temperature becomes positive. This effect provides a large
increase of Tc for relatively small atom numbers. For instance, an increase of about +40% is expected with
104 atoms in a V (r) ∝ r12 trapping potential.
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I. INTRODUCTION

Bose-Einstein condensation, first predicted in the years
1924-25 [1], was observed in 1995 on rubidium and sodium
vapors [2,3]. These remarkable experiments have generated
since then a clear interest in the critical properties of this
dilute macroscopic quantum state of matter. In particular,
the transition temperature Tc is a crucial parameter whose
exact determination has been a matter of discussion for
decades [4,5].

It is indeed rather difficult to estimate the influence of
atomic interactions on the condensation temperature for a
uniform dilute weakly interacting Bose gas. This comes
from the fact that this is a many-body problem affected by
long-range critical fluctuations which have to be described
nonperturbatively [4–6]. As a consequence, many different
predictions were produced since the late 1950s, like an increase
or even a decrease of Tc proportional to

√
as , to as , to a

3/2
s or

even to as ln as , where as denotes the atomic s-wave scattering
length [5]. It is only in 1999 that this question was settled
with the rigorous demonstration of the linear increase of
the critical temperature with as [7]. It was later shown [8]
that the relative correction �Tc/T 0

c behaves at second order
as c1δ + (c′

2 ln δ + c′′
2)δ2, where T 0

c denotes the condensation
temperature of the ideal gas in the thermodynamic limit, and
δ = ρ1/3as , ρ being the (uniform) atomic density. In this
expression, c1 ≈ 1.32, c′

2 ≈ 19.75, and c′′
2 ≈ 75.7 [6].

On the other hand, in a harmonic trap long-range critical
fluctuations are suppressed, and the leading (linear) order
correction to Tc can be calculated by simple perturbative
methods [9]. Using a nonperturbative approach, it was shown
in 2001 that in such a potential the relative correction �Tc/T 0

c

behaves also at second order as c1δ
′ + (c′

2 ln δ′ + c′′
2)δ′2, with

δ′ = as/λT , λT being the thermal de Broglie wavelength [10].
In this case, c1 ≈ −3.426, c′

2 ≈ −45.86, and c′′
2 ≈ −155.0 [6].

These results were then extended to power-law potentials by
Zobay et al. in a series of beautiful papers first using mean-field
theory [11], then using renormalization-group theory [12,13],
and later on using variational perturbation theory [14]. These
different theoretical studies helped bridge the gap separating
homogeneous from inhomogeneous potentials by showing
how an increasingly inhomogeneous potential suppresses the
influence of critical fluctuations. In these studies, the shape of
the potential could be summarized by a simple parameter η

which varies between 1
2 for the uniform gas (homogeneous

case) and 2 for the (inhomogeneous) harmonic trap. In
Ref. [14], it was shown, for instance, that critical fluctuations
have a marginal impact on the transition temperature when
η > 0.7 for λT � as .

The amplitude of the corrections due to atomic interactions
increases, of course, with the number of particles. On the other
side, independent of atomic interactions, with a finite number
of particles the transition temperature is different from the one
obtained in the thermodynamic limit. In the case of a harmonic
trap, this finite-size effect results in a downward shift of the
transition temperature, which is, at lowest order, linear in the
zero-point energy of the trapping potential [15–17].

Following these developments, the present paper deals with
higher-order finite-size corrections in a harmonic trap and in
a generic power-law potential. In our approach, the trapped
Bose gas is described within the local-density approximation.
We also adopt an approach which is only valid in the case of
an inhomogeneous trap. Indeed, a nonperturbative treatment
is necessary for an accurate estimation of Tc in the case of the
uniform gas [18].

The plan of the paper is as follows. In Sec. II, we introduce
our theoretical model. We derive a general expression for
finite-size effects in Sec. III. The next section, Sec. IV, is
devoted to the discussion of a specific application in the case
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of atoms confined in a crossed blue-detuned optical trap. In the
final Sec. V, we present a short summary of our main results.

II. THEORETICAL MODEL

A. Generic trapping potential

For the sake of universality, and in order to treat Cartesian,
cylindrical, and spherical traps on an equal footing, we
follow the approach chosen in Ref. [19]. We thus consider
a degenerate Bose gas trapped in a generic three-dimensional
power-law potential,

U (r) =
q∑

i=1

Ui

∣∣∣∣ ri

di

∣∣∣∣αi

, (1)

where ri , with i ∈ {1, . . . ,q}, are the q radial coordinates in the
ni-dimensional subspace of the three-dimensional space (see
Table I for details). Ui and di are energy and length scales
associated with the trap. The subdimensions ni obviously
verify

q∑
i=1

ni = 3. (2)

Table I gives, with the practical expression of the trapping
potential U (r) of Eq. (1), a summary of the different parameters
involved in Cartesian, cylindrical, and spherical coordinate
systems.

In order to study finite-size corrections to the ideal conden-
sation temperature T 0

c obtained in the thermodynamic limit,
we first define the volume of the trap V (ε) which includes the
portion of space where U (r) � ε. The variable ε denotes here
an arbitrary energy. Formally, this volume can be written as

V (ε) =
∫ ∫ ∫

U (r)�ε

d3r. (3)

For an isotropic harmonic trap of angular frequency ω, this
definition gives a volume of 4

3πa3
h at the energy ε = 1

2h̄ω,
where ah is the usual characteristic length of the harmonic
trap. In the general case, integration over the three-dimensional
space yields the expression

V (ε) = θ �̃

�
(
η + 1

2

) εη−1/2, (4)

where

�̃ =
q∏

i=1

�

(
1 + ni

αi

)
d

ni

i U
−ni/αi

i , (5)

and where θ = 8, 2π, or 4π/3 in the case of a Cartesian,
cylindrical, or spherical trap, respectively. In these equations,

�(x) denotes the complete gamma function [20]. In addition,
in Eq. (4), η denotes a very important parameter which
characterizes the shape of the potential. This parameter is
defined by

η = 1

2
+

q∑
i=1

ni

αi

. (6)

One can see in this last equation that the shape parameter
η equals 2 in a harmonic trap corresponding to αi = 2(∀i),
while η equals 1

2 for a square-well potential corresponding
to αi → ∞(∀i). Intermediate values 1

2 < η < 2 correspond
to the different cases of power-law potentials, as defined in
Eq. (1).

B. Density of states

In the theoretical description of Bose-Einstein condensation
within the local-density approximation, three-dimensional
integrals of functions of the trapping potential U (r) are
common. They can be greatly simplified using the following
transformation [11]:∫ ∫ ∫

f (U (r)) d3r =
∫

f (ε)v(ε) dε, (7)

where the spatial volume v(ε)dε of the equipotential shell of
U (r) with width dε at energy ε can be obtained from Eq. (4).
This yields

v(ε) = θ �̃

�
(
η − 1

2

) εη−3/2. (8)

The transformation (7) is, for instance, helpful for the
determination of the density of states g(ε) associated with the
generic trapping potential U (r). In a semiclassical approach,
this density is given by

g(ε) = 1

h3

∫ ∫ ∫
d3r

∫ ∫ ∫
d3p δ(ε − εcl(r,p)), (9)

where p is the momentum vector of the atom and where, in the
case of the ideal gas, εcl(r,p) denotes the dispersion relation

εcl(r,p) = p2

2m
+ U (r), (10)

m being the atomic mass. In expression (9), δ(x) denotes
the Dirac δ function. Since εcl(r,p) does not depend on the
orientation of the momentum vector but on its magnitude only,
one can integrate over the momentum coordinate to find [21]

g(ε) = m3/2

21/2π2h̄3

∫ ∫ ∫
[ε − U (r)]1/2d3r. (11)

TABLE I. Trap parameters q and ni , with i ∈ {1, . . . ,q}, and associated trapping potential U (r). The lines (a), (b), and (c) correspond to
Cartesian, cylindrical, and spherical power-law traps, respectively.

q n1 n2 n3 U (r)

(a) Cartesian trap 3 1 1 1 U1|x/d1|α1 + U2|y/d2|α2 + U3|z/d3|α3

(b) Cylindrical trap 2 2 1 U1 (ρ/d1)α1 + U2 |z/d2|α2

(c) Spherical trap 1 3 U1 (r/d1)α1
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FIG. 1. (Color online) Schematic representation of a one-
dimensional harmonic trapping potential V (x) ∝ x2 (solid curved
blue line in the left panel) and of a one-dimensional power-law
trapping potential V (x) ∝ x12 (solid curved blue line in the right
panel), with their associated energy level structures.

Integrating this expression using the transformation (7) then
yields

g(ε) = 1

h̄3

(
m

2π

)3/2
θ �̃

�(η + 1)
εη. (12)

Consequently, g(ε) is proportional to ε2 for a harmonic trap
and to

√
ε in the homogeneous limit corresponding to η → 1

2 .
This strong evolution of the density of states as a function of
the shape of the potential could already be inferred from Fig. 1,
which shows a schematic representation of a one-dimensional
harmonic potential (left side) and of a one-dimensional power-
law potential V (x) ∝ x12 (right side), with their associated
energy-level structures. These two traps of different shapes
are characterized by very different energy-level structures,
and are therefore characterized by very different densities
of states. Since the condensation process consists of an
amplified growth of the ground-state population resulting from
stimulated collisions of atoms in a thermal reservoir, these
very different densities of states lead to different condensation
temperatures [22], but also, as we will see hereafter, to different
corrections due to finite-size effects.

C. Ideal condensation temperature in the thermodynamic limit

Assuming that, at the condensation temperature, the number
of condensed atoms is negligible, one can evaluate the total
number of particles N as

N =
∫ ∫ ∫

nT (r) d3r, (13)

where the spatial density distribution of the thermal gas is
given, in the local-density approximation, by

nT (r) = 1

λ3
T

g3/2

(
exp

[
µ − U (r)

kBT

])
. (14)

In this expression, µ is the chemical potential and λT is the
thermal de Broglie wavelength at the absolute temperature T ,

λT =
√

2πh̄2

mkBT
. (15)

gs(z) denotes the Bose function of order s, which, for our
purposes, can be considered as defined in terms of its series
representation

gs(z) =
∞∑

k=1

zk

ks
. (16)

In the case of an ideal gas in the thermodynamic limit, the
critical value of the chemical potential is µ = 0. Introducing
this value in Eq. (14) and integrating Eq. (13) using transfor-
mation (7) yields

N = θ �̃

h̄3

(
m

2π

)3/2

ζ (η + 1)
[
kBT 0

c

]η+1
, (17)

from which the critical temperature T 0
c of the ideal gas in the

thermodynamic limit can be obtained. T 0
c therefore varies as

N1/(η+1), the shape parameter η being defined in Eq. (6). Since
1
2 � η � 2, we see already that the shape of the potential has
a strong impact on the dependence of the critical temperature
T 0

c with the number of particles [22].

III. FINITE ATOM NUMBER CORRECTIONS

A. Derivation of the shift

For a finite number of ideal particles, the zero-point energy
of the trapping potential cannot be neglected anymore and the
critical value of the chemical potential is bounded by µ = ε0.
Following the method used previously to derive Eq. (17), one
can introduce this value of µ in Eq. (14) and integrate Eq. (13)
using transformation (7) to obtain a new expression for the
total number of atoms which is very similar to Eq. (17):

N = θ �̃

h̄3

(
m

2π

)3/2 (η|x0)∞x0

�
(
η − 1

2

) [kBTc]η+1, (18)

where

(η|x0)ba =
∫ b

a

g3/2(ex0−x)xη−3/2 dx, (19)

and where x0 = ε0/kBTc. Note that the change of variable x =
ε/kBTc was used. The condensation temperature Tc = T 0

c +
�Tc now includes the corrections induced by the presence of
a finite number of particles. Comparing Eqs. (17) and (18), we
find (

Tc

T 0
c

)η+1

= ζ (η + 1)�
(
η − 1

2

)
(η|x0)∞x0

. (20)

The calculation of the integral (η|x0)∞x0
requires us to

separate long- from short-range effects using

(η|x0)∞x0
= (η|x0)∞0 − (η|x0)x0

0 . (21)

The first integral is easily obtained using Bose function
(16) as

(η|x0)∞0 = �
(
η − 1

2

)
gη+1(ex0 ), (22)

while the second integral can be expressed as

(η|x0)x0
0 = x

η−1/2
0

∫ 1

0
g3/2(ex0(1−u))uη−3/2 du. (23)
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In these last two expressions, one can expand the two
Bose functions gη+1(ex0 ) and g 3

2
(ex0(1−u)) using the series

representations of these functions about zero [23].
For noninteger values of η (η ∈ R\N), this yields

(η|x0)∞x0
= Aη x

η

0 +
∞∑

k=0

[
Bk,η − Ck,η x

η−1/2
0

]
xk

0 , (24)

where

Aη = �
(
η − 1

2

)
cos(ηπ )�(−η), (25a)

Bk,η = �
(
η − 1

2

)
ζ (η + 1 − k)/k!, (25b)

Ck,η = �
(
η − 1

2

)
ζ
(

3
2 − k

)/
�

(
η + k + 1

2

)
, (25c)

and for η ∈ N, one obtains

(η|x0)∞x0
= Iη(x0) x

η

0 +
∞∑

k=0

[
B

k,η

k 
=η

− Ck,η x
η−1/2
0

]
xk

0 ,

(26)

where

Iη(x0) = �
(
η − 1

2

)
η!

[
− ln(x0) +

η∑
k=1

1

k

]
, (27)

the parameters Bk,η and Ck,η being already defined in
Eqs. (25b) and (25c).

Practically, for small values of x0, one can truncate the
sums in Eqs. (24) and (26) to the desired level of accuracy
and introduce the expression obtained for (η|x0)∞x0

in Eq. (20)
to get the correction �Tc = Tc − T 0

c due to the presence of a
finite number of particles.

B. Discussion

1. Harmonic trap

In the special case of a harmonic trap (η = 2), and for
x0 � 0.1, the truncation can be limited to second order in x0,
and a simple expansion of Tc/T 0

c [Eq. (20)] in powers of x0

yields at second order

�Tc

T 0
c

= − ζ (2)

3ζ (3)
x0 + ζ

(
3
2

)
3ζ (3)�

(
5
2

)x
3/2
0 − α(x0)x2

0 , (28)

where

α(x0) = 1

3ζ (3)

[
2[ζ (2)]2

3ζ (3)
− 3

4
+ ln(x0)

2

]
. (29)

In this expression, one can recognize the well-known first-
order correction −{ζ (2)/[3ζ (3)]} x0 � −0.4561 x0 of the har-
monic trap [24]. Note, however, that the next-order correction
+{ζ ( 3

2 )/[3ζ (3)�( 5
2 )]} x

3/2
0 � +0.5449 x

3/2
0 should be taken

into account when x0 � 10−3 for an accurate estimation of
the correction to Tc. Up to the order x

3/2
0 , correction (28) to the

condensation temperature in a harmonic trap can be rewritten

10
3

10
4

10
5

10
6

N

-8%

-6%

-4%

-2%

0%

∆T
c  /

  T
c0

Corrections up to order N
 -1/3

Corrections up to order N
 -1/2

FIG. 2. (Color online) Relative correction �Tc/T 0
c due to finite-

size corrections as a function of the number of atoms N (logarithmic
scale) in an isotropic harmonic trap. The corrections up to order N−1/3

and N−1/2 in Eq. (30) are shown as a solid line with black circles and
a dashed line with red squares, respectively.

as a function of the number of atoms as

�Tc

T 0
c

� − ζ (2) ωm

2ζ (3)2/3 ω
N−1/3 + ζ

(
3

2

) (
2 ω3

m

3πζ (3) ω3

)1/2

N−1/2

� −0.7275

(
ωm

ω

)
N−1/3 + 1.098

(
ωm

ω

)3/2

N−1/2,

(30)

where

ωm = 1

3

q∑
i=1

niωi (31a)

and

ω =
(

q∏
i=1

ω
ni

i

)1/3

(31b)

denote the arithmetic and geometric means of the oscillator
frequencies ωi associated with each radial coordinate.

This relative correction �Tc/T 0
c is shown in Fig. 2 as a

function of the number of particles N in the case of an isotropic
harmonic trap (ωm = ω). In this figure, the solid black line
(with circles) represents the relative correction obtained using
the first-order correction only, whereas the dashed red line
(with squares) represents the relative correction obtained using
the more accurate expression (30).

One can see in Fig. 2 that the well-known first-order
correction −0.7275 (ωm/ω) N−1/3 is inaccurate for small
atom numbers. This is due to the fact that, beyond the
first-order correction, the next order is not a second-order
correction, which would be proportional to N−2/3, but rather
a correction proportional to N−1/2. When using only the
first-order correction found in the literature, the error made on
the shift of the critical temperature is of about 91%, 48%, 29%,
and 18% for N = 103, 104, 105, and 106, respectively. We can
therefore conclude that the last term of Eq. (30), proportional
to N−1/2, should be included for an accurate estimation of
finite-size corrections to Tc in a harmonic trap when N � 105.
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TABLE II. Practical second-order expressions of the shift to
Tc due to finite-size effects for different values of the shape
parameter η. T 0

c denotes the condensation temperature obtained in
the thermodynamic limit and x0 = ε0/kBTc denotes the ratio of the
zero-point energy of the trapping potential to the thermal energy kBTc.

η �Tc/T 0
c

0.8393 x
1/4
0 + 0.9685 x

1/2
0 + 0.2239 x

3/4
0

3/4 +0.3037 x0 − 0.2536 x
5/4
0 + 0.2064 x

3/2
0

−0.2921 x
7/4
0 + 0.3222 x2

0 + O
[
x

9/4
0

]
1 0.8960 x

1/2
0 + [0.9003 + 0.3040 ln x0] x0

+[0.6474 + 0.8171 ln x0] x
3/2
0

+0.139[0.201 + ln x0][11.01 + ln x0] x2
0 + O

[
x

5/2
0

]
5/4 0.8652 x

3/4
0 − 1.399 x0 + 0.8440 x

5/4
0

+1.216 x
3/2
0 − 4.209 x

7/4
0 + 5.675 x2

0 + O[x0]9/4

3/2 0 (to all orders in x0; see text for details)

7/4 −0.5662 x0 + 0.6653 x
5/4
0 − 0.5636 x

7/4
0

+1.098 x2
0 + O

[
x

9/4
0

]
2 −0.4561 x0 + 0.5449 x

3/2
0

+[0.2082 + 0.1387 ln x0] x2
0 + O

[
x

5/2
0

]

2. Power-law trap

Beyond the simple case of the harmonic trap, a general
expansion of Tc/T 0

c [Eq. (20)] in powers of x0 can be derived
for the two cases η ∈ R\N and η ∈ N. We give in Table II, at
second order, practical expressions for a set of specific values
of η between 0.75 and 2, corresponding to different kinds of
inhomogeneous potentials.

One can first notice in Table II that the case η = 3/2 is
a special case. Indeed, for η = 3/2, all finite atom number
corrections cancel out in Eq. (24) except for the constant
term B0,3/2 = ζ ( 5

2 ). Tc is then identical to T 0
c for all N . This

cancellation comes from the fact that incidentally Ck,3/2 =
Bk+1,3/2 and A3/2 = 0 [see Eqs. (25)]. This is the only value
of the shape parameter η where there is rigorously no finite
atom number correction, whatever the number of trapped
atoms. This special case corresponds, for instance, to an
isotropic cubic trap, with V (r) ∝ r3, but also to a trapping
potential of cylindrical symmetry such as V (r) ∝ ρ3 + |z|3
or to V (r) ∝ |x|3 + |y|3 + |z|3 in the case of a Cartesian
power-law trap. It also applies, for instance, to V (r) ∝ ρ4 + z2,
or to any combination of power-law potentials for which
η = 3/2 [see Eq. (6)].

The variation of the relative correction �Tc/T 0
c is shown

as a function of the shape parameter η in Fig. 3 for x0 = 0.1
(solid line with black circles) and x0 = 0.01 (dashed line with
red squares). From the magnified inset of this figure, one can
notice again that the point η = 3/2 plays a particular role
since trapping potentials with η > 3/2 are characterized by a
decrease of Tc due to finite-size effects, while η < 3/2 leads,
on the contrary, to an increase of Tc. This could already be
inferred from Table II, where it is seen that the lowest-order

0.75 1 1.25 1.5 1.75 2

Shape parameter

-10%

0%
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x
0
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x
0
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-2

1.25 1.50 1.75
-0.02

0

0.02

0.04

FIG. 3. (Color online) Relative correction �Tc/T 0
c (in %) due to

finite-size effects as a function of the shape parameter η for x0 = 10−1

(solid line with black circles) and x0 = 10−2 (dashed line with red
squares). The inset is a simple magnification of the region surrounding
η = 3/2. Note that �Tc/T 0

c = 0 for η = 3/2, ∀x0.

correction is positive when η < 3/2 and negative when η >

3/2.
In addition, one can notice in Fig. 3 that, even when

x0 � kBTc, the increase in Tc becomes significantly large
when η � 1. Indeed, for η = 3/4, an increase of 37% is
expected when x0 = 0.01, and an increase of 84% is expected
when x0 = 0.1. A large upward shift of Tc can therefore
be expected in the case of a generic high-order power-law
potential, like V (r) ∝ rα with α > 3, for instance. One should
note here that we have limited our study to 0.75 � η � 2,
i.e., to inhomogeneous potentials, since a nonperturbative
treatment would be necessary for an accurate estimation of
�Tc in the homogeneous limit η → 1

2 .
In order to check the influence of these corrections in

a realistic trapping situation, we now turn to the case of
a rubidium gas trapped by blue-detuned Laguerre-Gaussian
optical beams.

IV. APPLICATION TO BLUE-DETUNED
LAGUERRE-GAUSSIAN OPTICAL TRAPS

A. Introduction and model system

Recently, we have proposed an original route to achieve
Bose-Einstein condensation using dark power-law laser traps
[22]. Experimentally, it has been demonstrated that cold atoms
can be trapped and guided in such optical setups [25]. These
traps are created with two crossing blue-detuned Laguerre-
Gaussian optical beams. A simple control of their azimuthal
order � allows for the exploration of a wide range of situations,
with atoms trapped in confining power-law potentials in one,
two, and three dimensions. It was shown that, for a fixed
atom number, higher transition temperatures are obtained in
configurations where η < 2, compared to a harmonic trap
(η = 2) of the same size. We investigate here finite-size effects
in such optical traps.

To create a three-dimensional trap, we consider an all-
optical configuration consisting of two perpendicularly cross-
ing Laguerre-Gauss laser modes of same radial index p = 0
and azimuthal index �. The polarizations of the two beams
are chosen to be orthogonal to avoid any interference pattern.
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FIG. 4. (Color online) Relative correction �Tc/T 0
c (in %) due to

finite-size effects as a function of the shape parameter η (lower scale)
and of the azimuthal index � (upper scale) for two Laguerre-Gaussian
beams of power P = 5 W and detuning δ = 10 THz. The solid black
line with circles corresponds to N = 103 particles, the red dashed line
with squares to N = 104, and the blue dash-dotted line with triangles
to N = 106. The volume of the trap has been chosen such that, for
each atom number, the condensation temperature T 0

c obtained in the
thermodynamic limit for η = 2 is 100 nK (see Ref. [22] for details).

The first beam, circularly symmetric, propagates along the z

direction and provides trapping in the (x,y) plane. Trapping in
the third dimension is provided by another strongly elongated
Laguerre-Gaussian beam shaped elliptically in the form of
a light sheet and propagating in the x direction. If the two
beams are characterized by the same laser power, waist, and
detuning, the corresponding potential near the trap center can
be described by

V (ρ,z) = U0(ρ2� + z2�). (32)

U0 is then a simple function of the laser power, detuning, and
waist of the two beams [22], and η = (� + 3)/(2�).

B. Finite-size effects

The relative correction �Tc/T 0
c due to finite-size effects

in such optical traps is shown in Fig. 4 as a function of
the shape parameter η (lower scale) or equivalently of the
azimuthal index � (upper scale), for realistic values of all
optical parameters (see figure caption). One can notice in this
figure that, even for large condensate occupation numbers,
the shift of the condensation temperature due to finite-size
effects is not negligible when η < 1. Indeed, for η = 3/4
this correction is of about 60%, 38%, and 16% for N = 103,
104, and 106, respectively. This potential corresponds to a
12th-power power-law trap, which can be obtained practically
using � = 6 Laguerre-Gaussian beams [25].

Similarly, Fig. 5 shows the variation of the condensation
temperature with the shape parameter η and the azimuthal
index �. The temperature T 0

c obtained in the thermodynamic
limit is shown as a thick green solid line. It is identical for
all atom numbers N since we have chosen the volume of the
trap such that the condensation temperature obtained in the
thermodynamic limit is the same for all atom numbers (100 nK
with η = 2; see Ref. [22] for details). As already discussed in
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FIG. 5. (Color online) Condensation temperature in nK as a
function of the shape parameter η (lower scale) and of the azimuthal
index � (upper scale) for two Laguerre-Gaussian beams of power
P = 5 W and detuning δ = 10 THz. The solid green line with black
crosses corresponds to the condensation temperature T 0

c obtained in
the thermodynamic limit. The dashed black line with circles gives the
condensation temperature Tc for N = 103 particles, the red dashed
line with squares for N = 104, and the blue dashed line with triangles
for N = 106. The volume of the trap has been chosen such that, for
each atom number, the condensation temperature obtained in the
thermodynamic limit for η = 2 is 100 nK (see Ref. [22] for details).

[22], the temperature T 0
c increases with � since T 0

c ∝ N1/(η+1)

[see Eq. (17)]. In the same figure, the condensation temperature
Tc taking into account finite-size effects is shown as a dashed
black line with circles for N = 103, a red dashed line with
squares for N = 104, and a blue dashed line with triangles for
N = 106. Compared to a harmonic trap of the same size, it
can be concluded that much higher critical temperatures can
be obtained in a power-law trap, and this especially true for
small condensation occupation numbers. This large increase
results from the combination of two positive effects: first the
effect of the potential shape on the temperature T 0

c [Eq. (17)]
and second the finite-size effect [Eq. (20)]. Indeed, with the
optical parameters chosen in Fig. 5, compared to T 0

c = 100 nK
in the harmonic case (η = 2), the condensation temperature for
η = 3/4 is about 283, 251, and 212 nK for N = 103, 104, and
106, respectively. This corresponds to an increase of Tc by
about 183%, 151%, and 112%, respectively, when compared
to the transition temperature found in a harmonic trap.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we have presented a detailed theoretical
analysis of finite-size effects on the transition temperature Tc of
an ideal Bose gas trapped in an inhomogeneous generic three-
dimensional power-law potential. Using the local-density
approximation, we have derived an analytical expression of Tc,
expressed in terms of a power series in x0 = ε0/kBTc, where
ε0 denotes the zero-point energy of the trapping potential. We
have also given numerical expressions truncated at second
order for a specific set of power-law potentials.

More precisely, we have shown that in the case of a
harmonic trap the usual lowest-order correction is inaccurate
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when the number of particles N is less than 105. In this case,
the next order has also to be taken into account, yielding the
relative correction

�Tc

T 0
c

� −0.7275

(
ωm

ω

)
N−1/3 + 1.098

(
ωm

ω

)3/2

N−1/2,

(33)

where ωm and ω denote the arithmetic and geometric means
of the harmonic oscillator frequencies.

Beyond the specific case of the harmonic potential, we
have also shown that, if the atoms are trapped in a power-
law potential characterized by a shape parameter η = 3/2,
all finite-size effects cancel out, and the critical temperature
is simply equal to the one obtained in the thermodynamic
limit, independent of the number of particles. In the case of
a trap of cylindrical symmetry, this happens, for example, for
V (r) ∝ ρ3 + |z|3, but also for V (r) ∝ ρ4 + |z|2.

In addition, we have shown that in a power-law potential
characterized by a shape parameter η < 3/2, the temperature
shift due to finite-size effects becomes positive. This shift

may be relatively large for η < 1 with relatively small atom
numbers (N � 104). The magnitude of this phenomenon
was finally confirmed in the specific case of rubidium
atoms confined by blue-detuned Laguerre-Gauss optical laser
beams.

Finally, one should note that even though our approach
gives the exact result for all types of power-law potentials
within the limits imposed by the approximations used in our
theoretical model, it is not able to capture the essence of critical
phenomena taking place in a purely homogeneous system,
due to the importance of long-range nonperturbative critical
fluctuations in such systems.
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