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Effects of a single fermion in a Bose Josephson junction
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We consider the tunneling properties of a single fermionic impurity immersed in a Bose-Einstein condensate in
a double-well potential. For strong boson-fermion interaction, we show the existence of a tunnel resonance where
a large number of bosons and the fermion tunnel simultaneously. We give analytical expressions for the line shape
of the resonance using degenerate Brillouin-Wigner theory. We finally compute the time-dependent dynamics
of the mixture. Using the fermionic tunnel resonances as a beam splitter for wave functions, we construct a
Mach-Zehnder interferometer that allows complete population transfer from one well to the other by tilting the
double-well potential and only taking into account the fermion’s tunnel properties.
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I. INTRODUCTION

Bose-Einstein condensates (BEC) have become a valuable
resource in current research on many-body physics [1]. Loaded
into an optical lattice, the low-energy regime realizes a Bose-
Hubbard Hamiltonian [2] whose parameters can be tuned over
a wide range by adjusting the optical lattice or engineering
particle interactions via Feshbach resonances.

A simpler, although not less interesting, variant of BEC
in an optical lattice is obtained when in the Mott insulator
regime, the lattice is modulated by an additional laser beam to
create local double-well potentials at each lattice site. When
tunneling between the local double-well potentials is negligi-
ble compared to tunneling inside the double-well potential, the
system is well described by a two-site Hubbard Hamiltonian.
BECs in double-well potentials have received considerable
attention in recent years [3]. In [4], the dynamics are discussed
both on a mean-field level, where the nonlinear Schrödinger
equation becomes the discrete self-trapping equation [5], and
in a quantum mechanically exact way. For large enough
particle numbers, the two-site Hubbard Hamiltonian can be
approximated by the Josephson Hamiltonian [6], which is the
reason for these systems to be called Bose Josephson Junctions.
A BEC in a double-well potential defines a representation
of the rotation group and hence a pseudospin, which can be
utilized for quantum information processing and studies of
decoherence [7]. Other applications exploit the regime of weak
tunneling, where the system behaves similarly to a quantum
nanostructure in the sequential tunneling limit [8,9].

A related branch of research is constituted by the investiga-
tion of Bose-Fermi mixtures. These have been studied mostly
on the mean-field level by solving nonlinear Schrödinger
equations for one [10] or two wells [11] or by composite-
fermion methods on an optical lattice [12–14]. Phase diagrams
have been computed for Bose-Fermi mixtures in three [15] or
one dimensions [16–18].

In this paper, we want to study the adiabatic dynamics
of a Bose-Einstein condensate in a double-well potential
when a single fermionic impurity is added to the system. As
these dynamics are accessible by evaluating an appropriate
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observable in the numerically computed exact ground state
of the Hamiltonian, the problem is a static one. Here the
notion of tunneling refers to the mixing of two eigenstates
of the isolated wells by the tunneling term in the Hamiltonian.
This causes a broadening in the steplike profile of the
expectation value of the number operator, as does tunneling
in Coulomb-blockade systems. Since the derivative of these
steps with respect to the energy differences is a Lorentzian,
they are termed tunnel resonances [8]. With an additional
particle in the system, the main question that comes into
mind refers to the tunneling properties of that particle: Does
the BEC leave the fermion’s tunnel properties unaffected, or
does the BEC expel the fermion to the other well against
the potential gradient? Obviously, the answer depends on the
relative interactions between the two species. In our work,
we consider the ground-state properties in the weak-tunneling
limit. We discuss the different regimes in the parameter space
defined by the particle interactions and the implications of
large repulsion between the two species on the adiabatic and
quasiadiabatic dynamics.

In Sec. II, we introduce the Hamiltonian and its basic
properties. Then, in Sec. III, we compute the expectation
value of the relative number operators indicating that the
ground state shows different phases defined by the repulsive
forces. In particular, we find an avoided crossing between
two states that are not connected directly by the tunneling
Hamiltonian. We calculate the splitting by an application of
Brillouin-Wigner perturbation theory in Sec. IV. In Sec. V, we
consider time-dependent dynamics and show that by using the
avoided crossings due to the tunneling of the fermion as “beam
splitters,” we can construct a Mach-Zehnder interferometer
that allows us to transfer all populations from one well into
the other on a time scale that is only defined by the tunneling
properties of the fermion.

II. MODEL

The starting point for our discussion is the standard Bose
Josephson junction [4]: a Bose-Einstein condensate is loaded
into an optical double-well potential such that only the
ground state of each well is occupied. Defining the relative
number operator nB := 1

2 (nR − nL) as the difference between
the number of bosons in the right and the left wells, the
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Hamiltonian is, up to a constant depending on the total number
of particles N = nR + nL, [8]

HB = −2εnB + UBn2
B − �B(b†LbR + H.c.). (1)

The double-well potential can be tilted, generating an energy
difference 2ε between the two wells’ ground states. The
interparticle repulsion of the bosons is of strength UB, and
tunneling between the two wells occurs with amplitude �B.
The operators bi and b

†
i annihilate and create a boson in the

respective well. The two most prominent regimes of the Bose
Josephson junction are the superfluid-like regime UB � �B,
where the particles are delocalized over the two wells, and the
Mott-like regime �B � UB, where the particles are localized.
In the latter case, tunneling is considered a perturbation to the
Hamiltonian, which is diagonal in the relative number-state
representation. Tilting the double-well potential by adjusting
ε, the bosons will tunnel into the other well one by one, leading
to a staircase profile for the expectation value 〈nB〉(ε) [8,9].

We now consider an additional single fermion or, since in
that case the particle statistics do not matter at all, an atom of
a different species than the constituents of the condensate. Its
dynamics are governed by the very same Hamiltonian without
the repulsive term:

HF = −2εnF − �F(c†LcR + H.c.), (2)

with appropriately labeled constants and ci and c
†
i being the

fermion’s annihilation and creation operators, respectively.
We assume that the mutual interaction of both species is
proportional to

∑
α=L,R nα

Bnα
F [8], which in the relative number

representation reads

HB−F = 2UB−FnBnF (3)

plus a constant. The full Hamiltonian of our system is thus

H = HB + HF + HB−F. (4)

The double-well potential in the two-mode approximation
defines a representation of the rotation group SU(2), hence
a pseudospin on the Bloch sphere whose length is the number
of particles. The z direction of this spin encodes the position
information of the particles and is given by the relative number
operator nB (nF) with eigenvalues mB (mF) [4].

III. PHASE DIAGRAM

As shown in [8,9], by adjusting ε adiabatically and thereby
tilting the double-well potential, the Bose Josephson junction
shows single-particle tunneling and a staircase profile of the
expectation value of the relative number operator. In our case,
where an additional species, albeit only a single particle of
it, is present in the system, we expect the same behavior in
the tunneling regime UB,UB−F � �B,�F: tilting the potential
makes the particles tunnel from one well to the other. Since
there are two species of atoms present in the potential, the
obvious question to ask is, which species will tunnel?

In general, transitions will be shown to be interaction
mediated; that is, the relative magnitude of the repulsive
interactions will determine the tunneling species. If there
are no interactions as, for instance, in the case N = 1, or
at the exact threshold where the tunneling species changes,
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FIG. 1. Number expectation for a single fermion and Nbosons =
11. (left) 〈nF〉 and (right) 〈nB〉. The parameters are �F = 0.01 UB and
�B = 0.05 UB. The color code is white-gray-black for negative-zero-
positive.

UB = UB−F, the profile of the transitions in 〈nB〉 and 〈nF〉 is
heavily influenced by the kinetic energy.

In Fig. 1, we show numerical results for 〈nB〉 and 〈nF〉 as a
function of interspecies interaction UB−F and tilt ε. The most
obvious characteristic is the change of the tunneling species
at the first resonance for UB−F = UB. Close to this point,
the fermionic expectation values show traces of attempted
tunneling [Fig. 1(a)]. For larger interspecies interaction, the
bosonic expectation values are shifted by 1 due to the presence
of the fermion in the well with higher energy [Fig. 1(b)]. For
larger fermionic tunnel amplitude (not shown), the bosons
will also show negative compressibility κB = d〈nB〉/dε close
to zero tilt. In the following, we shall discuss and explain these
phenomena in detail.

Since we are in the tunneling regime with well-separated
resonances, we begin by restricting the bosonic Hilbert space
at each resonance to the subspace spanned by the eigenstates of
nB|m〉 = m|m〉: |m〉 and |m + 1〉. The fermionic Hilbert space
is also two-dimensional, such that we have

HB =
(

UBm2 − 2εm −λm

−λm UB(m + 1)2 − 2ε(m + 1)

)
, (5a)

HF =
(

ε −�F

−�F −ε

)
, (5b)

HB−F = 2UB−FnBnF (5c)

in the respective basis. The off-diagonal elements of HB are
the tunnel amplitudes times the matrix element of the bosonic

operators bα , b†α: λm := �B

√
( 1

2NB + m + 1)( 1
2NB − m) [8].

In the same basis, the relative number operators take
the form

nB =
(

m 0

0 m + 1

)
, nF =

(
− 1

2 0

0 1
2

)
. (6)

In the absence of tunneling, the Hamiltonian is already
diagonal with energies

E|m;± 1
2 〉 = UBm2 ± UB−Fm − 2ε

(
m ± 1

2

)
. (7)

If we place the system at a point, where tunneling of a
particle should occur, we have either the states |m; ± 1

2 〉 and
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|m + 1; ± 1
2 〉, which are degenerate for a bosonic resonance,

or |m; 1
2 〉 and |m; − 1

2 〉, which have the same energy for a
fermionic resonance. Equating the unperturbed energies of
the Hamiltonian, we find that the fermion can tunnel for
ε = mUB−F, and the boson can tunnel for ε = UB(m + 1

2 ) ±
1
2UB−F, depending on the position of the fermion. In particular,
if we consider two values of the boson-fermion interaction,
UB−F,± with 1

2 (UB−F,+ + UB−F,−) = UB, at UB−F = UB−F,+,
the state |m; − 1

2 〉 has the same energy as |m − 1; 1
2 〉 has at

UB−F = UB−F,−. This property is seen in Fig. 1(b), where the
bosonic resonances at equal distances to the left and right of
UB−F = UB differ by one boson exactly.

Approaching the first resonance of the system from large
negative ε, the ground state is |m = −N/2; − 1

2 〉. If the fermion
tunnels first, we have to equate its energy with E−N/2;1/2;
otherwise, we equate its energy with E−N/2+1;−1/2. From the
above formula for the energy, we see that the difference
between the positions of these resonances is εF − εB =
1
2 [(1 − N )(UB−F − UB)]. Hence, if UB−F > UB, the fermion
will tunnel first, and a boson will tunnel first otherwise.
Repeating this calculation for arbitrary m shows that this
condition is independent of the resonance in question: for
large enough interspecies repulsion, the fermion will tunnel
first; otherwise, it will tunnel last.

This result is intuitively clear, as the condition states that
for UB−F > UB, keeping the fermion together with the bosons
costs more energy than keeping the additional boson. Hence,
the fermion will be expelled to the other well. Noting that
such behavior occurs for finite ε, the fermion will move to the
potential well with higher energy, hence against the potential
gradient.

Directly at the degenerate point UB−F = UB, which particle
will tunnel first cannot be decided from the atomic interactions
alone. In this situation, we have to include the tunnel Hamilto-
nian, as now the kinetic energy of the particles will decide. At
ε = mUB = mUB−F, the unperturbed Hamiltonian’s ground
state is fourfold degenerate:

∣∣m − 1; 1
2

〉
,

∣∣m; − 1
2

〉
,

∣∣m; 1
2

〉
,

∣∣m + 1; − 1
2

〉
,

all have the same energy. Including the tunneling, the Hamil-
tonian in this basis reads

H̃ =

⎛
⎜⎜⎜⎝

0 0 −λm−1 0

0 0 −�F −λm

−λm−1 −�F 0 0

0 −λm 0 0

⎞
⎟⎟⎟⎠ (8)

plus a constant. This Hamiltonian has a biquadratic character-
istic polynomial, which can be solved explicitly, leading to the
ground-state expectation values

〈nF〉 = �2
Bm√

�4
F + 4�4

Bm2 + �2
B�2

F[−4m2 + N (N + 2)]
(9a)

〈nB〉 = m − 〈nF〉. (9b)

For the first resonance from positive (negative) ε, only
three states have to be considered because the state

|±|N/2 + 1|; ∓ 1
2 〉 does not exist, and the expression simplifies

to

〈nF〉 = ±1

2

�2
BN

�2
BN + �2

F

(10a)

〈nB〉 = ±N

2

(
1 − �2

B

�2
F + �2

BN

)
. (10b)

Note that these are discrete values evaluated at ε = mUB−F

and are not continuous in m.
From these expressions, we directly infer that at the first

resonance, a fast tunneling species, i.e., one with large �i ,
will hamper the other and restrict its number expectation value
to the asymptotic value of ± 1

2 or ±N/2, respectively.
By considering the limit of large and small tunneling

amplitudes, we can significantly simplify expressions (9a) and
(9b). Also, as for UB−F < UB, only single-particle processes
are present, and the situation at UB−F = UB can be used
as a good approximation for the ground-state properties in
that regime. For UB−F > UB we observe processes where a
larger number of particles tunnels simultaneously. This will
be discussed in Sec. IV. In the present case UB−F = UB, the
asymptotic expectation values at the resonances are

〈nF〉 →

⎧⎪⎪⎨
⎪⎪⎩

0 for �B/�F → 0
m√

1+N(N+2)
for �B = �F

1
2 sgn(m) for �B/�F → ∞

and

〈nB〉 →

⎧⎪⎪⎨
⎪⎪⎩

m for �B/�F → 0

m
(
1 − 1√

1+N(N+2)

)
for �B = �F

m − 1
2 sgn(m) for �B/�F → ∞.

For �B = �F, shown in Fig. 2 (top panels), the fermionic
expectation value shows steps linear in the resonance
number m. For �B < �F, Fig. 2 (middle panels), the fermionic
expectation shows oscillations about 〈nF〉 = 0. In the other
case, �B > �F, shown in Fig. 2 (bottom panels), we see
that the presence of the fermion and, in particular, its tunnel
amplitude do influence the bosons in such a way that for
�B � �F, i.e., a strongly localized fermion, the relative
number expectation value approaches m − 1

2 sgn(m), which
is the same as in the case UB−F < UB. Also, the expectation
value of the fermionic relative number operator approximates
a step function.

In the case of low fermionic tunnel amplitude, the resonance
at zero tilt ε = 0, with m = 0, will also show negative
compressibility κB = d〈nB〉/dε < 0 because in the limit
�F = 0, limm↗0〈nB〉 = 1

2 and limm↘0〈nB〉 = − 1
2 ; see Fig. 3.

A quantitative result is given in [8] for 0 � ε � UB−F < UB.

IV. ZERO-BIAS SPIN FLIP

Due to the symmetries of the Hamiltonian without tun-
neling, �B = �F = 0, at ε = 0, the states |mB; mF〉 and
|−mB; −mF〉 are degenerate. In particular, this holds for the
ground state of the noninteracting system. In general, such a
degeneracy for the ground state always occurs at a resonance.
In our system, however, the degenerate states do not only
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FIG. 2. (Color online) Occupation number difference 〈ni〉 (left,
bosons; right, fermions) for a mixture of 10 bosons and one fermion.
The plots are for differrent values of the Bose-Fermi repulsion
Ub − −F/UB ∈ 0.75, 1, 1.25 in solid black, dotted red, and dashed
blue. The tunneling amplitudes are (top) �B = �F = 0.05 UB,
(middle) �B = 0.01 UB,�F = 0.05 UB, and (bottom) �B = 0.05 UB,
�F = 0.01 UB.

differ by a single particle having changed its position, but
rather correspond to the exchange of positions for two species
and, depending on the interspecies repulsion UB−F, a larger
number of bosons. Since, as we have mentioned before, the
relative number operators are equivalent to the z components
of the pseudospin defined by the double-well potential, this
transition corresponds to a flip of the combined pseudospin of
bosons and fermion.

A. Higher-order degenerate perturbation theory

In contrast to the single-particle resonance, whose physics
is that of an avoided crossing and degenerate perturbation

−1
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0.5

1

n
B

−1 −0.5 0 0.5 1

ε/UB

FIG. 3. (Color online) Negative compressibility κB = d〈nB〉/dε

due to low fermionic tunnel amplitude �F = 10−4 UB, �B = 0.05 UB,
and UB−F/UB = 0.9.

theory, the zero-bias spin flip is not easily amenable to
degenerate perturbation theory because the involved states
are not directly connected by the tunneling term in the
Hamiltonian. Although a numerical treatment of the problem
is straightforwardly implemented, perturbation theory allows
for a simple analytical approach to the resonance and provides
a very good approximation for the line shape.

For general considerations, let |m〉 and |−m〉 be eigenstates
of the unperturbed Hamiltonian with energies E±m = ε0 ± ε

such that they are degenerate for ε = 0. Let ξV be a
perturbation, with a scalar ξ to keep track of orders of
magnitude, and 〈−m | V | m〉 = 0. Assume the shortest chain
of matrix elements of V that connects the two degenerate states
via intermediate states |nj 〉 has length k. Brillouin-Wigner
perturbation theory to lowest order in ξ yields, for the splitting
[19],

�Em = 2ξkVm,n1

1

En1 − Em

Vn1,n2

1

En2 − Em

· · ·

· · · 1

Enk
− Em

Vnk,−m. (11)

The line shape of the expectation value of the relative
occupation number n = m(|m〉〈m| − |−m〉〈−m|) restricted to
the degenerate subspace as a function of ε is thus, to lowest

order in ξ , 〈n〉(ε) ≈ |m|ε/
√

1
4�E2

m + ε2.

B. Application to the Bose-Fermi mixture

Let us apply this reasoning to the spin flip at zero
bias of a Bose-Fermi mixture in a double-well potential
when the perturbation V is the tunneling of single particles.
In the regime with UB−F > UB, the spin-flip transition is
|−m; 1

2 〉 → |m; − 1
2 〉. To construct the chain of intermediate

states connecting the two degenerate states by single-particle
processes, we climb up the angular-momentum ladder in m.
At a certain m = m0, the fermion jump is included. Then, due
to the different repulsion energies, the energy denominators
are different, and the chain naturally splits into two products.
Consider the energy differences

G−1
< (n) := En, 1

2
− E−m, 1

2
= (n2 − m2)UB + (n + m)UB−F

(12a)

G−1
> (n) := En,− 1

2
− E−m, 1

2
= (n2 − m2)UB − (n − m)UB−F

(12b)

for bosonic transitions left (G−1
< ) and right (G−1

> ) of m0.
The fermionic jump is given by G−1

> (m0), which leads to the
result

�E = 2�F

(
m∏

k=−m

λk

)
m∑

m0=−m

[
m0∏

n=m+1

G<(n)
m−1∏
n=m0

G>(n)

]
.

(13)

The fermionic jump is included as the first factor of the last
product. Here we use the convention that a product without
factors, eg.,

∏n
m with n < m, is unity.

As an example, we consider the smallest nontrivial mixture:
N = 2. For UB−F > UB, the spin-flip transition at zero bias
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FIG. 4. (Color online) The Brillouin-Wigner result (dots) and the
numerically obtained line shape (solid line) for the compressibility
κB = d〈nB〉/dε of the zero-bias spin flip. Note that the energy scales
have to be separated by about two orders of magnitude J/U ∼ 10−2.
Here UB = 1, UB−F = 2, �B = 0.1, and �F = 0.05, such that �E =
6�2

B�F.

is |−1; 1/2〉 → |1; −1/2〉, which are connected by three
paths:

∣∣−1; 1
2

〉 →
⎧⎪⎨
⎪⎩

∣∣0; 1
2

〉 → ∣∣1; 1
2

〉
∣∣0; 1

2

〉 → ∣∣0; − 1
2

〉
∣∣−1; − 1

2

〉 → ∣∣0; − 1
2

〉
⎫⎪⎬
⎪⎭ → ∣∣1; − 1

2

〉
. (14)

The level splitting is thus

�E = 4�2
B�F

1

UB − UB−F

[ −1

UB−F
+ 1

UB − UB−F

]
, (15)

and since m = 1, as a function of the tilt ε, 〈nB〉(ε) =
ε/

√
ε2 + 1

4�E2. In Fig. 4, we show the numerical data for
κB = d〈nB〉/dε as well as the line shape computed with
Brillouin-Wigner perturbation theory.

Of course, the result is not absolutely accurate, as in the
tails of the resonance, we do not recover the asymptotic states
with well-defined occupation numbers, but rather the exact
eigenstates of the full Hamiltonian. If we look at the numbers
of Fig. 4, Brillouin–Wigner theory gives �E = 3 × 10−3 UB,

whereas the numerically evaluated splitting is approximately
2.88 × 10−3 UB.

V. LANDAU-ZENER DYNAMICS

In the previous sections, we have focused on the adiabatic
dynamics of population transfer from one well into the other
by increasing the tilt ε of the potential. In a realistic scenario,
however, we will always adjust the tilt within finite time and
hence with finite velocity dε/dt . This means that we have
to take into account Landau-Zener physics of quasiadiabatic
transitions [20–25]. Depending on the velocity and the splitting
of the states at a resonance, the population transfer is thus
heavily influenced.

In the regime UB−F > UB of our model, the zero-bias
spin-flip resonance is so narrow that it is very difficult to
traverse it adiabatically as the necessary velocities, which
depend on the splitting, are very small. In [26], such an
effect is also seen and successfully exploited to achieve the
population transfer sought for. Let us choose a velocity α

for the change of ε(t) = αt in time that allows to pass
the single-particle resonances adiabatically. The expectation
values of the respective relative number operator as a function
of ε are shown in Fig. 5(a), and the corresponding spectrum
of the Hamiltonian is plotted in Fig. 6. Starting at infinite
negative time, where the system is in its ground state, the
fermion tunnels from left to right at finite negative ε (point A
in Fig. 6), as expected for UB−F > UB. The spin-flip resonance
(point B in Fig. 6) is, however, passed completely diabatically,
such that all particles stay where they are and do not exchange
places. At this point, the system is no longer in its ground state
but is in the first excited state. Further tilting of the potential
causes the bosons to tunnel to the lower-lying well step by step.
Finally, the system adiabatically passes an avoided crossing of
two excited states, where, again, the fermion changes sides and
tunnels back into the left, i.e., higher-lying well, as is seen in
Fig. 5(a). The avoided crossing labeled A′ in Fig. 6 is passed
adiabatically in the excited state, where the system stays until
other processes than those described by our Hamiltonian cause
it to relax to the ground state and hence cause the fermion to
change sides again. The diabatic traversing of the spin-flip
resonance thus causes the transition of the system from its
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FIG. 5. (Color online) Expectation values 〈ni〉 of the relative number operator for fermions (solid green line) and bosons (blue dashed line)
in a numerical Landau-Zener experiment on the Bose-Fermi mixture. �B = 0.05 UB, �F = 0.025 UB, UB−F = 1.72 UB, and (a) α = 1

4000 U 2
B

and (b) α ≈ 11
4000 U 2

B. The velocity α with which we can use the constructive interferences is about 10 times as large as the one with which the
zero-bias spin flip is still passed diabatically and the system is kept in an excited state.
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FIG. 6. (Color online) Spectrum of the Bose-Fermi mixture and
the path that is traversed by a linear scan of ε. The branches that
define the two equivalent arms of the Mach-Zender interference are
the red dashed and the green dash-dotted line. The black solid lines
denote the incoming and outgoing beams, respectively. The fermionic
resonances, where the wave function is split into halves, are labeled
A and A′, and the zero-bias spin flip is labeled B. The parameters are
the same as in Fig. 5.

ground state at t → −∞ to the first excited state at t → ∞.
Lowering the velocity allows us to pass to the adiabatic regime
also for the zero-bias spin flip, but the more bosons we have
in the condensate, the slower we would have to adjust ε(t).

In spite of the difficulties introduced by the narrow zero-
bias spin-flip resonance, we are able to facilitate adiabatic
population transfer from one well to the other by employing a
constructive interference effect, the result of which is shown in
Fig. 5(b). The spectrum of the Bose-Fermi mixture, as shown
in Fig. 6, is symmetric about ε = 0. If we adjust the tunnel am-
plitudes such that �F < �B, we can control the Landau-Zener
physics of the fermionic jump and still pass all other bosonic
resonances almost adiabatically. This allows us to restrict the
problem to only consider the ground state |g〉 and the first
excited state |e〉 of the Hamiltonian, as depicted in Fig. 6
for the case of N = 2. Passing the first avoided crossing by
adjusting the tilt ε(t) amounts to a unitary transformation of the
asymptotic states

U =
(

cos � sin �

− sin � cos �

)
,

with the angle � depending on the velocity α and the splitting
�E of the two states cos2 � = 1 − exp(− 2π

h̄
�E2

α
) [20]. The

zero-bias spin-flip transition is very narrow, such that we
traverse it diabatically, hence exchanging ground and excited
states, which corresponds to the unitary transformation σx .
The second avoided crossing is identical to the first; however,
it is passed in the opposite direction, when the invoked
unitary is U †. Since both arms of the interferometer are
identical, i.e., they can be mapped by ε → −ε onto each
other, the accumulated dynamical phase is the same and
amounts to a global phase factor, which is of no importance for
our purpose.

With these assumptions, the constructed Mach-Zehnder
interferometer is the map

UσxU
† = σx cos(2�) − σz sin(2�).

For � = π/4, UσxU
† = −σz: the ground state of the

full Hamiltonian will again be mapped onto the ground
state and the population can be transferred completely.
Considering the avoided crossings as a beam splitter for
an incoming ground-state wave function [23], this choice
of � amounts to a velocity α for which the Landau-
Zener transition splits the wave function exactly into two
halves |g〉 → 1√

2
(|g〉 + |e〉).

In the numerical data in Fig. 5(b), the achieved population
transfer is almost perfect. The expectation values of the relative
number operators show some oscillations in the fermionic
part, which are due to the coherent superposition created by
the Landau-Zener transition. The remainder of the profile is,
however, well in accordance with the adiabatic picture for atom
counting, except that since the wave function is split by the
avoided crossing, the time-dependent evaluation of 〈ni〉 does
not count full atoms like in the adiabatic regime. Instead, we
pass twice as many resonances for which 〈ni〉 only changes by
a half integer.

The important advantage of this approach over a completely
adiabatic transfer is that with this interferometer, we only
need to adjust the Landau-Zener transition of the single
fermionic resonance. This, however, is independent of the
number of bosons in the system, and we can use a much higher
velocity than in the purely adiabatic regime where the Landau-
Zener physics of the spin-flip transition are taken fully into
account.

VI. CONCLUSION

In this paper, we have investigated a Bose-Fermi mixture
in a double-well potential with the restriction that while the
number of bosons is arbitrary, the number of fermions is fixed
at 1. We thus discussed the influence of a single fermionic
impurity on the ground-state properties of the Bose Josephson
junction when the potential was allowed to be tilted. It has
turned out that rather than the bosons, it is the fermion that
is affected most by the boson-fermion interactions. We have
separated the dynamics into two regimes: one where the bosons
and the fermion live side by side and one where the fermion
is expelled from the BEC toward the higher-lying well. In this
regime, we have found a zero-bias spin flip where the fermion
and a large number of bosons change places. The physics
of this process, in particular the level splitting and the line
shape of the observed resonance in the relative particle number,
are well accessible by Brillouin-Wigner perturbation theory.
Since many particles are involved in this transition, complete
population transfer of all particles from the left well to the right
well upon tilting the potential is hardly possible any longer
when we assume the realistic case of slow but not infinitely
slow adjustment of the potential tilt ε. Instead, we have shown
how the fermionic resonance in the regime UB−F > UB can be
employed as a beam splitter of a Mach-Zehnder interferometer
to achieve population transfer at much higher tilting speeds
than would be necessary to traverse the zero-bias spin-flip
resonance adiabatically.

There are several directions in which we want to extend our
investigation. In the case of very large N , the Gross-Pitaevskii
equation provides a much simpler description of the BEC than
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can be achieved by numerical diagonalization of the two-site
Bose-Hubbard Hamiltonian. We will therefore ask for the
lowest-order corrections of the dynamics of a Bose Josephson
junction with large N in the presence of a single fermionic
impurity. The trade-off for the reduction to the Gross-
Pitaevskii equation is, however, the extension to the study
of nonlinear eigenvalue problems [11].

The second direction relates to the number of fermions
in the double-well potential. Experiments of two fermions
with opposite spin in such a system without a BEC have been
conducted by Trotzky et al. [27]. The orbital wave function of
two fermions with opposite spin in a double-well potential
is decomposed into a singlet and three triplet states with

respect to the pseudospin defined by the double-well potential.
Interestingly, the singlet does not couple to the bosons at all.
On the contrary, the state |↑,↓〉, that is, a configuration with
definite position of the spin-up fermion in the left well and the
spin-down particle in the right well, is a superposition of the
singlet and the Jz = 0 triplet, which, however, does couple to
the BEC. In this configuration we expect the time-dependent
dynamics to show very interesting phenomena, which could
be observed experimentally.
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