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Position swapping and pinching in Bose-Fermi mixtures with two-color optical
Feshbach resonances
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We examine the density profiles of the quantum degenerate Bose-Fermi mixture of 174Yb-173Yb, experimentally
observed recently, in the mean-field regime. In this mixture there is a possibility of tuning the Bose-Bose and
Bose-Fermi interactions simultaneously using two well-separated optical Feshbach resonances, and it is a good
candidate to explore phase separation in Bose-Fermi mixtures. Depending on the Bose-Bose scattering length
aBB, as the Bose-Fermi interaction is tuned the density of the fermions is pinched or swapping with bosons
occurs.
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I. INTRODUCTION

The quantum degeneracy in a boson-Fermi mixture was
first experimentally realized for the system consisting of 7Li
and 6Li [1,2]. Since then it has been observed in several other
Bose-Fermi mixtures, 23Na-6Li [3], 87Rb-40K [4], 87Rb-6Li [5],
4He-3He [6], 174Yb-173Yb [7], and 84Sr-87Sr [8]. These are
candidate systems to explore the effects of boson-induced
fermionic interactions; of particular interest is the boson-
mediated fermionic superfluidity. Another property of interest
is the dynamical instabilities of the fermionic component
arising from the attractive fermionic interactions, which is also
boson mediated [9]. Precondition to observe either of these
is a precise control of the interspecies interaction through
a Feshbach resonance. This has been observed in 87Rb-40K
[10,11] and used to trigger the dynamical collapse of 40K [9];
the same is numerically analyzed in Refs. [12,13]. A similar
setup is suitable to create fermionic ultracold molecules and
was theoretically analyzed in a recent work [14].

Density distributions in the phase-separated domain of the
Bose-Fermi mixture is also an important property of interest.
Like in binary condensates, dynamical instabilities can be
initiated in the phase-separated domain through manipulations
of interaction strengths. For binary condensates, the recent
work on mixtures of two different hyperfine states of 87Rb [15]
is a fine example of controlled experiment on phase separation.

In this regard, Molmer and collaborator [16,17] examined
the zero-temperature equilibrium density distributions and
predicted widely varying density patterns as a function of
interspecies interactions. However, the Bose-Bose and Bose-
Fermi interactions considered are extremely strong for experi-
mental realizations. Similar studies have examined the ground-
state geometry in spherical traps [18,19]. The conditions
for mixing-demixing have been analyzed for homogeneous
Bose-Fermi mixtures [20] and Bose-Fermi mixtures inside
traps [18,21]. Although very high interaction strengths are
achievable through magnetic Feshbach resonances in alkali-
metal atoms, simultaneous tuning of both the boson-boson and
boson-fermion interactions is not possible. However, simulta-
neous tuning is possible with optical Feshbach resonances
(OFR) when the resonant frequencies of the boson-boson and
boson-fermion interactions are well separated. In an earlier
study, the possibility of simultaneous and independent tuning

in the 40K-6Li mixture through a magnetic Feshbach resonance
and rf-field-induced Feshbach resonance was examined [22].
However, such a possibility does not apply to zero electronic
spin (closed-shell) atoms like Yb.

With the realization of quantum degeneracy in the mixture
of 174Yb-173Yb where intraspecies interactions for 174Yb can
be tuned by OFR [23], we find it pertinent to revisit these
studies. With the possibility of tuning interspecies interactions
for the 174Yb-173Yb mixture, it may be possible to realize
the ground-state geometries which are hitherto elusive. We,
therefore, consider the 173Yb-174Yb mixture to study the
density profiles for various values of coupling strengths
in the present work. It must also be mentioned that the
isotopes of Yb exhibit a wide range of inter- and intraspecies
interactions. This has attracted lot of attention as selected
isotopic compositions may exhibit dynamical instabilities
triggered through the interactions. The 174Yb-176Yb mixture is
one such Bose-Bose binary mixture currently investigated for
instabilities on account of the attractive intraspecies interaction
of 176Yb [24,25].

The paper is organized into four sections. In the next
section, Sec. II, we provide a brief description of the mean-field
equations of bosons and fermions. This is followed with the
section on phase separation, where the nature of Bose-Fermi
phase separation is discussed as a function of the interspecies
interaction. More importantly, the occurrence of fermion
pinching is explored. Position swapping between bosons and
fermions, as the interspecies interaction is increased, is then
examined in the next section. We then conclude with Sec. V.

II. ZERO-TEMPERATURE MEAN-FIELD DESCRIPTION

We examine the stationary state properties of a Bose-Fermi
(BF) mixture consisting of 174Yb and 173Yb in spherically
symmetric trapping potentials,

VB(r) = 1
2mBω2r2, VF(r) = 1

2mFω
2r2, (1)

where the subscripts B and F stand for boson and fermion,
respectively, and ω is the radial trap frequency for the two
components. The fermions are spin polarized (single species)
and the fermion-fermion mean-field interactions arise from
the degeneracy pressure [26], whereas the boson-boson and
boson-fermion interactions arise from the s-wave scattering
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between the atoms. Considering these, the mean-field energy
functional of the Bose-Fermi mixture is [27]

E[�B,�F]

=
∫

dr
[
NB

(
h̄2|∇�B|2

2mB

+ VB|�B|2 + 1

2
GBB|�B|4

)

+NF

(
h̄2|∇�F|2

6mF
+ VF|�F|2 + 3

5
A|�F|10/3

)

+GBFNB|�B|2|�F |2
]
, (2)

where �B(r,t) and �F(r,t) are bosonic and fermionic wave
functions satisfying the normalization condition,

∫
dr|�B(r,t)|2 =

∫
dr|�F(r,t)|2 = 1. (3)

Here, GBB = 4πh̄2aBBNB/mB, where aBB is the bosonic
s-wave scattering length and NB is the number of bosons, is the
bosonic intraspecies interaction; GBF = 2πh̄2aBFNF/mR and
GFB = 2πh̄2aBFNB/mR , where mR = (mBmF)/(mB + mF) is
the reduced mass, NF is the number of fermions, and aBF is the
interspecies scattering length, are the interspecies interactions,
and A = h̄2(6π2NF)2/3/(2mF). The Lagrangian of the system
is

L =
∫

dr
ih̄

2

∑
i=B,F

(
��

i

∂�i

∂t
− �i

∂��
i

∂t

)
− E[�B,�F].

(4)
Using the action principle,

δ

∫ t2

t1

Ldt = 0, (5)

we get a set of coupled partial differential equations,

ih̄
∂�B

∂t
=

[
− h̄2∇2

2mB
+VB(r) + GBB|�B|2+GBF|�F|2

]
�B,

(6a)

ih̄
∂�F

∂t
=

[
− h̄2∇2

6mF
+ VF(r)+A|�F|4/3+GFB|�B|2

]
�F.

(6b)

The previous set of equations is valid for Bose-Fermi mix-
tures consisting of a Bose-Einstein condensate (BEC) and a
Fermi sea of spin-polarized fermions. For superfluid Bose-
Fermi mixtures, consisting of BECs of bosonic component
and Cooper pairs between two different hyperfine states of
fermions, the modified mean-field equation for the fermionic
component (BEC of Cooper pairs) has been proposed in
Refs. [28,29].

It is more convenient to rewrite Eq. (6) in a dimensionless
form by defining dimensionless parameters in terms of the
frequency ω and the oscillator length aho = √

h̄/(mBω). Using

r̃ = r/aho, t̃ = tω as the scaled dimensionless variables of
length and time, respectively, Eq. (6) can be rewritten as

i
∂ψB

∂t̃
=

[
− ∇2

r̃

2
+ VB(r̃) + gBB|ψB|2 + gBF|ψF|2

]
ψB, (7a)

i
∂ψF

∂t̃
=

[
− ∇2

r̃

6mratio
+ mratioVF(r̃) + gFF|ψF|4/3

+ gFB|ψB|2
]
ψF, (7b)

where the rescaled wave functions are ψB = a
3/2
ho �B(r̃,t̃) and

ψF = a
3/2
ho �F(r̃,t̃). Similarly, the interaction strength parame-

ters are

gBB = 4πaBBNB

aho
, gBF = 2πaBFNF

mR aho
,

gFF = (6π2NF)2/3

2mratio
, gFB = 2πaBFNB

mR aho
,

with mratio = mF/mB. For the sake of simplicity, we represent
the scaled quantities without the tilde (˜) in the rest of
the article. For spherically symmetric trapping potential,
Eq. (6) is reduced to one-dimensional coupled mean-field
equations,

i
∂ψB

∂t
=

[
− 1

2

∂2

∂r2
+ r2

2
+ gBB

∣∣∣∣ψB

r

∣∣∣∣
2

+ gBF

∣∣∣∣ψF

r

∣∣∣∣
2]

ψB,

(8a)

i
∂ψF

∂t
=

[
−

(
1

3mratio

)
1

2

∂2

∂r2
+ mratio

r2

2
+ gFF

∣∣∣∣ψF

r

∣∣∣∣
4/3

+ gFB

∣∣∣∣ψB

r

∣∣∣∣
2 ]

ψF. (8b)

These are the coupled mean-field equations which describe
the Bose-Fermi mixture in trapping potentials at zero tem-
perature. To obtain the stationary solutions, we solve the
equations numerically using the Crank-Nicholson scheme [30]
with imaginary time propagation.

III. PHASE SEPARATION

Broadly speaking, for large values of GBB, the density
profiles of the boson-fermion mixture in spherical symmetric
traps can have three distinct geometries in the phase-separated
regime: (a) fermionic core surrounded by bosonic shell,
(b) bosonic core surrounded by fermionic shell, and (c) shell of
bosons between fermionic core and fermionic outer shell [16].
The interspecies interactions begin to play an important role
in determining the stationary state structure, when the density
profiles of the bosons and fermions are of similar spatial
extent. This occurs when the bosonic intraspecies interaction
is strong. In the Thomas-Fermi (TF) approximation, the
necessary condition for a mixture of an equal number of bosons
and fermions (NB = NF = N ) is [16]

aBB ≈ 1.68m
−5/2
ratio ahoN

−1/6. (9)
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The previous condition has been obtained by equating the TF
radii of bosons and fermions in the absence of interspecies
interaction. The condition ensures the maximum overlap
between the two species in the absence of interspecies inter-
actions and hence, accentuates the effect of switching on the
interspecies interactions. Hereafter, we use a∗

BB to represent
the particular value of aBB at which bosons and fermions have
the same spatial extent. For species which are isotopes of the
same element the mass difference is small and mratio ≈ 1. The
condition is then reduced to

a∗
BB ≈ 1.68ahoN

−1/6. (10)

Considering N ∼ 106, which is the typical value in experimen-
tal realizations, a∗

BB ≈ 0.17aho. As aho is in general ∼10−6m
for harmonic trapping potentials, the required value of aBB is in
the strongly interacting domain. It could be achieved when the
interaction is tuned through a Feshbach resonance, magnetic
in the case of alkali-metal atoms. With the overlapping density
profiles, more intricate density patterns are observed when the
interspecies interaction is increased, however, tuning aBF with
magnetic Feshbach resonance is ruled out. This complication
does not arise when the interactions are tuned with well-
separated OFRs, in which case, the isotopes of the two-valence
lanthanide atom Yb is a suitable candidate. It has seven stable
isotopes: five bosons (168Yb, 170Yb, 172Yb, 174Yb, and 176Yb)
and two fermions (171Yb and 173Yb); homonuclear OFRs of
bosonic isotopes (172Yb and 176Yb) were recently studied [31].
Among the various possible species pairings, 174Yb-173Yb,
which has positive intra- and interspecies background
scattering lengths [32], is an ideal candidate to study
Bose-Fermi mixtures in the strongly interacting domain.

For our studies, we consider a 174Yb-173Yb mixture
containing 106 atoms of each species and trapped by a
spherically symmetric trap with trapping frequency ω/(2π ) =
400 Hz. The aBB is chosen to be equal to 1100a0, which
is achievable with the OFR of the 6s2 1S0 → 6s6p 3P1

intercombination transition. And, the Bose-Fermi interspecies
scattering length aBF can be tuned with OFR of the allowed
6s2 1S0 → 6s6p 1P1 transition. This is a broad line and the
disadvantage of using it is high atom loss rate. However,
a major advantage of OFR tuned interactions is the fine
spatial control it provides. Recently, submicron modulation
of scattering length using Feshback resonances was achieved
in 174Yb [23]. Such precise control on the spatial variation
of interaction strength is unrealistic with magnetic Feshbach
resonances. From here on, where it is not explicitly mentioned,
reference to Bose-Fermi mixture implies the 174Yb-173Yb
isotope mixture. To examine the density profiles of the mixture
in the strongly interacting domain, we keep aBB fixed and
vary aBF so that the system progresses from mixing to full
demixing regime via partial demixing regime. It must be
emphasized that with TF approximation, from Eq. (10) the
spatial extent of density profiles with aBF = 0 are the same
when a∗

BB = 1191.71ao as is shown in Fig. 1(b). However, we
have chosen aBB = 1100ao, approximately the value at which
the density profiles begin to exhibit the features of interest.
The wave-function profiles with aBB = 1100ao in the absence
of interspecies interactions are shown in Fig. 1(a).
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FIG. 1. (Color online) Wave-function profiles of 174Yb (dashed
green line) and 173Yb (solid orange line) in a mixture of 174Yb-173Yb
with NB = NF = 106, ω/(2π ) = 400 Hz and aBB = 1100a0 as aBF is
changed from mixing to partial demixing domain. (a) For aBF = 0.0,
(b) for aBF = 0.0aBB and aBB = 1197.11a0, (c) for aBF = 0.6aBB, and
(d) for aBF = 0.7aBB.

A. Mixing to partial demixing regime

Starting from the initial conditions of the mixture, which
as mentioned earlier has equal spatial extent of the component
species and aBF ≈ 0, the value of aBF is increased. To analyze
the evolution of density profiles, consider the TF profile of the
bosons and fermions in scaled units as defined earlier,

nF(r) = 1

6π2
{2mratio[EF − VF(r) − uFBnB(r)]}3/2, (11a)

nB(r) = 1

uBB
[µ − VB(r) − uBFnF(r)], (11b)

where uXY = gXY/NY and EF is the Fermi energy. From
these expressions, the densities at the origin in the absence
of interspecies interaction are

nF(0) = 1

6π2
(2mratioEF)3/2, (12a)

nB(0) = µ

uBB
. (12b)

In TF approximation, the Fermi energy and chemical
potential of the two species are

EF = (6N )1/3, (13a)

µ = 1
2 (15aBBN )2/5. (13b)

Using these in Eq. (12), the ratio of the densities at the
origin is

nF(0)

nB(0)
= 0.76a

3/5
BB (15N )1/10.

Consider aBB ≈ 0.17, the value at which the profiles of the two
species match for N = 106. The population ratio at the origin
is then

nF(0)

nB(0)
≈ 1.35. (14)

that is, when aBF = 0 the fermion density is higher than the
boson density at the center of the trap. Given this as the initial
condition, when the interspecies interaction is switched on, the
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FIG. 2. (Color online) Interspecies interaction energy Eint

between 174Yb (boson) and 173Yb (fermion) as a function of aBF.
The maxima of Eint occurs at aBF = 0.7aBB.

interspecies mean-field energy GBF|�F(0)|2 > GFB|�B(0)|2.
Hence, it is energetically favorable to shift the bosons from
the center toward the edge of the trap. This is evident in the
numerically obtained density profiles shown in Fig. 1(a), where
the density profile of the bosons is flattened around the origin
and has higher density at the edges.

The interspecies interaction energy in the mixing regime is

Eint =
∫

druBFnBnF,

≈ 3uBFN
2

4πR3
TF

, (15)

where we have used nB ≈ nF ≈ N/(4πR3
TF/3) [21] with

RTF =
√

2(6N )1/3 for the system considered in the present
work. As aBF is increased further, the system enters the partial
demixing regime and the characteristic signature of which is
a maxima in interspecies interaction energy. For our present
calculations, the variation of the interspecies interaction energy
with aBF is shown in Fig. 2. The condition for attaining partial
demixing in spherical traps is [21]

aBF �
(

c1
N

1/2
F

N
2/5
B

+ c2
N

2/5
B

N
1/3
F

)
aBB, (16)

where

c1 = 153/5

481/2

m
3/2
F

2mRm
1/2
B

a
3/5
BB , (17)

and

c2 = 481/3

153/5

(
6

π

)2/3
mB

2mR

a
2/5
BB . (18)

The previous condition for partial demixing is evaluated
using TF approximation for the density profiles of both the
components. From Eq. (16), the critical value of aBF required to
reach the partial demixing regime for the Bose-Fermi mixture
under consideration is 0.44aB and is significantly lower than
the value of 0.7aBB obtained from the numerical solution of the
coupled mean-field equations [Eq. (8)]. The difference may
be attributed to the simplifying assumptions in deriving the

location of the interspecies interaction energy extrema, one of
which is choosing the density profiles at aBF = 0 to calculate
the interspecies interaction energy. At aBF = 0.7aBB there is
dramatic decrease in the density of the bosons near the trap
center. This is accompanied by a corresponding decrease in
the overlap region between the two components as is shown in
Fig. 1(d).

B. Partial demixing to phase separation

A further increase of aBF, beyond the critical value,
enhances the segregation of the two species. This lowers the
interspecies overlap and balances the larger interaction energy
from higher aBF. Ultimately, at higher values of aBF the overlap
is almost zero; the system can then be considered fully phase
separated. The condition to attain phase separation or a fully
demixed regime is [21]

αkFaBB >

(
aBB

aBF

)2

, (19)

where

kF = (48NF)1/6, and α = 31/3

4(2π )2/3

mBmF

m2
R

. (20)

For the 174Yb-173Yb mixture with the previously mentioned
parameters, the aforementioned criterion translates into aBF >

0.9aBB. In the phase-separated domain, the separation occurs
around the inner point where densities are equal. To identify the
location of this point, consider the aBF = 0 density profiles. If
the two profiles intersect at ri, then from the TF approximation
ri is the solution of the equation,

{2mratio[EF − VF(ri)]}3 =
(

6π2

uBB

)2

[µ − VB(ri)]
2. (21)

For the system of our interest, VF and VB are almost identi-
cal. Furthermore, when aBB is chosen [it satisfies Eq. (10)] to
match the spatial extents of the densities, EF ≈ µ, following
which, to a very good approximation [EF − VF(ri)] ≈ [µ −
VB(ri)]. The solution of Eq. (21) is then

ri =
[

2EF − 1

4m3
ratio

(
6π2

uBB

)2 ]1/2

. (22)

The importance of ri is for the following: nF(r) > nB(r)
for r < ri, and nF (r) < nB(r) for r > ri. For the 174Yb-173Yb
mixture, based on the previous relation ri = 13.09aho for NB =
NF = 106 and aBB = 0.17aho, while the numerical value is
ri = 12.42aho. Energetically, when aBF is switched on it is
favorable to accommodate the bosons and fermions at the outer
and inner regions about ri, respectively. As aBF is increased,
the position of ri tends to migrate outward but not dramatically.

With further increase in aBF, the bosons are expelled
toward the edge of the trapping potential while the fermions
are squeezed toward the trap center (see Fig. 3). With TF
approximation, the effective potential experienced by 173Yb in
the overlap region is

Veff =
(

mratio − gBF

gBB

)
r2

2
≈

(
1 − gBF

gBB

)
r2

2
, (23)

023605-4



POSITION SWAPPING AND PINCHING IN BOSE-FERMI . . . PHYSICAL REVIEW A 83, 023605 (2011)

10 2

r aosc

0 5 10 15 20 25
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

ψ
r

a o
sc

3
2 a

0 5 10 15 20 25 30

b

un
it

s 
of

units of

FIG. 3. (Color online) The wave-function profiles of 174Yb
(dashed green line) and 173Yb (solid orange line) in a mixture of
174Yb-173Yb, with NB = NF = 106, aBB = 1100a0, and ω/(2π ) =
400 Hz. (a) aBF = 0.75aBB and (b) aBF = 1.0aBB.

where we have considered mratio ≈ 1 for the 174Yb-173Yb
mixture. Obviously, the effective potential experienced by
fermions vanishes at aBF = aBB, and this explains the constant
wave-function profile of 173Yb in the overlap region as is shown
in Fig. 3(b). Unlike two-component BECs, the density of the
fermions in the region occupied by bosons is not zero when
the criterion for full demixing is satisfied.

C. Fermion pinching

For the values of aBB marginally below a∗
BB, besides ri there

is another point ro where the densities are identical as is evident
from Fig. 1(a). The location of ro is rather sensitive to kinetic
energy corrections of the bosons [33],

Ekin = 2.5
NB

R2
TF

ln

(
RTF

1.3

)
. (24)

Without the kinetic energy correction, that is, with TF
approximation, ro exists up to higher values of aBF. However,
the kinetic energy correction softens the profile at the edges
and ro vanishes as aBB approaches a∗

BB [see Fig. 1(b)]. In
the phase-separated domain when ro is close to the edge, the
fermion density is depleted at ri < r < ro for higher aBF, and,
there is fermion density enhancement at r < ri and r > ro. For
the bosons it is the opposite: there is density enhancement at
ri < r < ro, and depletion at r < ri and r > ro.

As aBF is increased to values larger than aBB, the effective
potential within the overlap region (ri < r < ro) is approxi-
mately

Veff ≈ µ
gBF

gBB
− η

r2

2
, (25)

where η = |mratio − gBF/gBB| and, like in the previous case,
we can take mratio ≈ 1. The form of Veff is repulsive with a
maxima at ri and decreases toward ro. The net effect is that
the fermion density profile is pinched in the region where
r is marginally larger than ri. Onset of pinching is clearly
discernible in Fig. 4(a), and it is more pronounced in Fig. 4(b).
At higher values of aBF the pinching is complete and an island
of fermions appears at the edge. Figures 4(c) and 4(d) show
the formation of the fermionic island due to pinching in the
173Yb-174Yb mixture considered in the present work.
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FIG. 4. (Color online) The wave-function profiles of 174Yb
(dashed green line) and 173Yb (solid orange line) in a mixture of
174Yb-173Yb, with NB = NF = 106, aBB = 1100a0, and ω/(2π ) =
400Hz, as aBF is steadily increased from an initial value of
aBF = aBB. (a) aBF = 1.05aBB; (b) aBF = 1.1aBB; (c) aBF = 1.15aBB;
(d) aBF = 1.25aBB.

IV. PROFILE SWAPPING

A remarkable feature in the evolution of density profiles as
a function of aBF is the observation of profile swapping for a
certain range of parameters, in which the fermions are initially
at the core and bosons form a shell. However, at higher values
of aBF the bosons occupy the core and fermions form a shell
around it.

As an example to illustrate profile swapping, consider NB =
NF = 105; from Eq. (10) the spatial extents are equal at aBB =
0.24aho. However, retain the value aBB = 1100ao as in the case
of 106 atoms in each species. In this case, the spatial extent
of the bosons is less than the fermions, however, there are two
points at which the densities of the bosons and fermions are
the same. When aBF is set to a nonzero value, at lower values,
the changes in the equilibrium density profiles exhibit a pattern
similar to fermion pinching. Like in fermion pinching, as aBF

is ramped up, there is a depletion of fermions from the overlap
region as shown in Figs. 5(a)–5(d). However, at some value
of aBF a dramatic departure occurs. The fermions from the
core are expelled to the edges and bosons settle at the core
(Fig. 6). At intermediate values of aBF, the bosons form a shell
sandwiched between fermions at the core and an outer shell.
This is evident from the density profiles shown in Fig. 5(d).
As is evident from the figures, the migration of the fermions
to the flanks occurs at a relatively minute change in aBF, from
1.15aBB to 1.16aBB.

To analyze the profile swapping based on total energy con-
siderations, take the density profiles just prior to the expulsion
of fermions from the core. The interspecies interaction energy
is

Eint ≈
∫ ri+δ

ri−δ

druBFnBnF +
∫ ∞

ri+δ

druBFnBnF. (26)

Here, ri, like defined earlier, is the inner point where the two
densities are equal. The first term is the interspecies interaction
energy arising from the inner boundary of the overlap region.
And δ is the interpenetration depth considered symmetric for
simplicity. The second term is the interaction energy from
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FIG. 5. (Color online) The wave-function profiles of 174Yb
(dashed green line) and 173Yb (solid orange line) in a mixture of
174Yb-173Yb, with NB = NF = 105, aBB = 1100a0, and ω/(2π ) =
400 Hz, as aBF is steadily increased from an initial value of
aBF = aBB. (a) aBF = 1.0aBB; (b) aBF = 1.05aBB; (c) aBF = 1.1aBB;
(d) aBF = 1.15aBB.

the remaining overlap region. Although the upper limit of
integration is taken as ∞, in reality it extends up to the point
where nB is nonzero. To simplify the analysis, assume that
the fermions from the core, after the position swapping, are
pushed beyond the overlap domain. The interaction energy
when swapping occurs is

Eint ≈
∫ ri+δ

0
druBFnBnF +

∫ ∞

ri+δ

druBFnBnF, (27)

where in the first term, the lower limit accounts for the nonzero
fermion density around the core. The occurrence of position
swapping implies that∫ ri+δ

ri−δ

druBFnBnF >

∫ ri+δ

0
druBFnBnF, (28)
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FIG. 6. (Color online) The wave-function profiles of 174Yb
(dashed green line) and 173Yb (solid orange line) in a mixture of
174Yb-173Yb, with NB = NF = 105, aBB = 1100a0, and ω/(2π ) =
400 Hz, as aBF is steadily increased from its initial value of aBF =
1.16aBB. (a) aBF = 1.16aBB; (b) aBF = 1.17aBB; (c) aBF = 1.18aBB;
(d) aBF = 1.2aBB.
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FIG. 7. (Color online) The phase diagram of the 174Yb-173Yb
mixture with NB = NF = 106 and ω/(2π ) = 400 Hz. Dashed (green)
and dash-dotted (orange) curves are the semianalytic conditions
for mixing to partial demixing and demixing to phase separation
(or full demixing) transitions respectively, while solid (blue) is
the numerically obtained criterion for mixing to partial demixing
transition. In the phase-separated regime, for aBB <∼ 750, bosonic
core is surrounded by fermionic shell; for 750 <∼ aBB <∼ 1100 there
is fermion pinching along with profile swapping at aBB ≈ 750. For
750 <∼ aBB <∼ 1100, bosonic shell is surrounded by fermionic core and
shell. For aBB >∼ 1100, fermionic core is surrounded by bosonic shell.

at some value of aBF. In other words, like in binary mixtures of
condensates, at some point the geometry of the overlap region
determines the nature of the density profile.

To illustrate the various geometries discussed as a function
of aBB and aBF , the phase diagram of the 174Yb-173Yb mixture
with with NB = NF = 106 and ω/(2π ) = 400 Hz is shown
in Fig. 7. From the figure, it is evident that the fermion
pinching and profile swapping occur across a strip of parameter
space. The parameter space lies between the domains of
bosonic core and fermionic core. Among the different possible
geometries, profile swapping initiated by tuning interspecies
scattering length, appears to be a promising tool to study the
Rayleigh-Taylor type of instability in Bose-Fermi mixtures.
Recently, Rayleigh-Taylor instability in two-species Bose-
Einstein condensates has been studied theoretically [34,35].
For degenerate Bose-Fermi mixtures, the idea is to start with
a ground-state geometry with fermions forming the core, and
then increase aBF so that the new ground state has the fermionic
core swapped by the bosonic one.

V. CONCLUSIONS

We have analyzed the equilibrium density profiles of the
174Yb-173Yb Bose-Fermi mixture for a range of interaction
strengths. In this Bose-Fermi mixture, it is possible to tune both
the Bose-Bose and Bose-Fermi interactions across a range of
values. Density profiles of the two species display pinching and
position swapping when the boson-boson scattering length is
close to a∗

BB, the value at which the spatial extent of the bosons
is the same as the fermions. Pinching occurs when the aBB

is marginally below a∗
BB; at these values, as aBF is increased,

fermions at the edges are pinched to form a thin shell, whereas
at even lower values of aBB, as aBF is increased, the fermions
are expelled to the edge and density profiles are swapped. At
intermediate values of aBF, the profiles undergo a series of
configurations, and these are significantly different from the
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ones in the Bose-Bose mixtures. Close to the profile-swapping
domain, it should be possible to initiate Rayleigh-Taylor
instability through a controlled variation of aBF. This would
be significantly different from Rayleigh-Taylor instability in
condensates. In the future, it would be interesting and impor-
tant to explore various instabilities which may occur at the
Bose-Fermi interface boundaries. These could be qualitatively
different from their analogs of binary condensates.
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