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Recent ground-breaking experiments studying the effects of spin polarization on pairing in unitary Fermi
gases encountered mutual qualitative and quantitative discrepancies which seem to be a function of the confining
geometry. Using numerical algorithms we study the solution space for a three-dimensional fully self-consistent
formulation of realistic systems with up to 10° atoms. A study of the three types of solutions obtained demonstrates
atendency toward metastability as the confining geometry is elongated. One of these solutions, which is consistent
with Rice experiments at high trap aspect ratio, supports a state strikingly similar to the long sought Fulde-Ferrel-
Larkin-Ovchinnikov state. Our study helps to resolve the long-standing controversy concerning the discrepancies
between the findings from two different experimental groups and highlights the versatility of actual-size numerical
calculations for investigating inhomogeneous fermionic superfluids.
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I. INTRODUCTION

Superfluidity in a system of fermionic particles occurs
when bosonic degrees of freedom emerge and condense via
pairing of fermions. Understanding the strength of this pairing
mechanism is closely tied to the search for high-temperature
superconductors. A central issue that has animated this quest is
the following: What happens to the pairs when the participating
species have mismatched Fermi surfaces? Such a scenario
occurs, for example, in the presence of a polarizing field, or
when the pairing species have unequal numbers or masses. The
issue is that, when the mismatch of the Fermi surface is large
enough, a competition between a normal polarized state and
the superfluid state would ensue [1,2], potentially giving rise
to yet unknown or poorly understood exotic superfluid states
[3]. Among the interesting theoretical proposals for s-wave
pairing is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state,
a collective term for an inhomogeneous superfluid referring
either to a Fulde-Ferrell (FF) state [4], which supports a
supercurrent, or a Larkin-Ovchinnikov (LO) state [5] with a
spatially modulated order parameter. Other proposals include
breached pairing and p-wave symbiotic superfluids [3]. Pri-
marily due to lack of sufficient experimental evidence, the
issue remains largely unresolved even though it is central
to many forms of matter such as superconductors, neutron
stars, and color superfluids in the quark-gluon plasma [3].
Ultracold samples of two-component degenerate Fermi gases
[6-10] have re-energized the debate because of their exquisite
controllability.

In this paper, we focus on apparently contradictory results
on spin-imbalanced unitary Fermi gases from recent experi-
ments between two leading groups [7—10]. In both experiments
it was observed that, consistent with earlier predictions [1,2],
the trapped superfluid responds to polarization by phase
separating into an inner core with negligible polarization
surrounded by a polarized outer shell. However, in the
Rice experiments [8,9], performed in cigar-shaped traps with
total particle numbers N ~ 103, a significant and unexpected
deformation of the central superfluid core was observed,
indicating a clear violation of the local density approximation
(LDA). In addition, these results also suggest a much higher
superfluid to normal (Chandrasekhar-Clogston) transition than
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in the MIT experiments [7,10] in which no deformations were
observed. The excellent quantitative agreement with theory
[11,12] for the MIT experiments, conducted at much lower
trap aspect ratio and with higher particle numbers N ~ 10°,
hints that there might be unexpected physics at work in the
Rice experiment. In addition, the concurrence of experiments
performed in Paris [13] with the MIT experiments also
suggests a crucial role of the trapping geometry. This impasse
has inspired speculation about the possible role of exotic
phases such as the FFLO state in the observed discrepancies
and stirred much discussion and debate over the past few years
by the cold-atom community.

The apparent contradiction between the Rice and MIT
experiments reflects theoretical difficulties within trapped
geometries: Since the effective chemical potential (u) varies
in space, several phases may coexist within a trapped sample.
Consequently, despite excitement and considerable effort, the
theoretical complexity inherent within the problem has ensured
that most treatments have, with few exceptions [14-18],
invoked the LDA [19,20], which is not general enough to
capture states such as the FFLO. Although an intriguing
LDA treatment which phenomenologically includes a surface
energy correction has been able to account for the shape of
the distortions [21], further studies reveal that this model is
not consistent with a microscopic calculation of the surface
tension [22]. On the other hand, recent studies employing
variational techniques in isotropic geometries [23,24] have
shown that the region of stability for the FFLO state is
much larger than originally predicted [25]. Until now, a
fully self-consistent treatment in anistropic geometries with
realistic particle numbers has been well out of reach despite
its relevance here and in a wide variety of other physical
systems. To surmount this problem, we developed scalable
numerical techniques which take full advantage of today’s
high-performance computing facilities running parallel codes
over thousands of CPUs.

II. MODEL

We consider a gas of spin-polarized fermionic atoms
confined to a harmonic trap defined in cylindrical coordinates
(r.¢.2) by V(r,¢,2) = %2(w}r* + w?z?) with axial and radial
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frequencies denoted by (w,,w, ). Consistent with Refs. [8,9]
we work at the unitarity limit where the s-wave scattering
length between the two spin species (ay) diverges and within a
cigar-shaped trap with aspect ratio defined by o = w, /w,.
This system of N = Ny + N, atoms is described by a
Hamiltonian H = / dr (I:IO + I:I,) with noninteracting (I:IQ)
and interaction (H;) energy densities given by

. K2
Hy(r) = Z vl [—ﬁvz +V(rz)— ua} Vo,
o="11

Ai(F) = —U Y] (0| (v, (v (),

where ¥, () and w; (7) represent the fermionic field operators,
m is the mass, and pu, is the chemical potential of atomic
species with spin o. Henceforth, we work in trap units
for which m = w, =% = 1. The bare coupling constant U
is renormalized through a relationship with a; by 1/U =
—1/(@may) + (1/ V) Y 1/Qe) [12,26], with €, = k*/2 and
V; representing the system volume. H is diagonalized through
the Bogoliubov-de Gennes (BdG) formulation. In particular,
our formulation is identical to that in Ref. [12]. The superfluid
gap (order parameter) is defined by A(F) = U (Y1 (F)y, (F))
and the spin densities are given by p,(F) = (¥} () ¥, (F)).
We find it clarifying to express our results in terms of the Fermi
energy Er = (3N)'/3a?/3 and the Thomas-Fermi radius along
the z axis, Zr = /2Ep, for a single-species ideal Fermi gas of
N /2 particles in a trap with identical parameters. In addition,
following a convention that Ny > N, we define k;l = /24y

and the FFLO wave number by g = k; - ki.

(D

III. RESULTS AND DISCUSSIONS

We solve the BAG equations [12] using a piecewise-linear
finite-element basis which yields sparse matrices amenable
to efficient parallelization and work in a canonical formalism
which fixes N and the total polarization P = (Ny — N})/N. It
has been recently shown that, in the particular circumstances
of the Rice experiment [8,9], evaporative cooling shortens
the major axis (z axis) of what should be an ellipsoidal
partially polarized region, where the condensate forms [27].
By starting from an initial ansatz for the gap (A;) imitating
this circumstance, the BdG equations are iteratively solved
to self-consistency using a modified Broyden’s method [28].
Our calculations reveal the following: (1) For large particle
numbers (N > 10%), we always find a solution similar in
structure to the LDA solution which has the lowest free
energy. However, starting from an axially shortened initial
ansatz for the gap, this solution is not accessed by the iterative
procedure. (2) The most likely solution which is consistent
with the Rice experiment is a metastable state that supports
a partially polarized superfluid phase strikingly similar to
the FFLO phase. This state becomes increasingly robust as
trapping geometry becomes more elongated. (3) Even within
a trapped environment, the nodes of the order parameter in the
FFLO-like phase are radially aligned, which, with low enough
noise, provides a measurable, incontrovertible signal within
the density profiles.

Superfluidity, a phenomenon of quantum rigidity, acquires
its name from a scenario in which, due to energy barriers,
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a condensate gets indefinitely trapped within a current-
carrying metastable state. The portent for the experiments
under discussion is that the observed state could be a long-lived
metastable state. Thus, we take the approach of exploring
the solution space using an ansatz constructed with reference
to [27] and the phase diagram on the BCS side of the Feshbach
resonance [25,29]. Specifically, we use the LDA solution for
the gap (ALpa) as a base to construct an initial ansatz A; which
is axially partitioned into different regions:

ALpa, lz| < ze,
Ay(rz) = l ‘

292
Arpa cos[q(z — z)] e CT3 A0z > 7.

A allows us to explore various distorted states. In its most
general form, one encounters the unpolarized BCS, FFLO,
and normal phases as one traverses along the axial direction
from the trap center to the edge. The initial size of the FFLO
region in the ansatz is determined by A. When A is too small
to accommodate a single wavelength of the gap oscillation,
ie., 0 < A < 2m/q, we start without an FFLO phase and z,
represents the axial coordinate of superfluid to normal (S-N)
transition. Conversely, an FFLO phase is initially present in the
ansatz when A > 27 /g. In this case z.represents the superfluid
to FFLO (S-FFLO) transition. Henceforth we refer to these
initial conditions as APN and APSF) respectively, which
reflects our nomenclature for the eventual solutions as well,;
i.e., we name the entire solution according to the character of
the partially polarized region: We have a partially polarized
superfluid solution (P-SF) when there is an FFLO-like phase
present. When the partially polarized region is completely
normal, we refer to the entire solution as a P-N solution. For
clarity we single out the LDA-like solution which is obtained
when A; = Arpa as the SF solution. In both the P-N and
P-SF solutions, the central unpolarized BCS superfluid core is
shortened along the z axis in comparison to the LDA-like
SF solution. As we shall see, this shortened BCS core is
manifested in the LDA-violating distortion of the density
profile of the minority spin component.

A broad feature of our results, which directly relates to
the question of metastability, is the observation of a barrier
between the shortened states (either P-N or P-SF) and the
SF solution. For small atom numbers, this barrier is absent,
the converged solution is unique, independent of the initial
ansatz we take, and we see a dramatic departure from the
LDA prediction due to significant finite-size effect. However,
with increasing N, the axial S-N or S-FFLO transition point is
pinned near its initial value z. and we obtain different solutions
by starting from different initial ansatzes. Starting from AF-5F
or A};'N we always converge to a shortened state in a manner
which is only sensitive to our choice of g. In other words, we
do see a transition between the P-SF and P-N states which
is very sensitive to ¢ and largely insensitive to A, both of
which are set in the initial condition A;. It works as follows.
When ¢ is less than a critical value ¢, the oscillations in
the ansatz A, are amplified and the solution flows to a P-SF
state regardless of the size of A. Conversely, when g > ¢,
the oscillations are damped and A; always converges to a
P-N state. A similar resonance behavior has also recently been
observed in studies of the S-N boundary while tuning a, across
the BEC-BCS crossover [22], in which case calculations were
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FIG. 1. (Color online) (a) Axial profiles of the gap (in units
of Er) showing the P-N (blue dashed line), P-SF (red solid line)
and SF (green dotted line) states. The LDA solution (not shown)
almost completely overlaps with the SF result. The free energies per
particle are: 0.67(0)E r, 0.65(8)E r, 0.65(5)E r and 0.64(4) E . for the
P-N, P-SF, SF and LDA states, respectively. (b) Local polarization
p(F) within the partially polarized region of the P-SF(red solid
line) and P-N(blue dashed line) solutions. (c) An r-z plot of the
normalized density difference 8o = (o4 — p,)/pr of the partially
polarized region of the P-SF state (o = /(2E £)3/6m2). All the
results shown in this paper are obtained at a small temperature
T =0.02EF/kp, and with N = 50000, « = 50, and P = 0.3.

performed without the radial confinement. It is possible that
this phenomenon might be exploited to engineer the realization
of the P-SF state.

We ascribe the consistent convergence to a shortened state
as due to the emergence of energy barriers separating the P-SF
and P-N states from the SF state with increasing N or o
in tandem with Eg. In Fig. 1(a) we illustrate the dramatic
differences in the superfluid gap for the various solutions
encountered. Apart from the emerging energy barriers, another
important result with regard to metastability is the decrease in
the relative energetic separation of all the states, P-SF, P-N,
and SF, as « is increased. Taken together, these observations
suggest that the relaxation of the physical system from any
of the shortened states to the SF state, which is the lowest in
energy, becomes less favorable as « is increased, a deduction
which is borne out by the discrepancies of the Rice and MIT
experiments.

For a given value of z., the energy of the P-SF solution is
consistently lower than the P-N solution. Furthermore, recent
results suggest that the inclusion of fluctuations, neglected
in mean-field formulations, should make the P-SF state even
more stable [24]. Thus, we expect that if the system converges
to a shortened state, it will choose the P-SF state. A natural
question to ask is, How will the FFLO phase manifest
itself?

In Fig. 1(b) we contrast the appearance of local polarization
p(F) = (py — py)/(py + py) in the partially polarized regions
of the P-SF and P-N states. We note that, in [24], the strong
oscillations displayed in p(¥) were observed to survive the
effects of fluctuations. One pleasant surprise of our results
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FIG. 2. (Color online) Plots showing the doubly integrated axial
spin density §p;4(z) for, from top down, the SF, P-N, and P-SF states
shown in Fig. 1(a).

was the radial alignment of the nodes of the FFLO phase
shown in Fig. 1(c), a fact which is not a priori obvious and
is very promising for the prospects of detection within the
three-dimensional (3D) system under discussion here, because
it implies that the FFLO phase could yield a measurable signal
in the density profile. Auspiciously, it also suggests that when
an array of one-dimensional (1D) tubes, such as are being used
in current experiments [30], are coupled to yield a quasi-3D
confinement, the FFLO nodes at each tube are likely to align
to yield a measurable signal. To make sure that the radial
alignment of the nodes is not a numerical artefact, we have used
initial an ansatz where the nodes are intentionally misaligned
along the radial direction. Our code always converges to states
with the nodes aligned. A comparison of the plots in Fig. 2
confirms that the presence of an FFLO phase would indeed
provide a smoking-gun signal in doubly integrated axial spin
density 8p14 = [ [ dxdy(ps — py).In the close-up we observe
that the signal of the FFLO region is not as strong as that in
Fig. 1(c) because of contributions from the fully polarized shell
encasing it. Quantitatively, it indicates that a lower bound of
the signal to noise ratio of & 6.5 is required to observe at least
half of the FFLO phase.

A casual comparison of all column density profiles in
Fig. 3 rules out the observation in the Rice experiment of the
SF state, which is consistent with the LDA and, within the
BdG formulation, has the lowest free energy. However, due to
the noise on the experimental data, it is not clear which of the
shortened states (P-SF or P-N) has been observed. To produce
noise with characteristics similar to that of the experiment,
we added white noise with a standard deviation that is a
similar fraction of the average value of the column density

FIG. 3. (Color online) Column densities (rescaled to have aspect
ratio 5 for clarity) [ pydx, [ pydx, and [(py — p,)dx and the axial
spin density §p14, respectively. The states represented are (a) the
SE, (b) the P-SF, and (c) the P-N states illustrated in Fig. 1(a). In
(d) we plot the Rice experimental results for N ~ 260 000, P =~ 0.35,
a=4523,and T < 0.05Er/kp.
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ffooo p+dx in the plotted window. Theoretically, since it has
the lower energy and since the transition between the FFLO
phase and the normal phase is continuous, one expects that,
between the two shortened states, the P-SF solution will be
favored.

IV. CONCLUSION

In conclusion, we have repeatedly solved the BAG equa-
tions in a cigar-shaped trap using initial conditions which
imitate the condensate nucleation process [27]. The iterative
solution chooses between two stationary points, which are not
necessarily the global free energy minimum, each of which
features density profiles strikingly similar to experimental
observations at Rice. The solution which possesses the lower
energy of these two contains an FFLO-like phase which
leaves an accessible signal in §p;4. Coupled with recent
results which suggest the unexpected stability of the FFLO
in three dimensions [24], our observations raise the interesting
question of whether the FFLO state has already been realized
in the Rice experiment. Since the Hartree interactions are
excluded from the BAG formulation of unitary gases [12], we
do not address the position of the Clogston limit. Nevertheless,
we note in passing that the P-SF solution has the capacity
to absorb polarizations and, if undetected, could conceal the
existence of a partially polarized region. Finally, we remark
that our work is important for another reason: As far as we
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know ours are among the largest calculations of their kind and
provide an efficient tool for investigations of finite fermionic
systems such as occur in atomic traps or in nuclear physics,
where predictions of ideal models such as the FFLO proposal
could be significantly modified by confinement and finite-size
effects.

Note added. After our work was completed, the Rice exper-
imental group verified the suggestion made in Ref. [27] that the
LDA-violating deformations observed in their experiment are
a result of depolarization of the superfluid core by evaporation
occurring mainly at the axial center of the trap [31]. They found
that these deformed states are very stable, in agreement with
our calculations. The metastability of these states suggests the
possibility to directly engineer an FFLO state in an elongated
trap.
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