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Nonlinear quenches of power-law confining traps in quantum critical systems
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We describe the coherent quantum evolution of a quantum many-body system with a time-dependent power-law
confining potential. The amplitude of the inhomogeneous potential is driven in time along a nonlinear ramp which
crosses a critical point. Using Kibble-Zurek-like scaling arguments we derive general scaling laws for the density
of excitations and energy excess generated during the nonlinear sweep of the confining potential. It is shown that,
with respect to the sweeping rate, the densities follow algebraic laws with exponents that depend on the space-time
properties of the potential and on the scaling dimensions of the densities. We support our scaling predictions
with both analytical and numerical results on the Ising quantum chain with an inhomogeneous transverse field
varying in time.
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I. INTRODUCTION

An interesting question about the behavior of a quantum
system near a quantum critical point [1] is how the presence
of spatially varying external fields, or local modulation of
the internal couplings (which may be randomly or deter-
ministically distributed [2]), will influence the equilibrium
and dynamical properties of such a system. Depending on
the relevance of the perturbation generated by the field or
coupling inhomogeneity, the universality class governing the
behavior close to the critical point may change [3]. A relevant
inhomogeneity may even suppress the very existence of the
critical point as, for instance, is trivially the case on a finite-size
system [4]. The critical behavior will be modified locally at
a boundary, as, for example, at a flat surface, at a corner,
or at the tip of a parabolic-shaped system [5]. An extended
inhomogeneity may be such that it is too weak to modify
the bulk critical behavior but strong enough to change the
local critical properties at a surface or at an interface [6]. One
may also mention a series of works on gradient percolation,
where an inhomogeneous field was introduced as a tool
allowing for accurate estimates of the percolation threshold
and the percolation exponents [7]. The main effect of such
a spatially varying field inhomogeneity is to smooth out the
critical singularities. Indeed, the inhomogeneous field leads
to a departure from the critical point, which introduces a
finite length scale in the problem. More recently, based on
the proper identification of the typical length scale, a scaling
theory for the equilibrium profiles of energy and particle
densities has been developed for quantum systems with
power-law inhomogeneities [8–11]. Such power-law fields are
particularly relevant in the context of ultracold atoms, where
parabolic trapping potentials are used to confine atomic clouds.

Beautiful experiments from the ultracold-gases community
have revived the theoretical studies of the nonequilibrium
behavior of strongly correlated quantum systems [12]. The
main reason for that is that the dynamics of such atomic
systems presents a very low dissipation rate and a good phase
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coherence over very long times [12]. Consequently, the real
dynamics are very well modeled by the usual quantum unitary
evolution of closed systems. Among the various possible
nonequilibrium situations that one may think of, a case
that has received much attention is where the parameters of
the quantum many-body system are varied in time such that
the system reaches or crosses a quantum critical point. In this
case, close to the critical point, the divergence of the intrinsic
relaxation time leads to a nonadiabatic evolution of the system
no matter how slow the Hamiltonian is changed. If the system
is initially in its ground state, nonadiabatic transitions toward
excited states lead to the generation of topological defects in
the final state [13–17]. For example, driving a quantum system
from a paramagnetic to a ferromagnetic phase through a critical
point generates a final state given by a superposition over
excited states carrying finite ferromagnetic domains separated
by kinks or domain walls. For a slow driving rate, the density
of defects is a universal scaling function of the driving rate,
as in the classical Kibble-Zurek (KZ) mechanism [18]. This
may be of importance in the context of adiabatic quantum
computation [19], where adiabatic evolution is proposed to
transfer the system from an initial state to a computational
nontrivial state. If one is forced to cross a critical point in order
to generate the nontrivial state, inevitably the crossing will
result in the generation of excitations (defects). The optimal
time ramp needed to drive the system through the critical point
has to balance the unavoidable generation of defects and the
time needed to cross the critical point [17].

Removing or loading a power-law trap smoothly in time
and close to a critical point, as sketched in Fig. 1, will lead
to a final state carrying a nontrivial density of defects, which
will depend on the shape of the trap, as we have shown in
a recent letter [20]. The reason for this result is the fact that
the power-law perturbation is a relevant one and modifies the
universality class of the critical point, leading to an effective
correlation length exponent which has to enter into the Kibble-
Zurek prediction instead of the original one. In this article, we
analyze in detail the coherent generation of defects during such
an inhomogeneous quench [20]. A general scaling argument
is presented from which the scaling behavior of local (such
as the local energy density or order parameter) and global
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FIG. 1. (Color online) Sketch of the problem we consider in this
article.

(such as the density of defects) quantities are derived. The
minimization of defect production for a given total sweeping
time is also discussed within the scaling approach. Aside from
the scaling-argument approach, we also present an analytical
near-adiabatic analysis and an exact numerical study of the
Ising quantum chain with an inhomogeneous transverse field
playing the role of the confining potential.

The article is organized in the following way: The next
section is devoted to the scaling theory. The dynamical analysis
is presented in Sec. III and the specific case of the Ising model
is treated in Sec. IV. Finally, we summarize our results in
Sec. V.

II. SCALING THEORY

A. Scaling arguments

The d-dimensional quantum system we consider has a
quantum critical point at zero temperature governed by a scalar
field h. The critical point separates a symmetric phase from a
broken-symmetry phase. The homogenous critical field value
is hc. We assume that, close enough to the critical point, the
quantum control parameter h deviates in one direction from
the homogeneous critical value hc with a power law

δ(x,t) ≡ h(x,t) − hc � g(t)|x|ω, (1)

with a positive space exponent ω > 0. The amplitude g(t) of
the spatial deviation of the critical value [which is set fixed at
x = 0 ∀ t according to (1)] is driven externally from a given
initial value to a final value following the nonlinear time ramp

g(t) = v|t |αsgn(t), (2)

with α a positive exponent, sgn(t) the sign function, and where,
without loss of generality, the rate amplitude v is assumed to
be positive and determines the velocity of the quench. For
small v, the quench is slow, whereas it is faster at larger
values. Notice that, within the following parametrization, the
quench dynamics connect the two distinct phases by crossing
the homogeneous critical point [h(x) = hc ∀ x] at time t = 0.
Negative times correspond to the δ < 0 phase while positive
times correspond to the δ > 0 phase.

The presence of the inhomogeneous field (1) introduces
a crossover region in space-time (x,t) around the critical
locus (0,0) with characteristic length scale � and time scale
τ . To see that, let us start in the far past, at t = −T with
T � 1, from the ground state |GS(g(−T ))〉 associated with
the initial amplitude g(−T ). Under the unitary dynamics
generated by the time-dependent Hamiltonian, the system

starts to evolve adiabatically, following the instantaneous
ground state |GS(g(t))〉 as far as it is protected from transitions
to excited states by a large energy gap �(t) between the
ground state and excited states. At time t , in the instantaneous
state |GS(g(t))〉, the spatial power-law deviation of the control
parameter δ from the critical point introduces a finite length
scale �(t) around the spatial critical locus (here at x = 0) [8].
The typical length can be obtained self-consistently by noting
that, with this width, �(t) is associated with a given deviation
δ(�) = g�ω from which a characteristic length δ(�,t)−ν can be
constructed from the correlation length relationship. From the
identification �(t) ∼ δ(�,t)−ν one finally finds

�(t) ∼ |g(t)|−ν/(1+νω). (3)

The typical length scale �(t) diverges for a vanishing deviation
amplitude g that is close to the critical point with an effective
correlation length exponent given by

νg ≡ 1

yg

= ν

1 + νω
. (4)

As time runs toward zero, the energy gap � of the system
vanishes and, correspondingly, the relaxation time ∝1/�

gets larger and larger up to the point where the adiabatic
evolution breaks down completely due to the contributions
of the transitions toward instantaneous excited states. When
sufficiently close to the homogeneous critical point, the
response of the system to the external driving is so slow that the
dynamics switch to a sudden regime. After the critical point has
been crossed, for sufficiently large times, one recovers again
the nearly adiabatic regime. The typical time scale τ around
the critical locus, separating the nearly adiabatic dynamics
from the sudden-quench regime, can be deduced from the
self-consistent relation τ ∼ �(τ )z, where z is the dynamical
exponent. This leads to

τ ∼ �z ∼ v−z/yv , (5)

where

1

νv

≡ yv = yg + zα = 1 + ν(ω + zα)

ν
, (6)

is the Renormalization Group (RG) dimension of the perturba-
tion field, such that, under rescaling by a factor b, the amplitude
v transforms as v′ = byvv. Since ω and α are positive, the
perturbation is always relevant (yv > 0). Notice that, within
the quench, the maximal extension of the length scale � scales
with the rate amplitude v as � ∼ v−νv , where νv plays the role
of an effective correlation length exponent for the effective
thermal field v. For a given value of v, the typical length
scale never diverges, even exactly when we cross the critical
point since, before that, there is a critical slowing down which
freezes completely the dynamics and avoids then the further
development of correlations.

The scaling of the profile of a local quantity φ(x,t,v), like
the local order parameter or the energy density with scaling
dimension xφ close to the critical locus, is determined under the
homogeneity hypothesis φ(x,t,v) = b−xφ φ(xb−1,tb−z,vbyv ).
Taking the rescaling factor to be b = v−1/yv ∝ � ∝ τ 1/z, one
obtains

φ(x,t,v) = vxφ/yv	(xv1/yv ,tvz/yv ), (7)
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where 	 is a scaling function. As discussed previously, the
prefactor exhibits the trap-size scaling φ ∼ �−xϕ associated to
the finite-size scale � ∼ v−1/yv [8]. Notice here that the scaling
form (7) is not expected to be valid outside the critical region,
that is for |x| � � since, in those regions, the field values are
very far from the critical value.

In the same way, if we are interested only in the time
evolution of the spatial-averaged quantity, after integration in
space over the critical domain � of the preceding equation, one
obtains

φ(t,v) = 1

�

∫
�

dxφ(x,t,v)

= vxφ/yv	(tvz/yv ) ∼ τ−xφ/z	

(
t

τ

)
. (8)

As an example, the averaged energy density should behave
after the quench to the critical point as e ∼ v(d+z)/yv since its
scaling dimension is xe = d + z [21].

B. Density of defects

The defect production generated during the quench by
crossing the critical point is deduced through the identification
of the typical Kibble-Zurek time scale corresponding to
the freezing of the dynamics. Equating the relaxation time
κ/�(t) with the typical time-scale �(t)/|�̇(t)| at which the
Hamiltonian is varied and assuming that the gap scales as
�(t) � �0|g(t)|z/yg , one finds for the typical (Kibble-Zurek)
time scale

τKZ ∼
(

κ

�0

zα

yg

)yg/yv

v−z/yv . (9)

The defect density being proportional to the inverse of the
correlation volume at the Kibble-Zurek time, one obtains from
the relationship n ∼ [�(τKZ)]d/z the behavior

n ∼
(

κ

�0

zα

yg

)dα/yv

vd/yv = (zγ δ)
dγ

1+zγ , (10)

with δ = κ
�0

v1/α ∼ 1/T (with T defining the temporal win-
dow of the quench protocol) and γ = ανg = α/yg . As one
would expect, the density of defects n is smaller for larger
values of the protocol time window T used to reach a final value
gf from the initial g0 value. The obvious conclusion is that, if
one wants to minimize the generation of defects, the switching
of the trap should be as slow as possible. However, this can lead
to extremely long protocol times T and be counterproductive
as, for example, in quantum computational issues where one
looks for a compromise between the production of excited
states and short computational times. In order to achieve
this compromise, one may look for the optimal power-law
time-ramp protocol that minimizes the defect density n at a
fixed duration T . Optimizing (10) with respect to γ = α/yg

for a given δ ∼ 1/T one finds

γopt = 1

z
W

(
1

eδ

)
, (11)

where W(x) is the Lambert W function defined through
x = f (W) = WeW . For a given trap shape (space exponent
ω fixed) the optimum time exponent takes the value αopt =

γopt/νg = γopt(1 + νω)/ν. Using the asymptotic expansion of
the Lambert function W(x) � ln x − ln(ln x) at large x, the
result of [17] is recovered with ω = 0:

αopt � − 1

zν
ln

(
eδ ln

1

eδ

)
. (12)

Loading a power-law trap potential changes significantly the
value of the optimal temporal exponent α, increasing it by a
factor (1 + νω). This means that, with a power-law trap and
close to the critical point, one has to drive the system slower
than without a trap in order to minimize the defect production.

In view of the scaling prediction (7) we expect the density
of defects n(x,v) produced locally within the critical region to
scale as

n(x,v) = vd/yvN (xv1/yv ) = �−dN
(x

�

)
, (13)

where we have set t = τKZ = v−z/yv . The unknown scaling
function N (u) should go to a constant as u → 0.

C. Global shift to the critical point

A question that may naturally arise is about the validity of
the present approach when the critical locus is not exactly at
the expected space-time location, as would certainly be the
case in an experiment. If there is an uncertainty in the locus
of the critical point, following [22], we can distinguish several
situations. First of all, if the deviation to the expected locus
is due to a shift δg in the time ramp amplitude such that the
actual perturbation is given by

δ(x,t) � [g(t) − δg]|x|ω, (14)

where, without loss of generality, we assume δg > 0, then
the critical point is crossed [for g(t∗) = δg] at t∗ = (δg/v)1/α .
Developing δ(x,t) near t∗ (and neglecting higher-order contri-
butions) we obtain

δ(x,t) � ∂δ(x,t)

∂t

∣∣∣∣
t∗

(t − t∗) = v̂g(t − t∗)|x|ω, (15)

where we have identified a new rate v̂g = αv1/αδ
1−1/α
g . The

effect of a finite δg leads then to an effective linear time ramp
without changing the spatial behavior. Our scaling predictions
hold then with the time exponent α replaced by the new time
exponent α̂ = 1 and the rate v by the effective rate v̂g .

If the deviation to the critical point is due to a global
residual shift δh such that the actual trap has the form
δ(x,t) = g(t)|x|ω − δh, one has to distinguish between a small
shift and a relatively large one. Consider first the case of a
small global shift δh, such that we are still in a scaling regime.
The scaling dimension associated to the global shift is that of
the unperturbed system 1/ν. Under rescaling by a factor b,
the length scale and time scale change according to

b−1�(v,δh) = �(vbyv ,δhb
1/ν), b−zτ = τ (vbyv ,δhb

1/ν),

(16)

which leads to taking vbyv to

� = v−1/yv �̃(δhv
−1/νyv ), τ = v−z/yv τ̃ (δhv

−1/νyv ). (17)
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The scaling functions �̃(u) and τ̃ (u) have to satisfy the limiting
behavior �̃(0) = �0, τ̃ (0) = τ0 and, for u � 1,

�̃(u) ∼ u−ν, τ̃ (u) ∼ u−zν,

in order to match the usual scaling in absence of the trap.
Physically, these assumptions mean that the shortest length
between ξh ∼ δ−ν

h and �v ∼ v−1/yv dominates the behavior
near the critical locus. The trap-size scaling (7) is expected to
hold when 1 � �v � ξh; that is, when the system is critical
enough in the absence of the trapping potential. The general
scaling for a local field is given by

φ(x,t,v,δh) = b−xφ 	(xb−1,tb−z,vbyv ,δhb
1/ν), (18)

and again with vbyv = 1 we have the following trap-size
scaling

φ(x,t,v,δh) = vxφ/yv	(xv1/yv ,tvz/yv ,δhv
−1/νyv ), (19)

which is nothing but the scaling

φ(x,t,v,δh) = �
−xφ

v 	̃

(
x

�v

,
t

�z
v

,
ξh

�v

)
. (20)

Under this new scaling assumption we have, in particular, an
energy gap of

�(v,δh) � vz/yv�(δhv
−1/νyv ). (21)

For δh � 1 and v → 0 we have to recover the homogeneous
behavior � ∼ δzν

h , which imposes �(u) ∼ uzν for u � 1. For
δhv

−1/νyv → 0 developing the function � close to zero we
obtain

�(v) � �0v
z/yv + �′

0v
(zν−1)/νyv δh + o(δh). (22)

For the defect density, from the Kibble-Zurek prediction n ∼
�d/z one obtains the behavior

n ∼ �0v
d/yv

(
1 + �′

0

�0
v−1/νyv δh + o(δh)

)d/z

� �0v
d/yv + d

z
�′

0v
d/yv−1/νyv δh + o(δh). (23)

For the special case of the Ising quantum chain that we consider
in the following, we have d = 1, ν = 1, and z = 1, then, to the
first order in δh, the corrections are independent of v:

nIsing ∼ �0v
1/(1+ω+α) + �′

0δh + o(δh), (24)

generating a constant shift to the original behavior.
For a large constant shift δh taking the system out of

the previous scaling regime, we have to distinguish between
negative and positive global shifts. In order to fix the ideas
for the discussion, let us set g(t) = −v|t |αsgn(t) and drive the
system from an initial negative time ti = −t0 to t = 0 where
the coupling profile is completely flat: δ(x,0) = −δh. If δh

is negative then, since δ(x,t) � |δh| ∀ x, the system stays in
its disordered phase during the full evolution. Its dynamics
are always nearly adiabatic since, at any time t ∈ [−t0,0],
the gap remains large enough for |δh| = O(1). One expects
in this case an exponentially small defect generation. On the
contrary, for a positive global shift δh there is at each time a
region around x = 0 which is already in the symmetry-broken
phase [negative δ(x,t) values]. During the time evolution from

t = −t0 to t = 0, this area around the origin x = 0 will grow,
propagating the symmetry-broken phase into the symmetric
phase [22]. The temporal dependence of the critical front
x∗(t), separating both phases, determined from the critical
locus condition δ(x∗,t) = 0 is given by

|x∗(t)| =
(

δh

v

)1/ω

(−t)−α/ω with t ∈ [−t0,0]. (25)

Since α and ω are both positive, the critical locus x∗(t) is
expelled to infinity as we approach t = 0. At the beginning
of the quench, the critical locus front propagates slowly
enough that the ordered phase extends into the disordered
phase with a very low rate of defect generation. However, as
time approaches zero, the velocity of the front becomes very
large such that there is no longer a causal connection with
the already nucleated ordered phase and the disordered phase.
This leads to an effective sudden quench regime for the part
of the system which is outside the causal region. In order to
obtain the dependence of the threshold point x0 after which the
causality is lost, we develop δ(x,t) near, lets say, the positive
critical front x∗(t) > 0. Close to x∗, one has a linear front

δ(x,t) � ∂δ(x,t)

∂x

∣∣∣∣
x∗(t)

[x − x∗(t)] = v̂h(−t)α/ω[x − x∗(t)],

(26)

with a local slope v̂h(−t)α/ω, where the rate v̂h = ωv1/ωδ
1−1/ω

h .
Notice here that the slope of the linear front is decay-
ing as t → 0 as |t |α/ω; that is, as the trap is opening.
This front drives locally the system from one phase to
the other with a time-dependent velocity c∗(t) ≡ dx∗/dt ∼
x∗1+ω/α(v/δh)1/α ∼ x∗(t)/t . As was pointed out in [22], the
propagation of the front turns out to suppress the Kibble-Zurek
excitations in a region around the origin and rejects the
defect production outside this region. At the critical locus
x∗, the linearized perturbation introduces a local length scale
�∗(t) = �(x∗(t)) ∼ [δh/x

∗(t)]−ν/(1+ν) and time scale τ ∗(t) ∼
�∗(t)z according to the scaling argument (3) developed in the
introduction (see [8]). To get an idea of the extension of that
region, we compare the velocity c∗(t) of the front with the
typical velocity, close to x∗, �∗(t)/τ ∗(t) ∼ �∗(t)1−z. From that,
one may extract a time τ0, where both velocities become of the
same order, and then deduce the threshold locus x0 ≡ x∗(τ0).
In the case of the Ising chain treated below, since the critical ex-
ponents z = ν = 1, the system enters into the sudden regime as
soon as the front velocity c∗(t) is larger than the sound velocity
(hereafter set to one). One obtains from the equation c∗(τ0) = 1

x0 = x∗(τ0) ∼ τ0 ∼
(

δh

v

)1/(α+ω)

. (27)

Around the point x0 one expects a critical region with typical
fluctuations of order (x0/δh)ν/(1+ν) = √

x0/δh since, for the
Ising chain, ν = 1.

III. DYNAMICAL ANALYSIS

A. Adiabatic approximation

If the time-variation of the Hamiltonian is slow enough, one
can use a nearly adiabatic approximation in order to describe
the actual state |�(t)〉 = U(t,t0)|0(t0)〉 obtained from the initial
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ground state |GS〉 = |0(t0)〉 of the initial Hamiltonian H(t0).
Introducing the instantaneous eigenbasis {|k(t)〉} (which is
assumed to be discreet for simplicity)H(t)|k(t)〉 = Ek(t)|k(t)〉
one obtains from standard perturbation theory the “one-jump”
expansion

|�(t)〉 ≈ e
−i

∫ t

t0
dsE0(s)

[
|0(t)〉

+
∑
k �=0

|k(t)〉
∫ t

t0

dt ′〈k̇(t ′)|0(t ′)〉e−iϑk (t ′,t)
]
, (28)

where ϑk(t ′,t) = ∫ t

t ′ dsδωk0(s) with the Bohr frequency
δωk0(t) ≡ Ek(t) − E0(t). Notice that this expansion is valid
only if the eigenvectors are changing continuously with time.
The first term on the right-hand side is the usual adiabatic
result: the state is in the instantaneous eigenstate |0(t)〉 (here
the ground state) of the Hamiltonian H(t) multiplied by a
dynamical phase factor. It corresponds to no jump at all. The
second term is the “one-jump” contribution. It represents an
adiabatic evolution from the initial state up to a time t ′, a
sudden transition at t ′ toward an excited state |k(t ′)〉, followed
by an adiabatic evolution from |k(t ′)〉 to |k(t)〉. The total con-
tribution results from the integration over all times t ′ ∈ [t0,t]
at which the transition could take place, and then summed over
all transition states. Higher-order terms are built by taking into
account more than one single jump between the instantaneous
states and are neglected here. Using the identity 〈k̇(t)|q(t)〉 =
〈k(t)|∂tH(t)|q(t)〉/δωkq for k �= q, the transition amplitudes
ak(t0,t) = 〈k(t)|�(t)〉 (up to a global phase factor) are given by

ak(t0,t) =
∫ g(t)

g(t0)
dg

〈k(g)|∂gH(g)|0(g)〉
δωk0(g)

e−iϑk (g,g(t)), (29)

where the phase factor is given by

ϑk(x,y) = v−1/α

α

∫ y

x

dg |g|1/α−1δωk0(g). (30)

The density of defects generated with the nonlinear ramp
g(t) is given by summing the transition probabilities |ak|2
over all the excited states |k(g)〉. To analyze the behavior
of the transition amplitude we need to know the behavior
of the energy spectrum δωk0(g) and of the perturbation
matrix elements 〈k(t)|∂tH(t)|q(t)〉, which will depend
on the precise space- and time-dependence of the perturbation
field. The scaling of δωk0 is linked to the scaling of the
energy density e(x,�) = �−(d+z)E(x/�), according to the
trap-size scaling developed in the preceding section by a space
integration. This leads to δωk0 ∼ �−z�(�−z/kz). Along
the same lines, dimensionally one expects
〈k(g)|∂gH(g)|0(g)〉 ∼ �−zG(�−z/kz)/g ∼ �−z+ygG(�−z/kz),
where � ∼ g−1/yg is the typical length introduced by the spatial
perturbation at time t . For the integral (29) to converge at
g = 0 (i.e., for a quench crossing the critical point), the scaling
function F (u) = G(u)/�(u) has to decay to zero at least
linearly at small u, which is the case for the spatially homoge-
neous quench [1,16]. Plugging these assumptions into (29), the
excitation density generated by crossing the critical point was
found to scale as n � Cv

dν
1+νzα , which is nothing but n ∼ �−d

with � ∼ v− ν
1+νzα for ω = 0 [16]. In the spatially inhomoge-

neous situation the convergence close to the critical point is not

guaranteed (see below the analytical example of the Ising chain
with ω = 1). Consequently, one cannot in general use the first-
order perturbation expansion (29) for a quench crossing the
critical point. Nevertheless, the adiabatic approximation can be
used for quenches that take the system close to the critical point
without crossing it. Getting closer and closer to the critical
point, the transition amplitudes will display a scaling signature.

IV. ISING QUANTUM CHAIN

A. Diagonalization and nearly adiabatic dynamics

Let us consider the specific case of the Ising quantum
Hamiltonian in a time-dependent inhomogeneous transverse
field:

H(t) = −1

2

L−1∑
n=1

σx
n σ x

n+1 − 1

2

L∑
n=1

hn(g) σ z
n , (31)

where hn(g) = 1 + g(t)nω, with g(t) = v|t |αsgn(t). Because
it is integrable, this model has been used extensively as a
standard theoretical laboratory for issues related to quantum
phase transitions [1]. Let us recall that, in the unperturbed
case (hn = h ∀ n), the system presents a critical point at
h = 1 separating a disordered phase (for h > 1) from a
symmetry-broken ordered phase at h < 1. The dynamical
exponent z = 1 and the (thermal) correlation length exponent
ν = 1. More recently, it became a favorite test model in
various out-of-equilibrium situations such as those generated
by suddenly quenching its transverse field from a given initial
value to a new value [23]. In this study, the inhomogeneous
time-dependent field plays a role similar to a trapping potential.
The spatial critical locus has been set at the left boundary of the
chain (one could have also considered the case of a centered
critical locus without real differences from what follows).

In order to diagonalize (31), one may perform a Jordan-
Wigner transformation mapping the Pauli matrices into
fermionic operators. In term of Clifford’s operators (Majorana
fermions)

�1
n =

n−1∏
j=1

( − σ z
j

)
σx

n , �2
n = −

n−1∏
j=1

( − σ z
j

)
σy

n , (32)

with �
i†
n = �i

n satisfying the anticommutation rules
{�i

n,�
j
m} = 2δij δnm, the Hamiltonian (31) takes the quadratic

form

H(t) = 1
4�†T(g)�, (33)

where �† = ( �1†, �2† ) is the 2L-component row vector with
�i† = ( �

i†
1 , . . . , �

i†
L

) for i = 1, 2. The 2L × 2L hermitian
matrix T(g) is given by

T(g) =
( ∅ C(g)

C†(g) ∅
)

, (34)

where C(g) is the interaction matrix with elements

Cmn(g) = −i[hn(g)δmn + δmn+1]. (35)

Introducing at each value of g (i.e., at each time), the
(instantaneous) eigenvectors

Vp(g) = 1√
2

(
φp(g)

−iψp(g)

)
(36)
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of the eigenvalue problem T(g)Vp(g) = εp(g)Vp(g), one can
map the Clifford operators onto a set of diagonal Fermi
operators:

ηp(g) = 1

2

L∑
n=1

{
φp(n,g)�1

n + iψp(n,g)�2
n

}
,

(37)

η†
p(g) = 1

2

L∑
n=1

{
φp(n,g)�1

n − iψp(n,g)�2
n

}
,

where the fermionic creation and annihilation operators η
†
p(g)

and ηp(g) satisfy the canonical Fermi-Dirac anticommutation
rules {η†

p(g),ηq(g)} = δpq for the same value of g. In terms of
this new set of operators, the Hamiltonian takes the diagonal
form

H(t) =
L∑

p=1

εp(g)[η†
p(g)ηp(g) − 1/2], (38)

where εp(g) are the positive eigenvalues of T(g). Conse-
quently, the instantaneous ground state |GS(g(t))〉 is the
instantaneous vacuum state |0(g)〉 destroyed by all the η(g)’s:
ηq(g)|0(g)〉 = 0 ∀ q.

As shown in [11], in the scaling limit g → 0, L → ∞ while
keeping gLω constant [24], under the rescaling

x = |g|−1/ygu, εk = |g|1/yg�k,
(39)

φk = |g|1/2yg φ̃k, ψk = |g|1/2yg ψ̃k,

with 1/yg = 1/(1 + ω), one obtains from the eigenvalue
problem the following differential equations:[

d2

du2
+ �2

k − sgn(g)ωuω−1 − u2ω

]
φ̃k(u) = 0,

(40)[
d2

du2
+ �2

k + sgn(g)ωuω−1 − u2ω

]
ψ̃k(u) = 0,

with boundary conditions ∂uφ̃|0 = 0, φ̃(∞) = 0 and ψ̃(0) =
0, ∂uψ̃ |∞ = 0. When g changes sign the two equations are
exchanged but the boundary conditions remain the same.
The scaling relation (39) with the normalization condition of
the solution (φ̃k, ψ̃k) assures the correct normalization of the
eigenvectors (φk,ψk).

In terms of the diagonal Fermi operators, the perturbation
∂gH(g) takes the form

∂gH(g) = 1

2

∑
p,q

Xω
pq(g)[η†

p(g) + ηp(g)][η†
q(g) − ηq(g)],

(41)

with Xω
pq(g) = ∑

n φp(n,g)nωψq(n,g) expressed in terms of
the Bogoliubov coefficients φ and ψ . Consequently, the time-
dependent part of the Ising Hamiltonian induces transitions
from the ground state to the two-particle states |pq(g)〉 =
η
†
q(g)η†

p(g)|0(g)〉 only. The nonvanishing perturbation matrix
elements are given by

〈pq(g)|∂gH(g)|0(g)〉 = 1
2�pq(g), (42)
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FIG. 2. (Color online) The first five Ising one-particle energy
levels for different values of the exponent ω in the ordered phase (g <

0) and in the disordered phase (g > 0). The value of the gradient g

varies in order to keep gLω sufficiently small [we have used L = 256
(squares) and L = 512 (diamonds) for the numerical diagonalization]
and to fulfill the scaling hypothesis gLω � 1. The plateau region
shows the range of validity of the scaling relation εk = |g|1/(1+ω)�k in
the sense that, in the scaling limit g → 0, L → ∞, all the dependence
on the gradient g is encoded in the power-law factor |g|1/(1+ω). In other
words, in the range of validity of the scaling hypothesis, ∂g�k = 0.
Otherwise, for different shapes of the spatial potential (different ω)
we have, in the scaling limit, different differential equations and thus
different eigenvalues and eigenvectors. Summarizing, the dispersion
law �k(ω) depends on ω. This is the reason why the plateaus are
shifted for different values of ω. In particular, for ω = 1, the straight
lines show the analytical dispersion law in Eq. (51). The deviation for
small values of the gradient is a finite-size effect which is getting
smaller and smaller as the system size is increased. The dashed
line indicates the zero energy, showing the existence of a vanishing
excitation in the ordered phase.

with �pq(g) = Fqp(g) − Fpq(g). In the continuum limit, using
the scaling variables (39), we can write Fpq(g) as an integral
over the u variable:

Fpq(g) = |g|−ω/(1+ω)
∫ ∞

0
duφ̃p(u)uωψ̃q(u), (43)

which exhibits a |g|−ω/(1+ω) scaling dependency. In Fig. 2
we have plotted the one-particle energy levels for ω = 1, 2, 3,
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FIG. 3. (Color online) Scaling property in the ordered phase
(g < 0) and in the disordered phase (g > 0) of the matrix elements
(42) for different values of the exponent ω. Different colors are
used for distinguishing different sizes (blue squares for L = 256,
red diamonds for L = 512). Also in this case, the plateau region
shows the range of validity of the scaling relation (43). For ω = 2, 3
the dashed lines are guides for the eyes. For ω = 1, the straight lines
show the dependence on pq as in (53) and one can notice the vanishing
amplitude for p �= q ± 1.

showing the agreement with the scaling form (39). In Fig. 3
we present the scaling properties of the matrix elements (42),
as deduced from (43), for different values of the exponent ω.
Again, the agreement with the expected scaling is very good
for large system sizes and small g values.

During the quench, the departure from the adiabatic
ground state can be deduced from the instantaneous occu-
pation number nq(t) = 〈ϕ(t)|η†

q(g(t))ηq(g(t))|ϕ(t)〉 of mode
q. Inserting the lowest-order expansion |ϕ(t)〉 � |0(t)〉 +∑

p,q apq(t0,t)|pq(g(t))〉, one has for the density of q exci-
tations

nq(t) � 4
∑

p

|apq(t0,t)|2. (44)

The total defect density is given by summing up all the
contributions coming from each q level:

n(t) =
∑

q

nq(t). (45)

To see this explicitly, let us recall that, at any time t , the
Ising quantum chain is diagonalized in terms of noninteracting
fermionic particles. The adiabatic ground state is the vacuum
state with respect to these fermions [ηq(g)|0(g)〉 = 0 ∀ q].
Consequently, the number of fermions on the top of the instan-
taneous vacuum gives the number of defects. For example, if
one quenches the Ising chain toward its deep ferromagnetic
phase (hn � 0 ∀ n), then the two ground states there are the
ferromagnetic states in the x direction | . . . ↑↑↑↑↑↑↑ . . .〉 and
| . . . ↓↓↓↓↓↓ . . .〉. The final state of the chain after the quench
is a superposition of states like | . . . ↑↑↑↓↓↓↓↑↑↑↓ . . .〉
with finite domains separated by kinks. The number of such
kinks is given by the operator N = 1

2

∑
n(1 − σx

n σ x
n+1) and

it is easy to show that it is given by
∑

q η
†
qηq where the

η are the corresponding creation and annihilation operators
diagonalizing the chain at hn � 0, ∀ n. This will remain true at
all finite values of the transverse field, the only difference being
that the number of defects is still given by

∑
q η

†
q(h)ηq(h) but

no more by the kink number operator N = 1
2

∑
n(1 − σx

n σ x
n+1),

since, at h �= 0, the basic excitations over the ground state are
no longer kinks (even if they will be close to kinks as soon as
we enter into the ferromagnetic regime).

The density of defects at a given lattice site can be
deduced from the total defect density operator n̂(g) ≡∑

q η
†
q(g)ηq(g) ≡ ∑

i n̂i(g), where the second sum runs
over the space variable. Using the representations (37)
of the Fermi operators, one obtains n̂(g) = ∑

i
1
2 {1 −

i
∑

j,q φq(i,g)ψq(j,g)�2
j�

1
i }, from which one can identify the

local defect operator

n̂i(g) ≡ 1

2

{
1 − i

∑
j,q

φq(i,g)ψq(j,g)�2
j�

1
i

}
. (46)

The local density of defects generated at site i and at time t is
then simply given by

ni(t) ≡ n(i,t) ≡ 〈ϕ(t)|n̂i(g(t))|ϕ(t)〉. (47)

Another quantity much used in order to quantify the
deviation from adiabaticity is the so called fidelity, F(t) ≡
|〈0(t)|ϕ(t)〉|2. In our approximation it is given by

F(t) � 1 −
∑
p,q

|apq(t)|2 = 1 − 1

4

∑
q

nq(t), (48)

and then trivially deduced from the knowledge of the popula-
tions nq . One can also consider the excess energy with respect
to the instantaneous adiabatic ground state

e(t) = 〈H(t)〉t − E0(g) =
∑

q

εq(g)nq(t), (49)

which, in the first-order adiabatic approximation, becomes

e(t) = 〈H(t)〉t − E0(g) ≈ 4
∑
p,q

εp(g)|apq(t)|2. (50)

B. Exact solution for the linear spatial perturbation

For a linear spatial modulation (i.e., at ω = 1), the
differential equations (40) can be explicitly solved in the
thermodynamical limit L → ∞ since the problem reduces to
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a quantum one-dimensional harmonic oscillator. The Bogoli-
ubov coefficients are given by the wave functions χp (up to
normalization) of the harmonic oscillator [11]:

φp(x) = |g|1/4
√

2χ2p(u),

ψp(x) = sgn(g)|g|1/4
√

2χ2p+sgn(g)(u), (51)

εp = |g|1/2
√

4p + 1 + sgn(g).

The functions χn are normalized in [−∞,∞] so that
√

2χn are
correctly normalized in [0,∞] and we have assumed χ−1(u) ≡
0. The matrix elements 〈pq(g)|∂gH(g)|0(g)〉 in (29) are then
proportional to the position matrix elements of the harmonic
oscillator (χp,uχq), such that the only nonvanishing transition
amplitudes apq(t0,t) are those with p = q ± 1.

Plugging the exact solution into (29) one obtains a closed
expression for the amplitudes apq . However, contrary to the
spatial homogeneous case (ω = 0) where the integral (29)
converges at the critical value g = 0, here the linear spatial
inhomogeneity modifies the dependence on g of the integrant
to a g−1 behavior, leading to a logarithmic divergence at g = 0.
This divergence is caused by the square root dependence on |g|
of the excitation spectrum εp = |g|1/2√4p + 1 + sgn(g) with
p = 0,1, 2, . . . [11]. Consequently, the first-order adiabatic
expansion (29) breaks down at the critical point g = 0 (i.e., at
time t = 0). Nevertheless, for quenches that do not cross the
critical point (the starting and the ending point of g are on the
same side of the critical locus), one can still use (29) and one
has explicitly

|apq(t0,t)|2 =
∣∣∣∣ �pq

2�pq

Aρpq
(|g0|,|g(t)|)

∣∣∣∣
2

, (52)

with

�pq(g) =
√

p + q

2
+ 1 + sgn(g)

4
[δp q−1 − δp q+1], (53)

�pq(g) = |g|−1/2δωpq,0(g) = |g|−1/2[εp(g) + εq(g)] and
ρpq = −2�pq

v−1/α

α+2 sgn(g). The function

Aρ(x,y) = 2α

2 + α

[
E1

(
iρx

2+α
2α

) − E1
(
iρy

2+α
2α

)]
(54)

is expressed in terms of the exponential integral E1(z) =∫ ∞
z

dtt−1e−t for |Arg(z)| < π .
Let us discuss this analytical result. Consider first the case

where the quench starts far away from the critical point,
|g0| � 1; that is, in an almost uncorrelated initial state. In
that case, since |g0| � 1 we have E1(iρ|g0| 2+α

2α ) � 0 and
the function A(x,y) entering into (52) is dominated by the
contribution of its second argument:

Aρ(|g0|,|g(t)|) � − 2α

2 + α
E1

(
iρ|g(t)| 2+α

2α

)
. (55)

Recalling that ρ ∝ v−1/α and |g(t)| = v|t |α , one recovers pre-
cisely the expected scaling behavior nq(g0; t,v) = f (v|t |2+α),
with yv = 2 + α, which corresponds to the prediction (8) with
ν = z = 1 for the critical Ising chain and ω = 1 for a spatial
linear perturbation.

If the initial gradient g0 is not sufficiently large, one
can no longer neglect the contribution to Aρ(|g0|,|g(t)|) of

its first argument. Consequently, after the quench one ob-
serves the nonhomogeneous behavior nq(g0; t,v) ∼ f0(g0) +
f1(|t |v1/yv ). The expected scaling behavior (8) is broken by
the presence of the boundary term f0(g0), which accounts for
the high correlations in the initial ground state |0(g0)〉 (since
g0 is not far from the critical point).

For a quench at or crossing the critical point, the situation is
more complicated since, as stated before, the (un-normalized)
perturbation formula (29) leads to a divergence at t = 0.
However, for a finite-size chain, the energy gap δωk0 stays finite
at the critical points which wash out the critical divergences,
and one can perform a finite-size scaling study.

C. Numerical analysis

1. Finite-size scaling analysis for general ω

For the general ω case, we have performed a numerical
study with the following protocol: we start far away in the
disordered phase with a fixed initial value g = 1 and drive the
system to the critical point g = 0. The density of defects n =∑

q nq and energy excess e = 〈H(t)〉t − E0(g) are calculated
from (45) and (49), respectively. The numerical results are
obtained by exact diagonalization of finite chains with up to
256 spins and the finite-size data are then extrapolated to the
infinite-size limit. For a given set of ω and α values, we have
done numerical diagonalization on systems with sizes from
L = 16 to L = 256 sites, by steps of �L = 16 obtaining 16
data sets. For each system size we have varied the amplitude v

from a very small value (v = 10−5) up to the relatively large
value v = 0.5. In order to extract the asymptotic infinite-size
behavior we have assumed, for any v, the finite-size scaling of
the defect density

n(v,L) = n(v) + f1(v)L−λc + f2(v)L−2λc + · · · , (56)

where λc is an unknown correction to scaling exponent
(the same procedure was used for the energy density). The
second-order correction to scaling was kept in order to describe
correctly the behavior at small v. The fit was done by looking
for a global value of the scaling exponent λc independently on
v. Defining the fitting function F (v,x,λ) = A(v) + B(v)xλ +
C(v)x2λ, we have performed, for each value of v, a linear
fit of the data varying the fit exponent λ in a reasonable
range [λmin,λmax]. For a given v and λ we have then obtained
the best parameters {A∗(v,λ),B∗(v,λ),C∗(v,λ)}. Looking for
the minimum of the global least square function χ2(λ) =

1
N−3

∑
v

∑
x[n(v,x) − F ∗(v,x,λ)]2, with F ∗ = A∗ + B∗xλ +

C∗x2λ, we have obtained the best global correction to the
scaling exponent λ∗ and identified the infinite-size value n(v)
with the coefficient A∗(v,λ∗). We have also checked the
stability of the fit under the variation of the number N of
data sets used in the fitting procedure. The results are reported
in Figs. 4 and 5 for the total defect density and for the
energy excess, respectively, for different spatial and temporal
exponents ω and α.

First of all, we observe that the finite-size values are always
smaller than the extrapolated ones. Indeed, on the finite system
the gap does not vanish even close to the critical locus and,
consequently, the generation of defects is smaller than the
expected one in the thermodynamical limit. At small v the
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FIG. 4. (Color online) Density of defects n versus the quench parameter v for a critical quench. The amplitude changes from g = 1 to
g = 0. Empty symbols correspond to different system sizes (L = 96 to L = 256 from bottom to top). The extrapolated data (filled circles)
show, in the adiabatic limit, v � 1, a perfect agreement with the scaling prediction: n ∼ v1/4 for ω = 1, α = 2; n ∼ v1/5 for ω = 2, α = 2; and
n ∼ v1/6 for ω = 2, α = 3 (straight lines). The dashed lines give the sudden-quench value nsq ≈ 0.179 evaluated on a system with L = 1024
spins.

extrapolated data are in perfect agreement with the scaling
predictions n ∼ vd/yv and e ∼ v(d+z)/yv with d = z = 1, which
are represented by the full lines. As the quench amplitude v is
getting larger, we observe a crossover from the inhomogeneous
Kibble-Zurek scaling scenario predictions toward a regime
which is independent of the quench protocol (α and ω values)
at large v. The observed saturation at large v of the defect
production and of the energy excess is due to the fact that,
for very fast quenches, the only relevant parameters are the
initial and final amplitudes g. Indeed, if the initial amplitude
is very high in modulus, the correlation length is very small
(of the order of the lattice spacing) and the initial state is very
close to the completely disordered state. Consequently, there
is almost no difference for different values of ω. One expects
the same defect production (and same energy excess) as in
the case of a sudden quench of a completely disordered initial
state toward the critical point. This is shown in Figs. 4 and 5 by
the horizontal dashed lines which match perfectly the actual
extrapolated numerical data. A similar behavior is reported in
[25] where, for sufficiently fast inhomogeneous quenches, one
recovers the homogeneous defect production (corresponding
here to the homogeneous sudden-quench saturation at large
v), while for sufficiently slow inhomogeneous quenches (here
small v) the defect production is significantly lowered. The
reason for this is that, when the inhomogeneity is switched
off sufficiently fast, there is no causal connection between

different space points and the new phase starts to grow
independently from every space point, which is exactly what
happens in a homogeneous quench. On the contrary, if the
unloading of the inhomogeneous perturbation is slow enough,
the new phase nucleates from a single initial point (the critical
locus) and communicates its phase through the whole system.
Consequently, the defect production is lowered. Another way
of understanding the crossover is by taking into account
that, for a given v, the quench is done within a time tq =
g1/αv−1/α . The typical Kibble-Zurek time scale is given by
τKZ = τ0v

−z/yv . If the quench protocol time tq is smaller than
the Kibble-Zurek time τKZ, which happens at v > v∗ where v∗
is deduced from tq |∗v = τKZ|∗v , then the dynamics start already
from the very beginning in the sudden quench regime and there
is no near-adiabatic evolution and one expects the same defect
production as in a real sudden quench. On the other hand, for
a larger value of tq (i.e., a smaller value of v), the dynamics
start first in a near-adiabatic regime, leading finally to a lower
defect production.

2. Local density and global shift of the critical locus

In order to characterize the space dependence of the defects
production, we have also computed the local defect density
from the definition (46) and (47). The local density is expected
to scale according to (13), where the appropriate scaling
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FIG. 5. (Color online) Energy density e versus the quench parameter v for a critical quench. The amplitude changes from g = 1 to g = 0.
Empty symbols correspond to different system sizes (L = 96 to L = 256 from bottom to top). The extrapolated data (filled circles) show, in the
adiabatic limit, v � 1, a perfect agreement with the scaling prediction: n ∼ v1/2 for ω = 1, α = 2; n ∼ v2/5 for ω = 2, α = 2; and n ∼ v1/3

for ω = 2, α = 3 (straight lines). The dashed lines give the sudden-quench value esq ≈ 0.136 evaluated on a system with L = 1024 spins.
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FIG. 6. (Color online) Rescaled local defect density as predicted
by (13) for the Ising chain with L = 256, ω = 1, and α = 2. The
quench is done from g = 1 to the critical point g = 0. The different
lines correspond to different rates v. The scaling is expected to be
valid for sufficiently small v1/4x. The deviations on the right side at
large arguments are finite-size effects. The inset shows the same as
the main panel but zoomed close to the origin.

variable is xv1/yv = x/�. In Fig. 6 we have plotted the rescaled
defect density v−1/yvn(x,v) versus the scaling variable xv1/yv

for a chain of size L = 256 and for a quench starting at g = 1
and ending at g = 0 with space exponent ω = 1 (linear profile)
and temporal ramp exponent α = 2 for various values of v. The
scaling is expected at small values of the scaling argument
[which is shown in the inset of (6)] and, as seen in the figure,
it is obviously satisfied. At large values of the scaling variable
we observe a systematic finite-size deviation, which appears
earlier for smaller values of v (larger values of the length
scale � = v1/yv ). We see clearly on this plot that the effect
of the linear varying field is to reduce the defect production
in the vicinity of the critical region, expelling out of it the
generation of defects. Close to xv1/yv = 0, the nonmonotonic
behavior is probably generated by the presence of the left
boundary of the chain, which effectively lowers the local
spin-spin couplings, facilitating then the generation of defects.
The competition between this facilitation and the lowering of
the defect production by the inhomogeneity close to the critical
locus leads to the appearance of a locus of minimum defect
generation which, from the inset of Fig. (6), is found around
xv1/yv = 1.1.

When a small global shift δh is added to the system, one
expects the modified scaling (23) for the defect density, which
reduces to the linear shift (24) in the Ising-chain case, since
ν = z = d = 1. In Fig. 7, we have plotted the total density
of defects in order to check the scaling prediction (24). The
expected deviation to the zero-shift case is supposed to be
linear but, nevertheless, we have represented the graph in a
log-log scale in order to amplify the scaling region. One sees
clearly on the figure that there is a perfect agreement between
the numerical results and the scaling prediction over almost
four decades.

At large negative shifts δh, the expected scenario developed
in the preceding section is that of a complete fall down of
the excitations in a causal region around the origin, where the
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FIG. 7. (Color online) Rescaled defect density in the case of a
finite global shift to the critical point as predicted by (24) for the
Ising chain with L = 256, ω = 1, and α = 2. The quench is done
from g = 1 to g = 0 at different rates v. The straight line represents
the expected linear deviation to the δh = 0 case.

ordered phase propagates coherently through the disordered
phase (without generating any defect), followed at large
distances by a sudden increase of the defect production. This
increase is due to the fact that the critical front propagates
excessively fast through the disordered phase to permit a
local relaxation of the phase to the new field parameters.
We illustrate that in Fig. 8, where we have plotted the local
density of defects for different shift values δh and rates v

obtained numerically on a chain of size L = 256 with a
linear perturbation (ω = 1) and time-ramp exponent α = 2.
We observe that, for large values of |δh|, there is indeed
a drastic decay of the defect density that extends from the
origin up to a threshold locus x0(δh,v), after which the density
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FIG. 8. (Color online) Local defect density in the case of a finite
global shift to the critical point for the Ising chain with L = 256,
ω = 1, and α = 2. The quench is done from g = 1 to g = 0. The
left panel gives the behavior at fixed rate v for different values of the
shift δh. The right panel shows the behavior at constant shift δh for
different values of v. The inset gives the locus x0 of the fast increase
of the defect density as a function of the expected leading scaling
behavior (δh/v)1/3.
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suddenly increases. The pattern of the local density n(x,δh,v)
at x > x0 is much more complicated where secondary peaks
appear and, consequently, it is hard to interpret this behavior.
Nevertheless, the abrupt increase of the excitation density after
a threshold locus validates the proposed scenario (see [22]
where this scenario was developed for a critical front moving
at constant velocity). In the inset of Fig. 8, we have drawn
the dependence of the threshold locus x0, extracted from the
maximum of the spatial derivative of the density, versus the
variable (δh/v)1/3, which corresponds for ω = 1 and α = 2 to
the prediction (27) derived from the local scaling assumptions
developed in Sec. II C. The agreement with (27), as seen
from the inset of Fig. 8, is very good. One may have also
extracted the (δh/v)1/3 behavior from the maximum of the
first peak. However, doing so is a bit less convincing since
broad secondary peaks have an influence on the position
of the first maximum. Notice also that, very close to the
origin, there is a density peak which falls off as e−x/q(δh)

on a v-independent length scale q(δh). Somehow a small
finite density of excitations is trapped at the left boundary,
while the remaining excitation density is rejected on the right
of x0.

V. DISCUSSION AND SUMMARY

In summary, we have developed a scaling theory which
predicts the behavior of the nonlinear quench of a power-law
perturbation close to a critical point. Such a power-law
potential is relevant especially in the context of confined
ultracold systems, where the dynamics are well described by
the unitary evolution of closed systems. Within our scaling
approach, we have derived the scaling properties of physical
quantities like the density of defects or the energy excess
generated during the loading or unloading of the power-law
trap. The basic ingredient behind the scaling analysis is the
identification of a so-called Kibble-Zurek time scale, which
separates a nearly adiabatic regime from a sudden regime.
This (Kibble-Zurek) time scale depends on the universal
properties of the critical point as well as on the exponents
characterizing the temporal ramp and the shape of the spatial
trap. One of the main messages of this work is, in particular,
that the optimal nonlinear way of crossing the critical point is
strongly affected by the presence and the shape of the trapping
potential. As a theoretical test of the scaling theory we have
used the exactly solvable Ising model in a transverse field. The
analysis revealed quite strong finite-size corrections, as seen
in Fig. 4, to the expected scaling predictions for the density
of defects and the energy excess. Nevertheless, the data ex-
trapolated to the infinite-size limit fulfill very well the scaling
predictions.

One of the main limitation of the present study with respect
to a real experiment is that the dynamics driving the system
are supposed to be unitary with no parasitic interactions at
all with the environment, no extra dissipation, and no loss of
quantum coherence. This, of course, is a serious limitation
if one considers long protocol times. A relevant extension
of the present work would be to take into account such
extra interactions. The influence of temperature on the scaling
predictions, as, for example, in [26], is also one of the more
relevant extensions of this work that has to be done.
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APPENDIX A: ADIABATIC PERTURBATIVE EXPANSION

We sketch briefly the demonstration of the nearly adiabatic
approach used in this study. First, we discretize the time t so
that we have t0, t1, . . . , tn, . . . , tN = t with dt = tn − tn−1;
ultimately we will take the limit N → ∞, dt → 0 with t fixed.
The unitary time evolution operator is written as an expansion
product

U(t,t0) = U(tN ,tN−1) · · ·U(t2,t1)U(t1,t0), (A1)

where, in the limit dt → 0, we have essentially

U(tn+1,tn) = e−iH(tn) dt . (A2)

Now, let us find an expression for the state after each small
time interval.

a. t0 → t1

The evolution starts from the initial ground state |ϕ(t0)〉 =
|0(t0)〉 at time t0. The state at time t1 is generated by the action
of U(t1,t0) = e−iH(t0)dt , which leads to the appearance of a
phase factor:

|ϕ(t1)〉 = e−iE0(t0)dt |0(t0)〉. (A3)

b. t1 → t2

At the next step we have

|ϕ(t2)〉 = U(t2,t1)|ϕ(t1)〉 = e−iH(t1)dt |ϕ(t1)〉. (A4)

Writing

H(t0) = H(t1) − H(t1) − H(t0)

dt
dt ≡ H(t1) − W(t1,t0) dt,

(A5)

we can expand the eigenvectors of H(t0) in the basis of
the eigenvectors of H(t1) to first order in the perturbation
W(t1,t0) dt :

|0(t0)〉 = |0(t1)〉 + dt
∑
n�=0

〈n(t1)|W(t1,t0)|0(t1)〉
En(t1) − E0(t1)

|n(t1)〉, (A6)

leading to

|ϕ(t2)〉 = e−i[E0(t0)+E0(t1)]dt |0(t1)〉 +
∑
n�=0

|n(t1)〉dte−iEn(t1)dt

× 〈n(t1)|W(t1,t0)|0(t1)〉
En(t1) − E0(t1)

e−iE0(t0)dt . (A7)
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Continuing along these lines, it is straightforward to prove by
induction that, at tk , we have

|ϕ(tk)〉 = e−i
∑k−1

j=0 dtE0(tj )|0(tk)〉

+
∑
n�=0

|n(tk)〉
k∑

i=1

dte−i
∑k−1

j=i dtEn(tj )

× 〈 n(ti)|W(ti ,ti−1)|0(ti)〉
En(ti) − E0(ti)

e−i
∑i−1

j=0 dtE0(tj ). (A8)

Taking the limit dt → 0 we have W(tn+1,tn) → ∂tH(t)|tn , and
one obtains finally

|ϕ(t)〉 = e
−i

∫ t

t0
dsE0(s)|0(t)〉 +

∑
n�=0

|n(t)〉
∫ t

t0

dt ′e−i
∫ t

t ′ dsEn(s)

× 〈 n(t ′)|∂t ′H(t ′)|0(t ′)〉
En(t ′) − E0(t ′)

e
−i

∫ t ′
t0

dsE0(s)
. (A9)

APPENDIX B: DYNAMICS IN THE ISING
QUANTUM CHAIN

The initial state we start with is the ground state of H(g0)
associated to a given value g0 = g(t0), and it is fully specified
by the Clifford correlation matrix

〈
��†〉

t0
=

( 〈
�1

m�1
n

〉
t0

〈
�1

m�2
n

〉
t0〈

�2
m�1

n

〉
t0

〈
�2

m�2
n

〉
t0

)
= I + i

( ∅ G

−G† ∅
)

,

(B1)

where

Gmn =
∑

k

φk(m,g0)ψk(n,g0). (B2)

Splitting the continuum time evolution into N infinitesimal
sudden quenches, the expectation of the Clifford correlation
matrix at time t is given by

〈��†〉t =
0∏

i=N

RT (dt ; ti)〈��†〉t0
N∏

i=0

R(dt ; ti), (B3)

where the infinitesimal evolution matrix for the time interval
[ti ,ti+1] is

R(dt ; ti) =
( 〈

�1
m|�1

n

〉
ti

〈
�1

m|�2
n

〉
ti〈

�2
m|�1

n

〉
ti

〈
�2

m|�2
n

〉
ti

)
, (B4)

with the time-dependent contractions〈
�1

m|�1
n

〉
ti

=
∑

k

φk (m,ti) φk (n,ti) cos [εk (ti) dt] ,

〈
�1

m|�2
n

〉
ti

= −
∑

k

φk(m,ti)ψk(n,ti) sin[εk(ti) dt],

〈
�2

m|�1
n

〉
ti

=
∑

k

ψk(m,ti)φk(n,ti) sin[εk(ti) dt],

〈
�2

m|�2
n

〉
ti

=
∑

k

ψk(m,ti)ψk(n,ti) cos[εk(ti) dt]. (B5)

Taking the limit N → ∞, dt = ti − ti−1 → 0, we recover the
continuous time evolution.

Using the time evolution (B3) and the mapping between
Clifford’s operators and free-fermion operators we can easily
write the evolution of the free-fermion correlation matrix(

η

η†T

)
· ( η† ηT )

as ( 〈ηη†〉 〈ηηT 〉
〈η†T η†〉 〈η†T ηT 〉

)
(t) = 1

4
V†(g)〈��†〉tV(g), (B6)

where V(g) is the matrix [almost unitary since V(g)†V(g) =
2I] relating Clifford operators to Fermi operators:(

�1

�2

)
= V(g)

(
η(g)

η†T (g)

)
. (B7)

Notice that the time dependence in (B6) is due to the
temporal evolution of the Clifford correlation matrix and
to the parametric dependence on time, through g(t), of the
free-fermion operators.
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A. Silva, R. Fazio, and G. E. Santoro, Phys. Rev. B 80, 024302
(2009).

023603-13

http://dx.doi.org/10.1088/1367-2630/11/6/063014
http://dx.doi.org/10.1103/PhysRevLett.102.240601
http://dx.doi.org/10.1103/PhysRevLett.102.240601
http://arXiv.org/abs/arXiv:0906.2640
http://dx.doi.org/10.1088/1742-5468/2009/08/P08007
http://dx.doi.org/10.1088/1742-5468/2009/08/P08007
http://dx.doi.org/10.1038/415039a
http://dx.doi.org/10.1080/00018730701223200
http://dx.doi.org/10.1038/440990a
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1038/nature05094
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.105701
http://dx.doi.org/10.1103/PhysRevLett.95.035701
http://dx.doi.org/10.1103/PhysRevA.73.063405
http://dx.doi.org/10.1103/PhysRevLett.99.130402
http://dx.doi.org/10.1103/PhysRevLett.99.130402
http://dx.doi.org/10.1103/PhysRevA.75.023603
http://dx.doi.org/10.1103/PhysRevLett.95.245701
http://dx.doi.org/10.1103/PhysRevA.73.043614
http://dx.doi.org/10.1103/PhysRevB.72.161201
http://dx.doi.org/10.1103/PhysRevLett.99.130402
http://dx.doi.org/10.1103/PhysRevLett.99.130402
http://dx.doi.org/10.1103/PhysRevLett.101.230402
http://dx.doi.org/10.1103/PhysRevLett.101.016806
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1038/nphys963
http://dx.doi.org/10.1103/PhysRevLett.101.076801
http://dx.doi.org/10.1103/PhysRevLett.101.076801
http://dx.doi.org/10.1088/0305-4470/9/8/029
http://dx.doi.org/10.1016/0370-1573(80)90091-5
http://dx.doi.org/10.1016/0370-1573(80)90091-5
http://dx.doi.org/10.1038/317505a0
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1103/PhysRevLett.104.200601
http://dx.doi.org/10.1103/PhysRevLett.104.200601
http://dx.doi.org/10.1103/PhysRevB.14.1165
http://dx.doi.org/10.1088/1367-2630/12/5/055007
http://dx.doi.org/10.1088/1367-2630/12/10/103002
http://dx.doi.org/10.1080/00018732.2010.514702
http://dx.doi.org/10.1103/PhysRevLett.85.3233
http://dx.doi.org/10.1140/epjb/e20020139
http://dx.doi.org/10.1209/epl/i1999-00367-8
http://dx.doi.org/10.1103/PhysRevE.77.051120
http://dx.doi.org/10.1088/1751-8113/40/8/002
http://dx.doi.org/10.1088/1742-5468/2008/01/P01023
http://dx.doi.org/10.1088/1742-5468/2008/01/P01023
http://dx.doi.org/10.1134/1.567332
http://dx.doi.org/10.1103/PhysRevLett.82.4749
http://dx.doi.org/10.1103/PhysRevLett.82.4749
http://dx.doi.org/10.1103/PhysRevLett.102.105702
http://dx.doi.org/10.1103/PhysRevLett.101.175701
http://dx.doi.org/10.1103/PhysRevB.80.024302
http://dx.doi.org/10.1103/PhysRevB.80.024302

