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Quantum demixing in binary mixtures of dipolar bosons
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Quantum Monte Carlo simulations of a two-component Bose mixture of trapped dipolar atoms of identical
masses and dipole moments, provide numerical evidence of demixing at low finite temperatures. Demixing occurs
as a consequence of quantum statistics, which results in an effective attraction between like bosons. Spatial
separation of two components takes place at low temperature with the onset of long exchanges of identical
particles, underlying Bose-Einstein condensation of both components. Conversely, at higher temperature the
system is miscible due to the entropy of mixing. Exchanges are also found to enhance demixing in the case of
mixtures of nonidentical and distinguishable species.
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I. INTRODUCTION

Phase separation or demixing in multicomponent mixtures
has been a long-standing topic of interest in chemistry and
physics. Closely following the achievement of Bose-Einstein
condensation in dilute gases [1,2], there has been considerable
interest in the study of binary mixtures of Bose-Einstein
condensates (BECs). Of particular note, a two-component
BEC was first reported in 1997 comprised of two hyperfine
states of Rb [3], and then in 2001 using different atomic species
(K and Rb) [4]. The advantage of these ultracold systems is
that the entropy of mixing is small and demixing may be easily
observed.

The conditions under which demixing occurs in binary
BEC mixtures with hard-core repulsion, have been the focus
of a number of theoretical works, including mean-field
treatments at zero [5–10] and finite temperature [11] as
well as quantum Monte Carlo (QMC) simulations [12,13].
Separation of species 1 and 2 is usually characterized in
terms of a parameter � = U11U22 − U 2

12, defined in terms
of the relative intraspecies (U11,U22) and interspecies (U12)
interaction strengths. When � < 0, so that particles of species
1 and 2 have a relatively strong repulsion, the system is
predicted to phase separate, whereas for � � 0 the system
should remain mixed [5–13]. Recently, this criterion has been
verified in experiments with binary BECs [14]. Earlier work on
bosonic mixtures in the context of superfluid Helium have also
predicted phase separation in the zero temperature limit for
isotopes of different masses or concentrations [15,16]. Indeed,
all predictions of phase separation in binary mixtures of bosons
to date rely on a mismatch of interaction strengths or of some
other physical parameters on which the Hamiltonian depends
(such as different particle masses, concentrations, or external
trapping potentials for each species). We refer to this scenario
as demixing through interactions.

In this article, we report the prediction of demixing in a
binary mixture of bosons with identical masses and interac-
tions, due a very different mechanism—namely the effective
attraction between indistinguishable bosons originating purely
from quantum statistics. This prediction is made for � = 0
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in contrast to earlier work for which this value would lead
to a miscible system. We refer to this scenario as demixing
through exchanges or quantum demixing, which occurs when
the system kinetic energy is reduced by the formation of
long exchanges of identical particles, leading to the spatial
separation of the two components. This is, of course, the
same mechanism underlying Bose-Einstein condensation, as
first established by Feynman [17] and subsequently elaborated
on [18,19]. At low temperature, as the thermal wavelength
becomes comparable to the interparticle distance, quantum
exchanges involving two or more indistinguishable particles
become frequent, and condensation sets in—this effect is also
responsible for phase separation.

For this study, we have elected to use the dipole-
dipole interaction potential to describe the inter- and in-
traspecies interactions, for which the condition � = 0 is
always satisfied. The physics of ultracold dipolar bosons
has fast become the subject of intense research activity.
Bose-Einstein condensation of dipolar chromium atoms has
already been achieved [20]. The long-range and anisotropic
nature of the interaction leads to many fascinating phe-
nomena (see the review [21] and references contained
therein).

So far, there have been few calculations explicitly dealing
with binary mixtures of dipolar bosons [22,23]. In Ref. [22],
the stability of a binary mixture with the components having
oppositely oriented dipoles was investigated. In Ref. [23],
spontaneous pattern formation associated with ferrofluidity
was predicted and attributed to the anisotropic nature of the
interaction. The role of finite range interactions in binary
mixtures has also been addressed in previous studies [10,24].
In particular, it was found that increasing the range of the
interactions leads to increased mixing [10].

II. FORMULATION

We consider here a system comprising Na atoms of species
a and Nb atoms of species b confined in a harmonic trapping
potential. Let Ma , Mb be the masses of each species, and Vaa ,
Vbb, and Vab be the inter- and intraspecies interaction poten-
tials. We consider here a two-dimensional confined geometry,
with a transverse polarization field in the z direction, for which
the dipole-dipole interaction potential becomes isotropic and
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purely repulsive,1 i.e., Vmm′ (r) = dmd ′
m/r3, between particles

of species m and m′, at a distance r from each other and
with respective (electric or magnetic) dipole moments dm and
d ′

m. Introducing a reference dipole moment d◦, we choose
characteristic length and energy scales as r◦ = d2

◦Ma/h̄
2 and

ε◦ = h̄2/(Mar
2
◦ ), respectively. The Hamiltonian for the two-

component system is given, in dimensionless form, by

Ĥ =
Na∑
i=1

(
−1

2
∇2

ai + �r2
ai

)
+

∑
i<j

α2

|rai − raj |3

+
N2∑
i=1

[
−1

2

(
Ma

Mb

)
∇̃2

bi + �

(
Mb

Ma

)
r2
bi

]

+
∑
i<j

β2

|rbi − rbj |3 +
Na∑
i=1

Nb∑
j=1

αβ

|rai − rbj |3 , (1)

where rmk is the position of the kth particle of species m

and � = 1/2(Lρ/r◦)−4 gives the trap strength, Lρ = √
h̄/Maω

being the harmonic oscillator length. For brevity, we write the
relative dipole amplitudes as α = da/d0 and β = db/d0.

If by analogy with the case of hardcore boson mixtures,
we define a mixing parameter � ∼ VaaVaa − V 2

ab, then � = 0
always.

III. NUMERICAL RESULTS

Henceforth, we choose Ma = Mb and Na = Nb = N/2.
We have investigated the finite temperature equilibrium
properties of the system by QMC simulations based on the
Continuous-space Worm algorithm [25,26]. This technique is
numerically exact, to within a controllable statistical error. We
have carried out simulations with two values of N , namely
40 and 100, and with different values of the harmonic trap
strength �, always chosen sufficiently small to keep the
density in the middle of the trap below the crystallization
threshold [27]. Our results are qualitatively the same for all
cases considered. Other details of this calculation (e.g., the
short-time approximation for the propagator [28]) are identical
with other published works.

A. Identical and distinguishable species

We initially set the dipole moments of each species equal
(α = β = 1) so that the Hamiltonian (1) is symmetric to an
interchange of labels a and b. Typical QMC configuration
snapshots are shown in Fig. 1 for N = 40 with � = 8 (top)
and N = 100 with � = 0.5 (bottom). In each case, the left plot
shows the case where exchanges between indistinguishable
(like) particles are included, whereas the right plot shows
the same system but without exchanges (i.e., distinguishable
particle statistics). For indistinguishable particle statistics like
particles tend to aggregate, which is suggestive of demixing,
whereas for distinguishable particle statistics the system re-
mains mixed. Individual snapshots are not conclusive however,

1This is in fact a valid approximation for so-called pancake traps—
highly anisotropic harmonic traps with transverse and planar trapping
frequencies satisfying ωz � ωρ .

FIG. 1. (Color online) QMC configuration snapshots at temper-
ature T = 0.5 for species a [red (dark gray) lines] and b [green
(light gray) lines] in harmonic trap with α = β = 1. Snapshots show
particle world lines. In the upper plots N = 40 and � = 8 whereas in
the lower plots N = 100 and � = 0.5.

so this prediction is verified first in Fig. 2 for the case N = 40
and � = 8 and then in Fig. 3 for a larger system size with
N = 100 and � = 0.5. Both figures show the integrated 2 pair
correlation function gab(r), which for the lowest temperature
shown, T = 0.5, becomes suppressed at short distances with
respect to gaa(r). That is, the probability of finding unlike
particles separated by r is less than that of finding like particles
at the same distance. Differently phrased, a particle of a
given species is preferentially surrounded by like particles.
For both system sizes, at the highest temperature shown, there
is no evidence of demixing, and the probability density of
position for particles of either species only depends on the
distance from the center of the trap. In this regime, entropy
dominates.

As the temperature is lowered, the two components sepa-
rate. To verify that exchanges are responsible for the observed
demixing Figs. 2 (bottom) and 3 (bottom) also show the
result for T = 0.5, but with exchanges turned off in the
simulation (i.e., we regard particles as distinguishable). The
resulting plots shows the system is fully mixed. The energetic
mechanism leading to phase segregation, is that particles can
lower their kinetic energy by exchanging with like particles,
thereby enhancing their spatial delocalization. We also expect

2Clearly, since the system is not translationally invariant one ought
more properly look at the two-point correlation function gmm′ (r,r′),
with r,r′ measured with respect to the center of the trap. The function
considered here is averaged over the whole trap; however, it still
provides the quantitative information sought here.
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FIG. 2. (Color online) Integrated pair correlation function at
temperatures T = 10, 1, 0.5 between like [gaa (red solid curve)] and
unlike [gab (black dashed curve)] particles for system in harmonic
trap with � = 8, α2 = β2 = 1, and N = 40. Errors are <∼7 × 10−2 in
all cases.

demixing to occur for larger N (relevant to experiments) as
the relative interfacial energy decreases.

It should be emphasized that the demixing predicted
here is a finite temperature effect. Finally, on lowering the
temperature even further, the system remixes. This effect,
also observed in hardcore boson mixtures [29], occurs when
the temperature T is less than the level spacing h̄ω = √

2�

of the confining harmonic potential. We have verified in
our simulations that the remixing temperature decreases for
smaller �.

We further elaborate on the connection between the ap-
pearance of long permutation cycles and demixing referring
to Fig. 4, which shows the relative frequency of permutation
cycles including different numbers L of particles, for a single
species. Note that, as T → 0, the frequency of occurrence of
cycles of permutation (i.e., exchanges) involving almost all
particles of each species (i.e., L = 50, in this case) increases
dramatically. These exchanges are central to Bose-Einstein
condensation, which in turn is responsible for the effective
attraction between like atoms and therefore the observed
phase separation. Such quantum demixing is not particular
to our choice of interaction. Indeed, we have verified that
it also occurs for potentials of the form V (r) ∼ 1/r12 (and
with � = 0), which emulate the usual hard-core repulsion
appropriate for ultracold alkali atoms. In the more general
case where � > 0 the repulsive interaction energy would be
offset by the decrease of kinetic energy due to exchanges,
although this effect may not be large enough to lead to phase
demixing.

FIG. 3. (Color online) Integrated pair correlation function at
temperatures T = 5,1,0.5 between like [gaa (red solid curve)] and
unlike [gab (black dashed curve)] particles for system in harmonic trap
with � = 0.5, α2 = β2 = 1, and N = 100. Errors are <∼ 2 × 10−2 in
all cases.

It is instructive to note that only a technique which
explicitly treats exchanges of indistinguishable particles at
finite temperature, can yield predictions of demixing such as
those shown here, for components of identical masses and
interactions.

B. Nonidentical and distinguishable species

Next, we consider the situation where the dipole moments
of each species are not equal (i.e., α �= β). In this case, the
symmetry of the Hamiltonian with respect of exchange of
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FIG. 4. Relative frequency of permutation cycles of length L for
species a with N = 100, at four different temperatures for the case
where α2 = β2 = 1.
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FIG. 5. (Color online) Left: Density profiles [ρa (red solid curve)
and ρb (green dashed curve)] at temperatures T = 10, 1, 0.5, for
species a and b in harmonic trap with � = 0.5, α2 = 1, β2 = 1.21,
and N = 100. Right: corresponding pair correlation functions [gaa

(red solid curve), gbb (green dashed curve), and gab (blue dotted
curve)]. Also repeated for comparison is the case T = 0.5 without
exchanges (i.e., distinguishable quantum particles). Statistical errors
are <∼2 × 10−2 for all densities and <∼5 × 10−2 for all pair correlation
functions shown.

species a and b is explicitly broken, and we can expect phase
separation to be evident in the radial density profiles ρm(r),
m = a,b, computed with respect to the center of the trap.

FIG. 6. (Color online) Radial mixing � as a function of tem-
perature T for (a) α2 = 1, β2 = 1.21 (red solid curve); (b) α2 =
0.8, β2 = 1.25 (green dashed curve); and (c) α2 = 0.5, β2 = 2 (blue
dotted curve).

We consider for definiteness α < β. In this case, species b

forms a shell around species a due to the higher interaction en-
ergy of species b in the presence of the harmonic trap. That is,
the larger interparticle repulsion of species b particles pushes
that component to the outside of the trap. This can be seen
in Fig. 5 for the case where α2 = 1,β2 = 1.21. Specifically,
as the temperature is lowered the partial overlap in density
profiles between species a and b decreases, indicating the
onset of demixing. It is worth noting that for binary mixtures
of nondentical species the presence of demixing is due to
the combined effects of interactions and quantum exchanges.
To verify that exchanges do indeed enhance demixing, we
show in Fig. 5 density profiles and pair correlation functions at
T = 0.5, for the simulations both with and without exchanges.

The functions ρm(r) can be used to quantify the degree of
phase separation through the normalized overlap integral:

� =
[ ∫

ρa(r)ρb(r)dr
]2

[ ∫
ρa(r)2dr

][ ∫
ρb(r)2dr

] . (2)

When there is complete overlap (ρa ∝ ρb) then � = 1 indi-
cating total mixing, whereas for complete phase separation
we have � = 0. Note that � is not a good indicator of
demixing when α = β since in this case the symmetry of
the Hamiltonian means that the density profiles are identical
when sufficient statistics are accumulated in the simulations.
Figure 6 shows the radial mixing � as a function of temperature
for three different combinations of dipole strengths (α and β).
As the temperature decreases and/or the ratio between α and
β decreases phase separation becomes more pronounced.

IV. CONCLUSIONS

In conclusion, low-temperature demixing purely due to
Bose statistics is predicted to occur in a binary mixture of
dipolar atoms, even when masses and the dipole moments of
each species are equal, i.e., inter- and intraspecies interactions
are identical. In the case where the dipole moments are
unequal, interactions also contribute to demixing. As the
temperature is raised, on the other hand, the system becomes
miscible due to the entropy of mixing. The observation
of the effect predicted here appears well within reach of
current experimental efforts with cold dipolar systems. For
our simulations the total peak density was ρ r2

o ∼ 1, which for
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52Cr atoms gives ρ ∼ 1017 m−2. This, while higher than those
typical of magnetic traps, should be approachable using optical
traps [27]. Moreover, optical traps allow for the simultaneous
trapping of different hyperfine states [30], which in principle
allows for two distinct but equal mass species. The integrated
pair correlation function should be measurable by averaging
over several “single shot” absorption images [31].
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