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Phase control of spatial interference from two duplicated two-level atoms
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We report the phase control of spatial interference of resonance fluorescence from two duplicated two-level
atoms driven by two orthogonally polarized fields. We find that in the strongly driven situation, adjusting the
relative phase leads to a redistribution of the atoms and a significant change of the atomic coherences so that
the pattern could survive. In order to improve the experimental realizability, we therefore propose a scheme to
recover the visibility with fixed relative phase by adjusting the relative intensity between the two driving fields
or, alternatively, by using a standing-wave field.
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I. INTRODUCTION

Young’s double-slit experiment is important to our un-
derstanding of the wave nature of light, which exhibits the
first-order coherence properties of light [1]. Recently, there
has been considerable interest in the interference of the
fluorescence light from two driven atoms which play the role of
the slits in Young’s experiment [2–6]. Remarkably, Eichmann
et al. carried out a very nice experiment where the two slits
were replaced by two 198Hg+ ions in a trap and observed the
interference pattern in the light scattered from the two ions [2].
However, it was shown that, in the strong-field limit, the
two-particle collective dressed states are uniformly populated
so the interference vanishes at strong driving [3–6]. This
restricts potential applications, e.g., in coherent backscattering
from disordered structures of atoms [7], the generation of
squeezed coherent light by scattering light off of a regular
structure [8], the lithography [9], or precision measurements
and optical information processing.

Macovei et al. investigated the radiation from a collective
of atoms [10] and, very recently, they proposed a scheme
to recover first-order interference with almost full visibility in
strong fields by tailoring the surrounding electromagnetic bath
with a suitable frequency dependence, e.g., with the help of
cavities [11]. In the modified reservoirs, the collective many-
particle dressed states were repopulated so that the possible
scattering pathways were modified and resulted in the recovery
of the interference.

In this article, we propose a different scheme to recover
the spatial interference of resonance fluorescence from two
duplicated two-level atoms via controlling the relative phase
of driving fields. The atomic system has been investigated
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before by Bouchene and coworkers [12]. In these articles, the
authors focused on the coherent control of the medium gain for
the probe pulse and the effective susceptibility, as well as slow
light caused by coherent Zeeman oscillations. The precision
of a two-beam interferometer could be doubled by replacing
the direct detection of the beat signal with twofold degenerate
atomic vapor resonant with the laser [13]. The propagation
effect of elliptical polarized short pulses in such kind of atomic
medium was investigated too [14]. In our scheme, the atomic
system is driven by two orthogonally polarized fields, and
thus a closed-loop system is formed. As the same as the
common statement, the spatial interference vanishes when
atoms are driven by strong fields. In this loop system, the
relative phase significantly impacts the populations and the
atomic coherences of each atom. Thus with a proper relative
phase, even driven by strong fields, the atoms are no longer
equally populated. The interference pattern could be recovered
accordingly. However, we find later that if the two fields have
the same intensity and a relative phase π/2, which is equivalent
to a circularly polarization, no resonance fluorescence could
be detected. This restriction can be removed by adjusting the
relative intensity or, alternatively, by replacing one driving
field with a standing-wave field and then adjusting the distance
between the atoms and the observing screen. Based on the
technology of phase control [15], this scheme may provide
experimental maneuverability.

II. THE MODEL AND EQUATIONS

The atoms used here are modeled as duplicated two-level
atoms [see Fig. 1(a)]. We consider the F = 1/2 ↔ F = 1/2
transition (energy h̄ω0) excited by orthogonally polarized
fields. The system could be realized in the 6Li atom. The
two lower (upper) states {|1〉,|2〉} ({|3〉,|4〉}) with energies
E1 = E2 (E3 = E4) correspond to the degenerate states of
the level 2S1/2 F = 1/2 (2P1/2 F = 1/2) with mF = ±1/2.
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FIG. 1. (Color online) (a) Energy level structure for considera-
tion. The transitions with identical mF (|1〉 ↔ |3〉 and |2〉 ↔ |4〉) are
coupled by the π -polarized field, while the transitions with different
mF (|2〉 ↔ |3〉 and |1〉 ↔ |4〉) are coupled by σ -polarized field.
(b) Fields configurations. (c) Schematic diagram of the setup.

The transitions with identical mF (the transitions |1〉 ↔ |3〉
and |2〉 ↔ |4〉) are coupled by the π -polarized field,
while the transitions with different mF (|2〉 ↔ |3〉 and
|1〉 ↔ |4〉) are coupled by the σ -polarized field. Thus, a
closed-loop system is formed, and it allows us to control
optical properties of the medium by the phases of the
laser fields. The electric fields, with the same frequency
ω, are �Eπ (y,t) = �ezεπ (y) e−i(ωt−ky) + c.c. and �Eσ (z,t) =
�exεσ (z) e−i(ωt−kz)e−iφ + c.c., where εi is the amplitude with
i ∈ {σ,π}, ω is the frequency, k is the wave vector, and φ is the
relative phase between these two driving fields. We assume
that both excited states have the same decay rate γ to the
each lower level. During these decades, great achievements in
trapping neutral atoms have been made [16], among which the
magneto-optical trap [17] is a useful tool for producing laser-
cooled and trapped neutral atoms. Single-atom experiments
were reported [18], too. Based on the experimental research
on trapping neutral atoms [16–18], the atoms could be
trapped for seconds and be cooled below the Doppler limit.

If the atom is initially well trapped, during the detection,
the atom will move a few micrometers. Thus the quantized
motion and the effect of recoil could be neglected in our
calculation.

The atomic dipole operator is the sum of atomic raising µ↑
and lowering µ↓ operators whose components are [19]

µ↓
x = µ(|1〉〈4| + |2〉〈3|)x̂, (1a)

µ↓
y = −iµ(|1〉〈4| − |2〉〈3|)ŷ, (1b)

µ↓
z = µ(|2〉〈4| − |1〉〈3|)ẑ, (1c)

where µ
↓
k is the k component of the atomic dipole, µ is

the dipole matrix element, and x̂, ŷ, and ẑ are the usual
Cartesian unit vectors. In the interaction picture, the Hamil-
tonian of the system in an appropriate rotating frame can be
written as

H = h̄

⎛
⎜⎜⎜⎝

0 0 �π −�σ e−iφ

0 0 −�∗
σ e−iφ −�π

�π −�σeiφ � 0

−�∗
σ eiφ −�π 0 �

⎞
⎟⎟⎟⎠ , (2)

where � = ω0 − ω is the detuning, and the Rabi frequen-
cies are defined as �π = µεπ/2h̄ and �σ = µεσ /2h̄. The
dynamics of the system can be described using density-matrix
approach as

ρ̇ = − i

h̄
[H,ρ] + L[ρ(t)]. (3)

The Liouvillian matrix L[ρ(t)], which describes relaxation by
spontaneous decay, is given by

L[ρ(t)]

=

⎛
⎜⎜⎜⎝

γ (ρ33 + ρ44) 0 −γρ13 −γρ14

0 γ (ρ33 + ρ44) −γρ23 −γρ24

−γρ31 −γρ32 −2γρ33 −2γρ34

−γρ41 −γρ42 −2γρ43 −2γρ44

⎞
⎟⎟⎟⎠ .

(4)

We define ng = ρ11 + ρ22 and ne = ρ33 + ρ44 as the ground
and excited populations, and the coherences ρπ = ρ42 − ρ31,
ρσ = ρ32 + ρ41 are responsible for the π - and σ -polarized
radiated fields, respectively. We solve the density-matrix
equation (3) in steady state while considering the situation
that both driving fields are exactly resonant with corresponding
transitions (� = 0) and all parameters are dimensionless and
normalized by γ and we have

ne = 1

2

[
1 − �2

σ + �2
π

�2
σ + �2

π + 2
(
�2

σ − �2
π

)2 + 4�2
σ�2

π (cos 2φ + 1)

]
, (5a)

ρσ = �σ

[(
�2

π − �2
σ

)
sin φ + i

(
�2

π + �2
σ

)
cos φ

]
�2

σ + �2
π + 2

(
�2

σ − �2
π

)2 + 4�2
σ�2

π (cos 2φ + 1)
, (5b)

ρπ = �π

[
i
(
�2

π + �2
σ cos 2φ

) − �2
σ sin 2φ

]
�2

σ + �2
π + 2

(
�2

σ − �2
π

)2 + 4�2
σ �2

π (cos 2φ + 1)
. (5c)
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From the steady-state solution, it can be easily seen that there
is an additional parameter φ to control the atomic dynamics.
Note that if the driven fields are strong, the absorption and
dispersion for each polarization, as well as the populations,
change rapidly around φ = π

2 ± 2nπ (n is an arbitrary integer).

III. THE INTERFERENCE PATTERN

Our aim is to investigate the far-field interference pattern
from two duplicated two-level atoms. For the case of a
single atom that interacts with two classical laser light fields
linearly polarized along the x axis and z axis, respectively,
the steady-state solutions for the atomic coherences and
populations have been calculated. Now in our calculation of the
far-field interference pattern, we consider that the separation
between the atoms is large enough that they may be treated
independently. The observing screen is placed in the far-field
(large y) and oriented in the xz plane, illustrated in Fig. 1(c).
At a point (τ1,τ2) on the screen (where τi is the light travel
time from the ith atom to the observation point, i = 1,2), the
intensity of the light is

I (τ1,τ2) ∝ 〈E↑
x E↓

x + E↑
z E↓

z 〉, (6)

where

E
↑
k (t ; τ1,τ2) ∝ e−iω(t−τ1)u

↑
k + e−iω(t−τ2)U↑

k , (7)

for k ∈ x,z, u, and U are the atomic dipoles of the first and
second atoms, respectively, and ω is the angular frequency
of the laser light. Since the atoms can be considered to be
independent and identical, the intensity of the interference
pattern when all the light is detected is given by

I (τ1,τ2) ∝ 〈u↑
xu↓

x + U↑
x U↓

x + u↑
z u↓

z + U↑
z U↓

z 〉
+ 〈u↑

xU↓
x 〉eiω(τ1−τ2) + 〈u↓

xU↑
x 〉e−iω(τ1−τ2)

+〈u↑
zU↓

z 〉eiω(τ1−τ2) + 〈u↓
zU↑

z 〉e−iω(τ1−τ2). (8)

The components in Eq. (8) in the steady state are

〈u↑
xu↓

x 〉ss = 〈U↑
x U↓

x 〉ss
∝ µ2〈(|4〉〈1| + |3〉〈2|)(|1〉〈4| + |2〉〈3|)〉ss
= µ2〈|4〉〈4| + |3〉〈3|〉ss
= µ2ne, (9a)

and similarly

〈u↑
z u↓

z 〉ss = 〈U↑
z U↓

z 〉ss = µ2ne, (9b)

〈u↑
xU↓

x 〉ss = 〈u↑
xU↑

x 〉∗ss ∝ µ2〈u↑
x 〉ss〈U↓

x 〉ss = µ2ρσρ∗
σ , (9c)

〈u↑
zU↓

z 〉ss = 〈u↑
zU↑

z 〉∗ss ∝ µ2〈u↑
z 〉ss〈U↓

z 〉ss = µ2ρπρ∗
π . (9d)

Unlike the results in Refs. [5,6], the cross terms 〈u↑
xU↓

x 〉ss
and 〈U↑

x u
↓
x 〉ss now contribute to the total intensity due to the

driving of the σ -polarized field so |ρσ | 
= 0. Thus the intensity
in Eq. (8) is

I (τ1,τ2) ∝ 4ne

{
1 + 1

2ne

(ρσρ∗
σ + ρπρ∗

π ) cos[ω(τ1 − τ2)]

}
,

(10)

The visibility of the interference pattern is defined as V =
(Imax − Imin)/(Imax + Imin). In our duplicated two-level atomic
system, the visibility can be calculated by using the steady-
state solutions [Eqs. (5b) and (5c)]

V = 1

2ne

(ρσρ∗
σ + ρπρ∗

π )

= 1

2

�2
σ + �2

π

�2
σ + �2

π + 2
(
�2

σ − �2
π

)2 + 4�2
σ �2

π (cos 2φ + 1)
.

(11)

Compared with Eq. (5a), it is easy to see that

V + ne = 1/2. (12)

We note that both of the two components polarized in the x and
z axis contribute to the total intensity detected on the screen.
As the π - and σ -polarized fields are applied simultaneously,
the two components could not be separated. The visibility is
always less than one-half, as the σ -polarized scattering light
is incoherent [2].

From Eq. (11), we can see that the interference pattern
of the resonance fluorescence from two duplicated two-level
atoms is related to the Rabi frequencies of the driving fields,
and, what is more, to the relative phase φ. V as the function
of the relative phase between these two driving fields reaches
its maximum Vmax when cos 2φ = −1 (φ = π

2 ± 2nπ , n is an
arbitrary integer):

Vmax = 1

2

�2
σ + �2

π

�2
σ + �2

π + 2
(
�2

σ − �2
π

)2 . (13)

From Eq. (5a), in this case, the excited population reaches the
minimum

ne min = 1

2

[
1 − �2

σ + �2
π

�2
σ + �2

π + 2
(
�2

σ − �2
π

)2

]
. (14)

It has been confirmed that in the strong driving situation,
the interference pattern vanishes [3–6]. From our main results,
Eqs. (11)–(14), we find that in our scheme, the visibility
could be realized even in the strong driving situation due
to the relative phase φ. Figure 2 shows how the visibility
evolves under different driving situations. Without the phase
difference, the visibility will fall toward zero rapidly while
increasing the driving field intensities [see Fig. 2(a)], because
when φ = 0 the atoms are equally populated under strong
driving [ne(�σ,π → ∞) → 1/2]. When the phase difference
between the two driving fields φ is nonzero, the equally
populated situation will be destroyed in the strong driving
fields, therefore phase-dependent interference of resonance
fluorescence will show up. When φ = π/2, the visibility will
reach its maximum, shown in Fig. 2(b), because the atomic
coherences ρσ,π have been changed significantly around φ =
π/2. In Fig. 2(c), we show the visibility as a function of the
phase φ and the driving intensities (we assume that the two
fields have the same intensities). As we have analyzed from
the expression of V , when φ = π/2, the visibility reaches
its maximum [also see Fig. 2(d)]. However, with the same
driving intensities, from Eqs. (13) and (14) we find that
Vmax = 1/2, and there is no population on the excited state, i.e.,
no fluorescence could be detected. Physically, if the driving
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FIG. 2. (Color online) The visibility V in different driving
situations: (a) the relative phase is zero; (b) the relative phase is
π/2; and (c) the intensities of the driving fields are equal. (d) Some
examples in (c). The dotted (red) curve: � = 1, the dashed (green)
curve: � = 5, and the solid (black) curve: � = 10.

fields have equal amplitudes and a mutual phase shift of π/2,
each atom is actually excited by circularly polarized field.
In the steady-state regime each atom will be spin oriented
along y axis (see Fig. 1) and will not interact with the driving
field. The system is transparent for both π - and σ -polarized
fields, confirmed by Eqs. (5a)–(5c) that ne = ρσ = ρπ = 0.
We find from these results that the relative phase is the key
parameter in the recovery of the interference pattern. Only with
a proper relative phase that the visibility could be recovered in
strong driven fields. But there is a restriction that when the two
orthogonally polarized fields have equal intensities, φ 
= π/2
should be satisfied.

In order to remove the above restriction and improve the
experimental realizability, we investigate the influence of the
strengths of those two driving fields on the interference, exactly
when φ = π/2. We define the ratio of the Rabi frequencies
r = �π/�σ . It is shown in Fig. 3(a) that a peak emerges when
r = 1. While increasing the strengths of the driving fields, the
peak becomes narrower. This, however, provides the feasibility
to recover the interference under strong driving with φ = π/2
by choosing the ratio between the two driving fields properly.
We choose r = 0.9, 0.95, and 0.99 for examples in Fig. 3(b). It
is shown that as r gets closer to 1, the visibility could survive

0 5 10 15
0

0.25

0.5

Ωσ

v

(b)(a)

r=0.90
r=0.95
r=0.99

FIG. 3. (Color online) The visibility V by adjusting the relative
intensities when φ = π/2. (a) V as the functions of r and the intensity
�σ . (b) Some examples in (a).

0 5 10 15
0

0.25

0.5

Ω

v

(b)(a)

y=0.18 λ
y=0.20 λ
y=0.23 λ

FIG. 4. (Color online) The visibility V by adjusting the distance
between the atoms and the screen when φ = π/2. (a) V as the
functions of the position y and the intensity �. (b) Some examples
in (a).

even when driven by strong fields. Thus, by adjusting the
relative intensity of driving fields, the pattern would reappear
under strong driving even when φ = π/2.

We note that the adjusting of the relative intensity works
only when r is modified around 1. It is known that the intensity
of a standing-wave field is periodic in space and oscillates
between its minimum and maximum. An idea came into our
mind that we can replace one of the driving field with a
standing-wave field. As the interference pattern is observed
in the xz plane, we then use a π -polarized standing-wave
field, which is applied along the y axis and therefore �π (y) =
�sin(ky). The observing screen is fixed at the end of the cavity
and the cavity can be moved along the y direction [illustrated
in Fig. 1(c)], and the atoms are located in the xz plane so
they experience the same driving fields. The intensity of the
standing wave is position dependent, therefore the interference
pattern in the xz plane is related to the detected distance
between the screen and the plane where the atoms are located.
In order to compare with the above work, we choose �σ = �,
i.e., r = sin(ky). The result is shown in Fig. 4(a). Peaks appear
at the antinodes, where r = 1. By changing the location of
the screen, the visibility could be recovered. In Fig. 4(b), we
choose the distance y to correspond with the values of r in
Fig. 3(b), and we obtain the same results. In other words, when
the relative phase is fixed to π/2, the interference pattern in
the xz plane could be revealed by moving the screen along the
y direction. Controlling the distance between the atoms and
the screen is an alternative choice as compare to adjust the
intensities of the driving fields.

IV. CONCLUSION

In summary, the recovery of interference of resonance
fluorescence from two duplicated two-level atoms by relative
phase control is investigated. The interference pattern can be
recovered in the fluorescence light of strongly driven atoms
due to effect of the relative phase between the two driving
fields on the populations and the atomic coherences. However,
when φ = π/2 and �σ = �π , the atoms do not interact with
the driving fields, and no fluorescence could be detected. By
adjusting the relative intensities, this problem can be solved. A
scheme of recovering the visibility by using a standing-wave
field is proposed, too. By replacing the π -polarized field with
a standing wave, the interference pattern in the xz plane
could by revealed periodically by moving the screen along the
y direction.
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