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The neutral-atom quantum computing community has successfully implemented almost all necessary steps for
constructing a neutral-atom quantum computer. We present computational results of a study aimed at solving the
remaining problem of creating a quantum memory with individually addressable sites for quantum computing.
The basis of this quantum memory is the diffraction pattern formed by laser light incident on a circular aperture.
Very close to the aperture, the diffraction pattern has localized bright and dark spots that can serve as red-detuned or
blue-detuned atomic dipole traps. These traps are suitable for quantum computing even for moderate laser powers.
In particular, for moderate laser intensities (∼100 W/cm2) and comparatively small detunings (∼1000–10 000
linewidths), trap depths of ∼1 mK and trap frequencies of several to tens of kilohertz are achieved. Our results
indicate that these dipole traps can be moved by tilting the incident laser beams without significantly changing
the trap properties. We also explored the polarization dependence of these dipole traps. We developed a code
that calculates the trapping potential energy for any magnetic substate of any hyperfine ground state of any
alkali-metal atom for any laser detuning much smaller than the fine-structure splitting for any given electric field
distribution. We describe details of our calculations and include a summary of different notations and conventions
for the reduced matrix element and how to convert it to SI units. We applied this code to these traps and found
a method for bringing two traps together and apart controllably without expelling the atoms from the trap and
without significant tunneling probability between the traps. This approach can be scaled up to a two-dimensional
array of many pinholes, forming a quantum memory with single-site addressability, in which pairs of atoms can
be brought together and apart for two-qubit gates for quantum computing.
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I. INTRODUCTION

Neutral-atom quantum computing [1–4] is a promising
avenue toward a full implementation of a quantum computer
[5]. The internal electronic state of a neutral atom (or, in some
cases, the motional state [6]) serves as the qubit. Usually
the qubit states that are chosen are part of the ground-state
manifold, resulting in long coherence times, limited by trap
photon scattering or motional heating. Initialization, readout,
and single-qubit rotations are achieved using well-established
spectroscopic techniques. Recent advances have been made
in trapping, manipulating, and reading out single atoms
trapped in dipole traps [7,8]. Two-qubit gates have been
experimentally demonstrated [9,10] using the dipole blockade,
and entanglement between two qubits has also been achieved
using cold collisions [11].

To scale this system up to many qubits, neutral atoms are
most commonly trapped at the sites of a three-dimensional
(3D) optical lattice. However, atoms trapped in 3D optical
lattices cannot be addressed individually using focused laser
beams, due to the 3D structure of the trap array, which limits
the operations that can be performed on qubits trapped in 3D
optical lattices. As a solution to this problem, several methods
for creating two-dimensional (2D) arrays of atom traps have
been proposed. Dumke et al. experimentally demonstrated a
2D array of atom traps formed behind an array of microlenses
[12]. The distance between adjacent traps is determined by the
center-to-center distance between the microlenses and thus can
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be designed to be large enough to address individual atoms
with a focused laser beam. Recently, a scalable extension
of this method was achieved using a spatial light modulator
combined with an array of microlenses [13]. Other ideas
using spatial light modulators (SLMs) [14,15], mirrors [16,17],
Fresnel lenses [18], metamaterial lenses [19], or diffraction
patterns [20,21] are being explored. Of particular interest are
approaches that allow trapping atoms in dark spots, reducing
the trap photon absorption probability, one of the major de-
coherence mechanisms in optical traps. Christandl et al. have
proposed a 2D array of dark atom traps at intertrap distances
of several microns, formed by blue-detuned evanescent waves
above a waveguide [22]. Two-dimensional arrays of dark-spot
traps can also be generated using a combination of a phase
plate or grating and an array of microlenses [23,24]. The
application of light fields near circular apertures of micron
or nanometer sizes for trapping and control of cold atoms has
been studied for some time [25–30]. Our approach, which uses
diffraction at circular apertures of sizes exceeding the laser
wavelength, offers a simple, versatile method for generating a
2D array of either dark-spot or bright-spot traps, depending on
the laser detuning. In addition, two traps, including two dark-
spot traps, can be brought together and apart without losing
the atoms from the traps by utilizing the light polarization
dependence of the trapping potential energy. Imaging of 2D
arrays similar to the types described previously with single-site
resolution has been demonstrated successfully [31], indicating
that single-site addressing and readout are possible in 2D
arrays.

Laser light incident on a circular aperture forms localized
bright and dark spots in the region near the aperture, closer
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than the usual near-field diffraction [32]. These bright and
dark spots can serve as atomic dipole traps for red-detuned
and blue-detuned light, respectively [33]. Moderate laser
powers (∼100 W/cm2) and small detunings (∼1000–10 000
linewidths) result in trap depths of ∼1 mK and trap frequencies
of several to ∼10 kHz. These traps are theoretically suitable
for storing atomic qubits.

In this paper, we describe how the light-polarization-
dependent trapping potential energy [34] for any electric
field pattern, for any alkali species, in any magnetic sub-
state is calculated for any detuning small compared to the
fine-structure splitting. Much simpler expressions for larger
detunings are readily available in the literature [34,35]. We
also discuss the normalization conventions encountered for
the reduced matrix elements, as exact knowledge of these is
needed to obtain the trapping potential energy in nonarbitrary
units for direct comparison with experimental results. We
then show computational results applying these expressions
to the atomic dipole traps formed behind a circular aperture.
We show that the traps stay intact upon tilting the incident
laser beam, indicating the ability to move these atom traps.
We show how the light polarization dependence of atomic
dipole traps can be exploited to bring pairs of atoms (including
those in blue-detuned traps) together and apart without losing
the atoms from the trap. This may allow for the implementation
of two-qubit gates with previously realized methods [9,10].
This approach can be scaled up to a 2D array of many circular
apertures, with the trap distance determined by the center-to-
center distance of the apertures, and therefore adjustable to a
distance large enough to allow for resolving of individual atom
sites with a focused laser beam for qubit manipulation.

Section II summarizes the theoretical background for the
light-polarization-dependent atomic trapping potential-energy
calculations. In Sec. III, we present our computational results
on moving the atomic dipole traps formed behind a circular
aperture and on bringing them together and apart. We also
discuss how this approach can be scaled up to many qubits.

II. THEORY OF THE LIGHT POLARIZATION
DEPENDENCE OF ATOMIC DIPOLE TRAPS

An electric field such as that from a laser induces an electric
dipole moment in a neutral atom. In general, this induced
dipole moment depends on the polarization of the laser light,
as well as on the hyperfine level and Zeeman magnetic substate
of the atom. The induced dipole moment due to a certain
electric field is determined by the polarizability of the atom.
The interaction of the induced dipole with the electric field of
the laser light results in a potential energy and its associated
force, which can trap the atom in regions of high or low
light intensity. The potential-energy operator for the light atom
interaction is given by [36]

Û (r) = − 1
4 E∗

0(r)α̂E0(r). (1)

Here, E0(r) is the complex amplitude for an electric field
written in the form E(r,t) = Re[E0(r)e−iωt ], α̂ is the atomic
polarizability tensor (for detailed discussions see [36,37]), and
ω is the angular frequency of the laser light. Alternatively, the
electric field is often written in its Fourier series form with

positive and negative frequency components, E(+) = E∗
0/2 and

E(−) = E0/2, respectively,

E(r,t) = E(+)(r)e−iωt + E(−)(r)eiωt . (2)

The corresponding expression for the dipole potential-energy
operator is then

Û (r) = −E(+)(r)α̂E(−)(r). (3)

As derived in [34] and Appendix A, for an alkali atom, the
polarizability tensor components in the spherical basis are

α̂q ′,q = (−1)q
′ ∑

F ′

[
α0,F ′F fF ′F

∑
m

(
c
F,1,F ′
m+q−q ′,q ′,m+qc

F,1,F ′
m,q,m+q

× |F,m + q − q ′〉〈F,m|)], (4)

where q ′,q = ±1,0 stands for the spherical basis components,
α0,F ′F is the characteristic polarizability scalar, fF ′F is the
relative oscillator strength of the F → F ′ hyperfine transition,
and the c’s are the Clebsch-Gordan coefficient for the F,m →
F ′,m + q dipole transition and a Clebsch-Gordan coefficient
related to the F ′,m + q → F,m + q − q ′ dipole transition
(see Appendix A), respectively. The relative oscillator strength
of an F → F ′ transition is

fF ′F = (2J ′ + 1)(2F + 1)

∣∣∣∣∣
{

F ′ I J ′

J 1 F

}∣∣∣∣∣
2

, (5)

where the curly braces signify the six-J symbol and I is
the quantum number for the nuclear spin of the atom. The
characteristic polarizability scalar is given by

α0,F ′F = −|〈J ′||d||J 〉|2
h̄�F ′F

. (6)

Here, �F ′F is the angular frequency detuning from the
F → F ′ transition and 〈J ′||d||J 〉 is the reduced dipole matrix
element for the J → J ′ fine-structure transition.

There are three common normalization conventions for the
reduced dipole matrix element. A comparison of the three
conventions, as well as an example for unit conversion of the
reduced dipole matrix elements, are given in Appendix B.

In this work, we used the following relation (with the same
normalization as [38]) for the polarizability scalar of an alkali
atom to calculate the reduced matrix element [36]:

α0,F ′F = − 3λ3

32π3

�

�F ′F
. (7)

This equation is for the wavelength λ in centimeters and
gives α0,F ′F in cgs units. In our work, we use SI units
throughout our code, so we are also listing the SI version
of this equation (i.e., with λ in units of meters),

α0,F ′F = − 3λ3

32π3

�

�F ′F
1.11 × 10−10 Jm2

V2
. (8)

In this study, we only present the diabatic potentials [39],
which are the diagonal components of the potential-energy
operator in the F , mF basis. This is appropriate, because we
plan on trapping precooled atoms in these traps, which will
remain at the bottom of the potential-energy wells, rather than
traveling through the wells. For the configurations that involve
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movement of the traps, we need to consider two aspects of the
speed of this motion. First, it must be slow compared to the
trap frequency in order to reduce atom loss or state disturbance
during motion. On the other hand, the motion should occur
fast enough to reduce the probability of Raman transitions
that could flip atoms into a different magnetic substate
if the two atomic potential energies are very similar (e.g., when
two traps are fully overlapped). Such Raman transitions can
change the state of an atom into either an untrapped state or
a state trapped by a different well (see Sec. III). As long as
the Raman transition probability remains sufficiently low, we
can use the diabatic potentials to describe the atom dynamics
in our traps. To calculate the diabatic potential energy for a
certain F , mF state, we calculate the expectation value of the
potential-energy operator as follows:

UF,mF
= 〈F,mF |Û |F,mF 〉. (9)

Plugging in the dipole energy operator [Eq. (1)] explicitly,
we get

UF,mF
= −1

4

∑
q ′,q

E∗
0q ′E0q α̂q ′,q

= −1

4

∑
q ′,q

{
(−1)q

′
E∗

0q ′E0q

∑
F ′

[
α0,F ′F fF ′F

×
∑
m

(
c
F,1,F ′
m+q−q ′,q ′,m+qc

F,1,F ′
m,q,m+q

×〈F,mF |F,m + q − q ′〉〈F,m|F,mF 〉)]}
. (10)

Here, the E0q ′,q with q ′,q = ±1,0 are the spherical compo-
nents of the electric field amplitude, corresponding to right and
left circular light polarization, σ±, and linear light polarization,
π , respectively.

By exploiting orthonormality, this expression simplifies to

UF,mF
= −1

4

∑
q

(−1)q |E0q |2

×
∑
F ′

α0,F ′F fF ′F
(
c
F,1,F ′
mF ,q,mF +q

)2
. (11)

The electric field distributions for the diffraction pattern
immediately behind a circular aperture were obtained using
Hertz vector diffraction theory [40,41]. The diffraction code
[42] yields the Cartesian components of the electric field. To
find the spherical components, we use the spherical unit vectors
[43]

e−1 = 1√
2

(ex − iey)

e0 = ez (12)

e+1 = − 1√
2

(ex + iey).

Here, ex , ey , and ez are the Cartesian unit vectors. From this,
we find the spherical components of the complex amplitude of
the electric field defined by

E0 = E0xex + E0yey + E0zez

= E0−1e−1 + E00e0 + E0+1e+1. (13)

Here E0j for j = x,y,z are the Cartesian components of
the electric field amplitude. The spherical and Cartesian
components are related by

E0−1 = 1√
2

(E0x + iE0y),

E00 = E0z, (14)

E0+1 = 1√
2

(−E0x + iE0y).

These spherical components were then plugged into Eq. (11).
Equations (5), (8), (11), and (14) were used to calculate

the computational results presented in the next section. The
computations were performed using a code [44] that will
take any arbitrary electric field distribution in Cartesian
coordinates, decompose it into its spherical components, and
then calculate both the diabatic and adiabatic potentials for any
given detuning � � �fs, where �fs denotes the fine-structure
splitting of the excited state. Note that the detuning can be
made arbitrarily small, including smaller than the excited-
state hyperfine splitting. For larger detunings, the expressions
simplify tremendously, as only the fine-structure splitting
needs to be considered [34,35]. Also note that the E0j are
complex, so both the real and imaginary components must be
supplied for this calculation. Appendix C shows the details
of our specific electric field configurations (single laser beam
incident at an angle and a pair of oppositely circularly polarized
laser beams incident at an angle). The code has two variable
input parameters: the laser detuning � from the transition
F → maximum F ′, which is contained in �F ′F , and the laser
intensity I0. The electric field amplitude at the aperture for each
of the incident beams starts out normalized to 1. To change
this to meaningful units, we insert the scaling due to intensity
and convert the units of the potential energy from joules to
millikelvin as follows:

UF,mF
(mK) = 1000

2

3kB

2I0

ε0c
UF,mF

. (15)

Here, the factor of 1000 is for converting kelvin to millikelvin,
the factor of 2

3kB
is for conversion from joules to Kelvin, and

the factor of 2I0
ε0c

is for inserting physical units for the electric

field. For an intensity in W/m2, this yields electric field units
of volts per meter. Also, kB is Boltzmann’s constant, ε0 is the
permittivity of free space, and c is the speed of light. This is
how we obtained the numerical results presented in the next
section.

III. COMPUTATIONAL RESULTS FOR ATOM TRAPS
BEHIND A CIRCULAR APERTURE

A. Movable atomic dipole traps

Consider the diffraction pattern resulting from a laser beam
incident on a circular aperture at an angle of γ = 0.055 rad
as shown in Fig. 1. Depending on the laser detuning, 3D atom
traps will form in either the localized bright spots or dark spots
of this diffraction pattern very close to the aperture. Figure 1(c)
shows the diabatic trapping potential energy [calculated from
the electric field distribution using Eq. (11)] for the F = 1,
mF = 0 magnetic substate of 87Rb, for a laser intensity of
364 W/cm2 and a laser detuning of −10 000 � (red detuning)
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FIG. 1. (Color online) Diabatic trapping potential energy for
a single laser beam (σ+ polarization was used) incident on a
circular aperture at an angle of γ = 0.055 rad. (a) Diagram of
setup. (b) Intensity pattern. (c) Trapping potential energy for the
light-polarization-independent F = 1, mF = 0 magnetic substate of
87Rb, for a laser intensity of 364 W/cm2 and a laser detuning of
−10 000 �. (d) Trapping potential energy for the F = 1, mF = 0
magnetic substate of 87Rb, for a laser intensity of 116 W/cm2 and a
laser detuning of 1000 �.

from the Rb D2 transition (λ = 780 nm). The D2 linewidth
of Rb is � = 2π×6 MHz [43]. Atoms are trapped in the
bright spots on the laser beam axis. Similarly, Fig. 1(d) shows
the diabatic trapping potential energy for the F = 1, mF = 0
magnetic substate of 87Rb, for a laser intensity of 116 W/cm2

and a laser detuning of 1000 � (blue detuning) from the Rb D2

transition. Here, localized atom traps form in the dark spots on
the laser beam axis.

We analyzed the properties of the traps formed farthest
from the aperture (z = 67 µm for the farthest, well-localized
bright spot for the red-detuned case and z = 100 µm for the
blue-detuned case) and compared them to the normal incidence
case. We chose these traps because they are biggest and most
easily accessible for initial experiments. The traps formed
closer to the aperture are also viable and, in fact, advantageous

FIG. 2. (Color online) Diabatic trapping potential energy along
the laser axis and along the paths of weakest confinement (“escape
paths”) for red-detuned and blue-detuned traps, for a single laser
beam (σ+ polarization was used) incident at γ = 0.055 rad, for the
light-polarization-independent F = 1, mF = 0 magnetic substate of
87Rb. (a) Axial path (solid line) and escape path (dashed line) for
a laser intensity of 364 W/cm2 and a laser detuning of −10 000 �.
(b) Trapping potential energy along the laser axis for red-detuned
trap [solid line in (a)]. (c) Trapping potential energy along the
escape path for red-detuned trap [dashed line in (a), weakest trap
direction]. (d) Axial path (solid line) and escape path (dashed line)
for a laser intensity of 116 W/cm2 and a laser detuning of 1000 �.

(e) Trapping potential energy along the laser axis for the blue-detuned
trap [solid line in (b)]. (f) Trapping potential energy along the escape
path for the blue-detuned trap [dashed line in (b), weakest trap
direction].

for quantum computing as they have larger trap frequencies. To
determine the trap frequencies, we approximated the bottom of
the (nonharmonic) traps with a harmonic oscillator potential-
energy well. The values of the trap frequencies obtained
depend on the fit range used. In this work, we chose a fit range
of the bottom 200 µK of the well, unless otherwise stated.
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FIG. 3. (Color online) Diabatic trapping potential energy for two laser beams of opposite circular polarization incident on a circular aperture
at an angle of γ = 0.055 rad. (a) Diagram of setup. (b) Intensity pattern, normalized to the incident intensity of one incident circularly polarized
laser beam. (c)–(j) Trapping potential energy of the intensity pattern in (b) for the eight magnetic substates of the hyperfine ground-state
manifold in 87Rb for a laser intensity of 364 W/cm2 and a laser detuning of −10 000 � from the transitions from the respective F states.

Other trap properties of relevance for quantum information
applications are the size of the motional harmonic oscillator
ground-state wave function along a spatial dimension j ,

βj =
√

h̄

2πfjmRb
, (16)

for the 1/e half-width of the probability density, and the energy
difference �Uj ≡ hfj/kB between two motional states of the
potential-energy well. Here, fj is the trap frequency along
spatial dimension j , and mRb is the mass of one 87Rb atom. We

denote the spatial dimensions of the trap with indices j = rx

for the radial dimension along x in the coordinate system of
Fig. 1(a), j = ryz for the radial dimension in the y-z plane,
and j = axial for the axial dimension of the trap. In addition,
the coherence of qubits in dipole traps is often limited by the
scattering rate of trap photons. For blue-detuned traps with zero
intensity at the bottom, the scattering rate for a ground-state
atom (averaged over the extent of the wave function) can be
written as [45]

η = π

2

(
frx

+ fryz
+ faxial

) �

�
. (17)
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TABLE I. Trap properties for all F , mF hyperfine ground states in 87Rb for the red-detuned (I0 = 364 W/cm2, � = −10 000 �) and
blue-detuned (I0 = 116 W/cm2, � = 1000 �) examples. For trap frequencies, ground-state sizes, and energy differences, values are given in
the order rx , ryz, axial. �Utrap denotes the trap depth.

Red detuned Blue detuned

f β �Uj η �Utrap f β �Uj η �Utrap

State F,mF (kHz) (nm) (µK) (kHz) (mK) (kHz) (nm) (µK) (kHz) (mK)

1,1 83, 86, 8.1 37, 37, 120 4, 4.1, 0.39 42 1.2 27, 37, 6 65, 56, 140 1.3, 1.8, 0.29 0.11 1.2
1,0 74, 79, 7.5 40, 38, 120 3.6, 3.8, 0.36 38 0.98 26, 35, 5.3 67, 58, 150 1.2, 1.7, 0.26 0.10 1.0
1, − 1 83, 86, 8.1 37, 37, 120 4, 4.1, 0.39 42 1.2 27, 37, 6 65, 56, 140 1.3, 1.8, 0.29 0.11 1.2
2,2 90, 92, 8.7 36, 36, 120 4.4, 4.4, 0.42 46 1.5 29, 41, 6.8 63, 53, 130 1.4, 2, 0.33 0.12 1.5
2,1 83, 86, 8.1 38, 37, 120 4, 4.1, 0.39 42 1.2 28, 38, 6.2 65, 55, 140 1.3, 1.8, 0.3 0.11 1.3
2,0 74, 79, 7.5 40, 38, 120 3.6, 3.8, 0.36 37 0.98 26, 35, 5.4 67, 58, 150 1.2, 1.7, 0.26 0.10 1.1
2, − 1 83, 86, 8.1 38, 37, 120 4, 4.1, 0.39 42 1.2 28, 38, 6.2 65, 55, 140 1.3, 1.8, 0.3 0.11 1.3
2, − 2 90, 92, 8.7 36, 36, 120 4.4, 4.4, 0.42 46 1.5 29, 41, 6.8 63, 53, 130 1.4, 2, 0.33 0.12 1.5

For red-detuned traps, a conservative estimate of the scattering
rate is the peak scattering rate [35]

η = �

�h̄
Umin, (18)

where Umin is the potential energy at the intensity peak of the
trap. We determined the trap depth �Utrap by finding the peak
potential energy of the path of weakest confinement (“escape
path”) with respect to the potential energy of the bottom of the
well.

We determined that the trap properties calculated in [33]
for normal incidence stay largely intact when the laser is
incident at an angle. For comparisons to [33], we must
mention that the trap frequencies cited there are for a
harmonic fit range of 1 mK, whereas in this work we cite
trap frequencies for 200 µK, which we deemed the relevant
range for an atom sample precooled in a magneto-optical trap.
The corresponding normal incidence frequencies for the red-
detuned example are a radial trap frequency of frx

= fryz
=

71 kHz and an axial trap frequency of faxial = 6.9 kHz.
The other trap properties are βrx

= βryz
= 40 nm, βaxial =

130 nm, �Urx
= �Uryz

= 3.4 µK, and �Uaxial = 0.33 µK.
The trap-photon scattering rate is 27 kHz. The trap depth is
1 mK. Similarly, for blue-detuned light at normal incidence,
we have frx

= fryz
= 28 kHz, faxial = 5.6 kHz, βrx

= βryz
=

64 nm, βaxial = 140 nm, �Urx
= �Uryz

= 1.3 µK, and
�Uaxial = 0.27 µK. For the blue-detuned traps, the deviation
from a harmonic potential-energy well is particularly pro-
nounced, with the bottom being very flat. To fully describe
these traps, we performed fits for a fit range of 20 µK, yielding
fits valid only for very-low-temperature atoms (<1 µK) such as
for atoms loaded from a Bose-Einstein condensate. The radial
trap frequency for the bottom of the well for normal incidence
is approximately 10 kHz and thus is comparable to the axial
trap frequency (as are the other properties, βrx

= βryz
= 0.11

µm, �Urx
= �Uryz

= 0.48 µK). A conservative estimate
(using the larger trap frequencies) for the scattering rate is
97 Hz. The trap depth is 1 mK.

Figure 2 shows the trapping potential-energy curves along
the laser beam direction, as well as along the direction
of weakest confinement for both the red- and blue-detuned
examples listed previously. For a beam incident at an angle

of γ = 0.055 rad, for the red-detuned example (laser beam
intensity of 364 W/cm2, laser detuning of −10 000 �), we
find a trap depth of 1 mK, frx

= fryz
= 74 kHz, faxial = 6.8

kHz, βrx
= βryz

= 40 nm, βaxial = 130 nm, �Urx
= �Uryz

=
3.6 µK, and �Uaxial = 0.33 µK. The average scattering
rate is 27 kHz. These results are very similar to those for
normal incidence. For the blue-detuned example (laser beam
intensity of 116 W/cm2, laser detuning of 1000 �), we find
a trap depth of 0.9 mK, frx

= fryz
= 26 kHz, faxial = 5.5

kHz, βrx
= βryz

= 67 nm, βaxial = 150 nm, �Urx
= �Uryz

=
1.3 µK, and �Uaxial = 0.26 µK. The radial frequencies
describing the behavior of the bottom of the blue well are
frx

= 5.6 kHz and fryz
= 6.7 kHz, with βrx

= 140 nm, βryz
=

130 nm, �Urx
= 0.27 µK, and �Uryz

= 0.32 µK. At this
level, we are starting to notice differences between the untilted
x direction and the dimension with tilt (y-z plane). Again,
these results are very close to the normal incidence values.
Therefore, the traps stay intact upon tilting.

Thus, by tilting the incident laser beam, an atom trapped
at a bright spot or dark spot can be moved. We propose using
this to bring two qubits together and apart by employing two
laser beams at an angle, as shown in Fig. 3. One atom is placed
in each of the two bright-spot traps (for red-detuned light) or
dark-spot traps (for blue-detuned light). The laser beams are
then tilted together to overlap the atoms for two-qubit quantum
operations and tilted apart to separate the atoms.

There are several issues with this approach. When overlap-
ping the wells, there is a significant probability for the atoms to
tunnel between the traps and switch places. This is detrimental
for quantum computing. In addition, for blue-detuned traps, the
wall from one trap will push the atom out of the other trap.
Both of these issues can be addressed by exploiting the light
polarization dependence of the trapping potential energy for
atoms in different magnetic substates, as discussed in the next
section.

B. Atomic trapping potential energy for different
magnetic substates

Because of the dependence of the trapping potential energy
on the light polarization and the magnetic substate of a trapped
atom as outlined in Sec. II, atoms in different magnetic
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FIG. 4. (Color online) Bringing two traps together. (a) Column showing the intensity pattern, normalized to the incident intensity of one
incident circularly polarized laser beam, for several incident angles γ . (b) Column showing the diabatic potential-energy profile along the
y direction at z = 67 µm for the F = 1, mF = 1 (solid line) and mF = −1 (dashed line) magnetic substates of 87Rb trapped in the intensity
pattern from (a) for several incident angles γ , a laser intensity of 364 W/cm2, and a laser detuning of −10 000 �. (c) Column showing the
diabatic potential-energy profile along the y direction at z = 100 µm for the F = 1, mF = 1 (solid line) and mF = −1 (dashed line) magnetic
substates of 87Rb trapped in the intensity pattern from (a) for several incident angles γ , a laser intensity of 116 W/cm2, and a laser detuning of
1000 �.

substates placed in the same light pattern have a different
trapping potential-energy curve. Consider the configuration in
Fig. 3. A right-circularly polarized (σ+) laser beam and a left-
circularly polarized (σ−) laser beam are incident on a circular
aperture at angles γ and −γ , respectively. Figure 3(b) shows
the intensity pattern for an incident angle of γ = 0.055 rad.
We chose this angle as an example, as the trap sites examined
here are well separated for this angle. Figures 3(c)–3(j) show
the diabatic trapping potential energy for the eight magnetic
substates of the 87Rb hyperfine ground-state manifold, for the
red-detuned example. The results are for a laser detuning of

� = −10 000 � from the F = 1 → F ′ = 3 transition and
from the F = 2 → F ′ = 3 transition, respectively. Table I
summarizes the trap properties for both the red-detuned trap
formed by the well-localized bright spot farthest from the
aperture (z = 67 µm) and the blue-detuned trap formed by the
dark spot farthest from the aperture (z = 100 µm). Note that
only the 200-µK fit results are shown. For blue-detuned traps,
the properties of the bottom of the well are better approximated
with a 20-µK fit. For the x direction, this yields trap properties
comparable to the axial trap properties listed. For the y-z plane,
a miniwell is formed at the bottom of the major well and has

023408-7



KATHARINA GILLEN-CHRISTANDL AND BERT D. COPSEY PHYSICAL REVIEW A 83, 023408 (2011)

trap properties comparable to the radial trap properties listed in
the table. The polarization dependence of the potential energy
for each magnetic substate is evident. For both examples, we
chose a detuning that is large compared to the excited-state
hyperfine splitting, and thus there is very little dependence of
the detuning on F ′ during the F ′ summation in Eq. (11). Also,
the results shown are for the same detuning from the F to F ′
transition for both F = 1 and F = 2, so the differences in the
potential energies are mostly due to the magnetic substate and
the light polarization.

One consequence of this polarization dependence of the
potential energy for use in quantum computing is the fol-
lowing. As can be seen in Fig. 3(c), we find that an atom
(qubit) in the F = 1, mF = 1 substate experiences strong
confinement in all dimensions in the bright spot from the σ−
beam (i.e., the bottom or left bright spot in the y-z or x-y
profile, respectively), at z = 67 µm from the aperture. While
the bright spot due to the σ+ beam (top or right bright spot
in the y-z or x-y profile, respectively) is also confined in all
dimensions, the confinement is significantly weaker due to the
polarization dependence of the potential energy. Therefore, a
F = 1, mF = 1 atom, seeking the location of lowest potential
energy is trapped in the σ− bright spot. Similarly, as visible in
Fig. 3(e), an atom in the F = 1, mF = −1 substate is trapped
in the σ+ bright spot. Consequently, both atoms (qubits) can
be stored in separate locations within the same light pattern,
shown in Fig. 3(b). A similar polarization dependence effect
has been successfully demonstrated in 3D optical lattices [46].

C. Bringing atom traps together and apart for
two-qubit operations

1. Red-detuned diffraction trap

Figure 4 shows the trapping potential-energy plots for an
atom in the F = 1, mF = 1 substate, trapped in the σ− beam,
and an atom in the F = 1, mF = −1 substate, trapped in the
σ+ beam of Fig. 3(a), for several angles. Figure 4(a) depicts the
intensity pattern created by the setup from Fig. 3(a) for several
angles, and Fig. 4(b) shows the potential-energy profile along
the y direction, at the location of the primary red-detuned trap,
z = 67 µm, for a pair of 364-W/cm2 laser beams with opposite
circular polarization, tuned 10 000 linewidths to the red of the
87Rb D2 transition.

Figure 4(b) demonstrates that for the red-detuned case the
two traps move together continuously as the lasers are tilted to
normal incidence, at which point the two traps are completely
overlapped. This process can be reversed by tilting the laser
beams apart. Each atom will be most probable to follow its trap
as there is a difference in trapping strength between the two
traps, due to the light polarization dependence. For instance,
an atom in state F = 1, mF = 1, trapped in the primary
bright spot of the normal incidence configuration, follows the
solid potential-energy curve toward the negative y direction in
Fig. 4(b) as the angle γ of the two beams is slowly increased.
By the same means, an atom in F = 1, mF = −1 remains
in the dashed potential-energy minimum, moving toward the
positive y direction as the two beams are separated. In this
way, we can bring two atoms together and apart without
experiencing significant trap or tunneling losses.

The major source of tunneling in this setup is due to trap
photon Raman transitions when the potential-energy curves for
both atoms (i.e., both states) cross, for example, when the wells
are completely overlapped. The probability of such a transition
can be reduced by performing this operation significantly faster
than the Raman scattering rate.

2. Blue-detuned diffraction trap

Figure 4(c) shows the corresponding trapping potential-
energy profiles at the location of the primary blue-detuned
trap, z = 100 µm, for a pair of 116-W/cm2 laser beams with
opposite circular polarization, tuned 1000 linewidths to the
blue of the 87Rb D2 transition.

Since for blue-detuned light atoms are trapped in dark spots,
it may generally be desirable to use blue-detuned traps for
quantum computing to ensure long decoherence times. As
illustrated in Fig. 4(a), as the two beams are moved together
and apart, an intensity wall moves through the dark spot of each
beam. However, as can be seen in Fig. 4(c), the associated
potential energy of the intensity wall is not large enough to
push the atoms out of the trap. Thus, the two atoms can still
be overlapped completely, without switching wells, as the σ−
well traps the F = 1, mF = 1 atom more strongly than the σ+
well, and vice versa.

(a) (b)Top Top3D 3D
viewview view view

Entangling
laser beam

Entangling
laser beam

FIG. 5. (Color online) A 2D array of diffraction traps behind a
2D array of circular apertures. For appropriate aperture spacings,
e.g., a few microns, individual trap sites can be addressed with a
focused laser beam. Two atoms are brought together by tilting the
incident laser beams, entangled with a focused laser beam, and moved
apart by tilting the laser beams back. (a) Laser beams are tilted to
normal incidence, bringing two traps from the same aperture together.
(b) Laser beam tilt is increased, bringing two traps from neighboring
apertures together.
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However, the potential wall will influence the motion of the
atom. For quantum computing, this disturbance must be kept
negligible or must be reversible to avoid deterioration of the
computation. If this is not possible, the advantages of trapping
the atoms in locations of low light intensity are erased by
the disturbance due to this potential-energy wall, and trapping
in the bright spots with sufficiently large detuning may be
preferable.

3. Scaling up to many traps

The approach presented here can be scaled up to a large
array of circular apertures illuminated by a pair of laser beams,
as shown in Fig. 5. Each aperture has the previously described
potential-energy patterns behind it, so each aperture can trap
one atom in each of the two traps that are formed. The distance
between adjacent pairs of traps is equal to the distance between
the apertures, and the distance between individual atoms is
further controlled by the tilting angle of the laser beams. By
making aperture arrays with a few microns between apertures,
individual trap sites can be resolved by a focused laser beam.
By tilting the laser beams to normal incidence and back, as
shown in Fig. 5(a), we can bring all pairs of atoms together and
apart simultaneously, and either perform large-scale parallel
quantum operations or address individual pairs to entangle
them. By tilting the laser beam farther, we can bring pairs
of atoms from neighboring apertures together and entangle
them, as shown in Fig. 5(b). This opens up the possibility of
creating a fully functional quantum memory with individually
addressable sites and the ability to bring pairs of qubits together
and apart.

IV. CONCLUSIONS

We have computationally explored the feasibility of using
an array of circular apertures to store qubits for quantum
computing. We developed a code that allows the computation
of the potential-energy curve for any electric field distribution,
any magnetic substate of any alkali atom, and any laser
detuning that is much smaller than the excited-state fine-
structure splitting. Using this code, we determined that dipole
traps formed in the diffraction pattern immediately behind
a circular aperture can be moved by tilting the incident
laser beam, without significantly changing or diminishing the
trap properties. This allows moving atoms trapped in these
patterns. Furthermore, we showed that by exploiting the light
polarization dependence of the potential energy, two atoms
in different magnetic substates trapped in two laser beams
of opposite circular polarization can be brought together and
apart by tilting the laser beams, without expelling the atoms
and without significant probability of tunneling. This may
be used to facilitate entangling two-qubit operations, such as
the gates demonstrated in [9,10]. This method can be scaled
up to a 2D array of many apertures. The distance between
individual qubits is determined by the distance between
adjacent apertures as well as the laser beam tilt, so it can
be designed such that single-site resolution with a focused
laser beam is possible. It is thus possible to create a 2D array
of qubits that are individually addressable and can be brought
together and apart for two qubit operations. In this work we
have examined the basic principle and feasibility of this kind

of qubit array. We look forward to exploring the limits and
possibilities of this approach (e.g., maximum tilt angle to reach
beyond immediate neighbors, minimum aperture size, use of
multiple layers of traps) in future work.
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APPENDIX A: DERIVATION OF THE ATOMIC
POLARIZABILITY TENSOR COMPONENTS

The spherical components of the polarizability tensor for an
alkali atom of nuclear spin I , in a given hyperfine ground state
F (with total angular momentum J ) coupled to an excited-state
hyperfine manifold with states F ′ (with angular momentum J ′)
are derived in Appendix A of [34]. In this section, we show
additional steps to supplement their derivation. We start from
Eq. (A1) of [34],

α̂q ′,q = −
∑
F ′,m

[
1

h̄�F ′F
|F,m + q − q ′〉

× 〈F,m + q − q ′|d̂−q ′ |F ′,m + q〉

× 〈F ′,m + q|d̂q |F,m〉〈F,m|
]
, (A1)

where d̂ is the dipole transition operator and q ′,q correspond
to the light polarization components. We can rewrite the two
matrix elements using the Wigner-Eckart theorem in the Rose
convention (Eq. (5.14) of [38], see Appendix B and Table II)
as

〈F,m + q − q ′|d̂−q ′ |F ′,m + q〉 = c
F ′,1,F
m+q,−q ′,m+q−q ′ 〈F ||d||F ′〉,

〈F ′,m + q|d̂q |F,m〉 = c
F,1,F ′
m,q,m+q〈F ′||d||F 〉. (A2)

For a more compact expression, it is useful to recast 〈F ||d||F ′〉
in terms of the complex conjugate of 〈F ′||d||F 〉 using
Eq. (C.85) from [49], as well as the relationship between the
Racah and Rose conventions for the reduced matrix element
(see Appendix B and Table II),

〈F ||d||F ′〉 = (−1)F
′−F

√
2F ′ + 1

2F + 1
〈F ′||d||F 〉∗. (A3)

This yields

α̂q ′,q = −
∑
F ′,m

[
1

h̄�F ′F
c
F ′,1,F
m+q,−q ′,m+q−q ′c

F,1,F ′
m,q,m+q

×(−1)F
′−F

√
2F ′ + 1

2F + 1

×|〈F ′||d||F 〉|2|F,m + q − q ′〉〈F,m|
]
. (A4)
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TABLE II. Symbols and conventions for Clebsch-Gordan coefficients and reduced matrix elements from several sources. In the last row,
we define the variable R to be the reduced matrix element of Rose [38].

Quantity Condon-Shortley [47] Racah [48] Messiah [49] Edmonds [50] Rose [38] This worka

Final-state quantum no.
Principal α α τ γ ′ (omitted) (omitted)
Angular momentum j j J j ′ j ′ J ′

Magnetic m m M m′ m′ m′

Initial-state quantum no.
Principal α′ α′ τ ′ γ (omitted) (omitted)
Angular momentum j + 1, j − 1, j j ′ J ′ j j J

Magnetic m + 1, m − 1, m m′ M ′ m m m

Rank of operator 1 k k k L k

Operator T T (k) T(k) T(k) TL T (k)

Component of operator 1
2 (î ± iĵ ),k̂ T (k)

q T (k)
q T (kq) TLM T (k)

q

Clebsch-Gordan coeff. N/A (j ′km′q|j ′kjm) 〈J ′kM ′q|JM〉 (kqjm|kjj ′m′) C(jLj ′; mMm′) cJkJ ′
mqm′

Reduced matrix element (αj ||T ||α′j ± 1,j )b (αj ||T (k)||α′j ′) 〈τJ ||T(k)||τ ′J ′〉 (γ ′j ′||T(k)||γj ) (j ′||TL||j ) 〈J ′||T (k)||J 〉
Relation to others See Eq. (30) in [48] =

√
2j+1

(−1)2k R =
√

2J+1
(−)2k R = (2j ′+1)1/2

(−1)k−j+j ′ R ≡ R = R

aThis notation is an adaptation of the notation from [34].
bIn place of || Condon and Shortley use a set of four vertical dots.

Applying Eqs. (3.17a) and then (3.16a) from [38] for the
symmetry properties of the Clebsch-Gordan coefficients to
c
F ′,1,F
m+q,−q ′,m+q−q ′ , we find

c
F ′,1,F
m+q,−q ′,m+q−q ′ (−1)F

′−F

√
2F ′ + 1

2F + 1

= (−1)−q ′
c
F,1,F ′
m+q−q ′,q ′,m+q . (A5)

With this, the expression for the spherical components of the
atomic polarizability tensor components simplifies to

α̂q ′,q = (−1)1−q ′ ∑
F ′,m

[
1

h̄�F ′F
c
F,1,F ′
m+q−q ′,q ′,m+qc

F,1,F ′
m,q,m+q

×|〈F ′||d||F 〉|2|F,m + q − q ′〉〈F,m|
]
. (A6)

To express the reduced dipole matrix element in the coupled
(F = I + J ) basis in terms of the reduced dipole matrix
element in the uncoupled (J ) basis, we use Eq. (6.25) from [38]
to obtain

〈F ′||d||F 〉 = 〈F ′,J ′,I ||d||F,J,I 〉
= (−1)I+1−J−F

√
(2J ′ + 1)(2F + 1)

×W (JFJ ′F ′; I1)〈J ′||d||J 〉. (A7)

Here, W (JFJ ′F ′; I1) is the Racah W coefficient defined
in [48]. Expressed in terms of the six-J symbol using
Eq. (C.30) from [49], and using the symmetry relations for
the six-J symbol (also given in [49]), it is

W (JFJ ′F ′; I1) = (−1)−J−F−F ′−J ′
{

F ′ I J ′

J 1 F

}
. (A8)

Plugging this into the expression for the polarizability tensor
components, we obtain

α̂q ′,q = (−1)1−q ′ ∑
F ′

[
1

h̄�F ′F
|〈J ′||d||J 〉|2

×(2J ′ + 1)(2F + 1)

∣∣∣∣
{

F ′ I J ′
J 1 F

}∣∣∣∣
2

×
∑
m

(
c
F,1,F ′
m+q−q ′,q ′,m+qc

F,1,F ′
m,q,m+q

×|F,m + q − q ′〉〈F,m|)]. (A9)

With the definitions of the relative oscillator strength fF ′F
[see Eq. (5)] and the characteristic polarizability scalar α0,F ′F
[Eq. (6), note that the negative sign is absorbed into this
definition], and using (−1)−q ′ = (−1)q

′
for integer values of

q ′, this becomes

α̂q ′,q = (−1)q
′ ∑

F ′

[
α0,F ′F fF ′F

∑
m

(
c
F,1,F ′
m+q−q ′,q ′,m+qc

F,1,F ′
m,q,m+q

× |F,m + q − q ′〉〈F,m|)], (A10)

as shown in Eq. (4). This is identical to Eq. (6) from [34] except
for a factor of (−1)q

′
instead of (−1), which must be taken into

account in configurations with multiple beams at an angle, as
there can be a π polarization component (i.e., q ′ = 0) to the
electric field.

APPENDIX B: REDUCED DIPOLE MATRIX ELEMENT
CONVENTIONS AND CONVERSIONS

When calculating the trapping potential energies in SI
units (e.g., for comparison to experiment), care must be taken
regarding normalization conventions and units for the reduced
dipole matrix element. There are three common conventions
for reduced matrix elements. The first convention is that used
by Condon and Shortley [47]. When calculating the matrix
element of a rank 1 tensor, Condon and Shortley write the
factors of the Clebsch-Gordan coefficients that depend on
the magnetic substates explicitly but absorb all other factors,
including the angular-momentum-dependent factors of the
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Clebsch-Gordan coefficients, into the reduced matrix element.
This leads to the fact that the normalization factors are different
for transitions between different angular momentum states, as
shown in [48]. The convention adopted by Racah, as can be
seen by combining his Eqs. (16′), (19a), and (29), factors out
the Clebsch-Gordan coefficient as well as a factor of 1√

2J ′+1
,

where J ′ is the angular momentum of the final state, and a
phase factor, or

〈J ′m′|T (k)
q |Jm〉 = (−1)2k 1√

2J ′ + 1
c
J,k,J ′
m,q,m′

×〈J ′||T (k)||J 〉Racah. (B1)

The simplest convention is that adopted by Rose [38], where
only the Clebsch-Gordan coefficient is factored out [see
Eq. (5.14)], and all other factors are absorbed into the reduced
matrix element, yielding

〈J ′m′|T (k)
q |Jm〉 = c

J,k,J ′
m,q,m′ 〈J ′||T (k)||J 〉Rose. (B2)

Thus, the values of the reduced matrix elements are related by

〈J ′||T (k)||J 〉Rose = (−1)2k 1√
2J ′ + 1

×〈J ′||T (k)||J 〉Racah. (B3)

Table II summarizes the notations and normalizations em-
ployed by different authors.

In this work, we were interested in the reduced matrix
elements for dipole transitions. The dipole operator (d) is a
tensor of rank k = 1, which has three components q = ±1,0.
The allowed transitions are those with J ′ = J + k,J,J − k,
and m′ = m + q.

When calculating the atomic trapping potential energy
using Eq. (6) for the atomic polarizability scalar, care must be
taken when using reduced dipole matrix element values from
the literature, due to the different normalization conventions as
well as units. As this can be nontrivial based on the information
given, we present an explicit example here. In an earlier version
of our code that still employed Eq. (6) instead of Eq. (7), we
used the reduced dipole matrix element from [51], which was
given in atomic units, and used the Racah normalization. In
order to use this value in our calculation, which uses the Rose
normalization, we applied the following conversions:

|〈J ′||d||J 〉Rose|2 = 1

2J ′ + 1

×|〈J ′||d||J 〉Safronova|2e2a2
0 . (B4)

Here, 〈J ′||d||J 〉Safronova is the reduced dipole matrix element
from [51] (in atomic units), e is the elementary charge, and
a0 is the Bohr radius. Alternatively, Eq. (7) can be used in
the calculation, which only requires the laser wavelength of
the transition and yields the polarizability scalar in the Rose
convention, as needed for our calculation.

APPENDIX C: ELECTRIC FIELDS FOR SINGLE-BEAM
AND TWO-BEAM CONFIGURATIONS

To calculate the electric fields for the configurations shown
in Sec. III, we started from the electric field distributions
determined through Hertz vector diffraction theory [40–42].

The Cartesian components of the electric field (real and
imaginary parts) for diffraction of a laser beam incident
on a circular aperture at an angle γ was calculated, once
for an electric field polarization along the x direction in
Figs. 1(a) and 3(a) (s polarization) and once for an electric
field polarization perpendicular to the x direction and the
direction of propagation (p polarization). The tilted beams
with p polarization had both y and z components, although the
z components were small since we used only small angles in
this study. Each electric field calculation was normalized such
that the electric field components were fully extended at time
t = 0 at the aperture plane, with an electric field magnitude
of 1 for the s polarization and also a magnitude of 1 for the
p polarization. Six data files were generated for each beam
configuration: Re(E0x), Im(E0x), Re(E0y), Im(E0y), Re(E0z),
and Im(E0z).

The electric field components were then read into a
MATHEMATICA code [44]. At this point, we generated the beam
configurations from Sec. III as follows.

For the single-beam configuration, we used a σ+ polarized
beam incident at an angle of +γ [see Fig. 1(a)], which
we generated by adding an s-polarization component and a
p-polarization component, which was lagging behind by a
phase of 90◦:

E0 = 1√
2

[Esxex + i(Epyey + Epzez)]. (C1)

Here, Esx is the s-polarization component, and Epy and Epz

are the p-polarization components along y and z, respectively.
Note that all three components are complex, that is, Ej =
Re(Ej ) + iIm(Ej ), where j = sx,py,pz. The factor of 1√

2
is

to normalize E0 to 1 at the aperture.
Using Eq. (14) we get the following expressions for the

spherical components of the electric field:

E0−1 = 1

2
(Esx − Epy),

E00 = i√
2
Epz, (C2)

E0+1 = −1

2
(Esx + Epy).

For the two-beam configuration, we added a σ− beam
along the −γ direction [see Fig. 3(a)]. This can be achieved
either through proper inversion of the s-polarization and
p-polarization arrays used for the σ+ beam or by generating
an array specifically for the negative angle. We chose the
latter method. This time, the p-polarization component must
be ahead of the s-polarization component by a phase of 90◦.
For this case, we find

E0−1 = 1

2
(Esx + Epy),

E00 = − i√
2
Epz, (C3)

E0+1 = 1

2
(−Esx + Epy).
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The total spherical electric field components were the sums
of the corresponding electric field components for the σ+ beam
and the σ− beam.

Once the spherical components of the electric
field are determined, they can be plugged into
Eq. (11).
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