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Efficient two-dimensional subrecoil Raman cooling of atoms in a tripod configuration
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We present an efficient method for subrecoil cooling of neutral atoms by applying Raman cooling in two
dimensions to a four-level tripod system. The atoms can be cooled simultaneously in two directions using only
three laser beams. We describe the cooling process with a simple model showing that the momentum distribution
can be rapidly narrowed to velocity spread down to 0.1vrec, corresponding to effective temperature equal to
0.01Trec. This method opens new possibilities for cooling of neutral atoms.
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I. INTRODUCTION

Cold atoms are multipurpose tools for both fundamental
observations and technological innovations. Cooling and
trapping of neutral atoms has led to many discoveries such
as Bose-Einstein condensation [1], atom interferometry [2],
atomic nanofabrication [3,4], and improved atomic clocks
[5,6]. Evaporative cooling in magnetic traps is an efficient tool
for reaching high densities at low temperatures [7], necessary
for the observation of quantum many-body effects in dilute
gases. It has been applied with success also to optically
trapped gases [8], as well as to the cooling of fermionic atoms
via sympathetic cooling [9]. However, for many applications
it is not necessary or even desirable to reach quantum
degeneracy. The external fields and atomic interactions can
be harmful for ultraprecise measurements and atomic clocks,
for which low temperatures coupled to low densities but large
numbers of atoms are needed for a good signal-to-noise ratio
and unperturbed atomic transition frequencies. Evaporative
cooling is rather wasteful on atoms, and it requires also a
large cross-section of elastic collisions and strongly confining
traps with velocity-selective output coupling. For quantum-
information purposes one has to target single atoms, and
then cooling without collisional thermalization is needed.
Finally, the current interest in nanomechanics has stirred
renewed interest in laser cooling [10,11]. We present an
efficient Raman cooling method, which allows one to reach
subrecoil temperatures rapidly with purely optical means in
two dimensions (2D), with a simple pulse setup. The method
is applicable to all densities and even single atoms, and can be
combined with sympathetic cooling if necessary.

The original Raman cooling idea was presented and
verified experimentally by Kasevich and Chu in 1992 at
Stanford for Na atoms in one dimension (1D) [12]. The setup
consists of a three-level �-type atom. A Raman pulse (two
contrapropagating beams) moves an atom from one state to
another and at the same time gives it a velocity change of
2vrec = 2h̄k/m. The pulse duration and detunings are selected
so that the two-photon Raman process is suppressed for atoms
with velocity near v = 0. The central frequency and duration
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of the subsequent pulses is adjusted to target different velocity
groups while still avoiding v = 0. As atoms are optically
pumped back to the original state after each pulse, they
eventually accumulate at velocities near v = 0. The original
work was later extended to 2D and three-dimensional (3D)
cooling [13], without reaching subrecoil temperatures. The 1D
scheme has been used in attempts to reach high 3D phase-space
densities in optical traps [14,15]. The use of a dipole trap
allowed subrecoil 3D cooling by ergodicity of the motion in
the inverted pyramidal trap [14] or the simple anisotropy of a
3D harmonic trap [14,17] while applying the Raman cooling
only in 1D. Similar work with Cs atoms has been done at
the École Normale Supérieure, Paris [16–18]. Whereas the
original scheme used Blackman pulses of finite spectral width,
it was actually shown with Levy flight simulations that for 2D
and 3D the square pulses are quite efficient [18].

The key issue is that in the original scheme the direct
Raman cooling in 2D requires four Raman beam pairs and
can be quite cumbersome. The 2D scheme with square pulses
was applied to Cs atoms at NIST, Gaithersburg, MD, giving
temperatures down to 0.15Trec [19], where Trec is the atomic
recoil temperature. This is actually the only demonstrated
case of reaching subrecoil temperatures with true 2D Raman
cooling. We show that in the tripod system, one can go down
in theory by an order of magnitude or even more, which
means going down to 1

100Trec. The scheme can also be used in
transversal cooling of atomic beams, for example Ne∗ [20,21].

The structure of this presentation is such that we first derive
the basic equations for the velocity changes induced by one
cycle of Raman pulses in the 2D tripod configuration. We
show that in the limit of small effective interaction between
ground states one can obtain simple solutions for the equations.
Then we extend the treatment to arbitrary interaction strength.
Finally, we demonstrate the efficiency of the method by solving
the model numerically for an appropriate initial momentum
distribution, including both the Raman cycles as well as the
optical pumping between them.

II. 2D RAMAN COOLING IN A TRIPOD CONFIGURATION

A. Basic equations

Consider an atomic ensemble in the region of interaction
with laser configuration that consists of three running optical
waves shown in Fig. 1(a). Two contrapropagating σ+ and σ−
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FIG. 1. (a) An atomic ensemble interacts with three running
optical waves. (b) The level diagram of a four-level tripod-type atom.
The σ+ and σ− circularly polarized contrapropagating waves couple
transitions |1〉 ↔ |4〉 and |3〉 ↔ |4〉, respectively, and the π -polarized
wave couples the |2〉 ↔ |4〉 transition.

circularly polarized waves are directed along the z direction; a
π -polarized optical wave propagates along the y direction.
The positive frequency part of the electric field can be
written as

�E(+)(�r,t) = �E1e
−iω1t+ikz + �E2e

−iω2t+iky + �E3e
−iω3t−ikz,

where k is the same wave number for each optical wave. The
first term corresponds to a σ+ circularly polarized wave of
frequency ω1 and the third one corresponds to a σ− circularly
polarized wave of frequency ω3. The second term describes a
π -polarized wave of frequency ω2.

The interaction of a four-level tripod-type atom with the
laser beams is described by the Schrödinger equation

ih̄
∂�

∂t
+ h̄2

2M
∇2� = Ĥ�. (1)

The atomic Hamiltonian and the probability function in
the rotating-wave approximation (RWA) and in the resonant
approximation are given by

Ĥ =−h̄

⎛
⎜⎜⎜⎝

− �1 0 0 Ge−ikz

0 −�2 0 Ge−iky

0 0 − �3 Geikz

Geikz Geiky Ge−ikz �

⎞
⎟⎟⎟⎠ , � =

⎛
⎜⎜⎜⎝

a1

a2

a3

a4

⎞
⎟⎟⎟⎠ ,

(2)
where � is the detuning of driving fields from the upper state,
and �m = ωm − ω4m − � (m = 1,2,3) are detunings from
ground states |m〉 [see Fig. 1(b)]. Without losing generality
we have assumed that the Rabi frequencies Gj = | �d4j · �Ej/h̄|
(j = 1,2,3) equal a real magnitude G.

The probability amplitudes in the momentum-space
approach are obtained by using the Fourier transform

am(pz,py,t) = 1

2π

∫∫ ∞

−∞
am(z,y,t)e−ik(pzz+pyy)dz dy,

where pz, py are projections of the atomic momentum on the
axes Oz, Oy in units of h̄k. For variables

b1 = a1(pz − 1,py), b2 = a2(pz,py − 1),
(3)

b3 = a3(pz + 1,py), b4 = a4(pz,py),

the Schrödinger equation (1) can be written as

iḃ1 = [
(pz − 1)2 + p2

y + δ1
]
b1 − gb4, (4a)

iḃ2 = [
p2

z + (py − 1)2 + δ2
]
b2 − gb4, (4b)

iḃ3 = [
(pz + 1)2 + p2

y + δ3
]
b3 − gb4, (4c)

iḃ4 = (
p2

z + p2
y − �

)
b4 − gb1 − gb2 − gb3, (4d)

where the dimensionless time, detunings, and Rabi frequency
are given by

τ = ωRt, δm = �m

ωR

, � = �

ωR

, g = G

ωR

, (5)

and ωR = h̄k2/2M is the recoil frequency.
The upper state |4〉 can be adiabatically eliminated in the

case of Raman transitions between the ground states when
� � g. In this case, we assume that ḃ4 ≈ 0 and obtain from
Eq. (4d) the expression

b4 ≈ − g

�
(b1 + b2 + b3). (6)

Terms p2
z , p2

y were dropped here as values negligible in
comparison with �. The substitution of Eq. (6) into Eqs. (4)
leads to the equations

iḃ1 − [
(pz − 1)2 + p2

y + δ1 + α
]
b1 = αb2 + αb3, (7a)

iḃ2 − [
p2

z + (py − 1)2 + δ2 + α
]
b2 = αb1 + αb3, (7b)

iḃ3 − [
pz + 1)2 + p2

y + δ3 + α
]
b3 = αb1 + αb2, (7c)

where α = g2/� is the Rabi frequency of the two-photon
resonance.

If the atomic population is initially concentrated in state |2〉
with corresponding amplitude b0

2, it follows from Eqs. (7) that
during the interaction

|b1|2 + |b2|2 + |b3|2 = ∣∣b0
2

∣∣2
. (8)

To solve Eqs. (7) one can consider some special cases. These
are useful for gaining insight into the parameter choices such
as pulse duration that optimize the efficiency of the approach.

B. Short-time interaction

Let us consider the case of the short-time interaction when
ατ 	 1. In such a case, variables b1,b3 ≈ 0 and therefore
b1,b3 vanish from the right-hand side of Eqs. (7). After that,
Eq. (7b) can be solved separately, and the substitution of b2

into Eqs. (7a) and (7c) leads to the solutions

|b1|2 ≈ ∣∣b0
2

∣∣2
α2 sin2 D1τ

D2
1

, |b3|2 ≈ ∣∣b0
2

∣∣2
α2 sin2 D2τ

D2
2

, (9)
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where the denominators are

D1 = 1
2 (δ1 − δ2) − pz + py, D2 = 1

2 (δ3 − δ2) + pz + py.

(10)
By substituting Eq. (9) into Eq. (8), we get

|b2|2 ≈ ∣∣b0
2

∣∣2
(

1 − α2 sin2 D1τ

D2
1

− α2 sin2 D2τ

D2
2

)
. (11)

Then the atomic populations in ground states, using Eqs. (3),
(9), and (11), can be written as

|a1(pz,py)|2 ≈ ∣∣a0
2(pz+1,py−1)

∣∣2
α2 sin2(D1 − 1)τ

(D1 − 1)2
, (12)

|a2(pz,py)|2 ≈ ∣∣a0
2(pz,py)

∣∣2
(

1 − α2 sin2(D1 + 1)τ

(D1 + 1)2

−α2 sin2(D2 + 1)τ

(D2 + 1)2

)
, (13)

|a3(pz,py)|2 ≈ ∣∣a0
2(pz−1,py−1)

∣∣2
α2 sin2(D2 − 1)τ

(D2 − 1)2
. (14)

Let us consider atoms originally prepared in state |2〉 after
they interact with a pulse of Raman beams. Corresponding
approximate forms of the populations in the momentum-
space approach are given by Eqs. (12)–(14). The population
transferred to state |1〉 through Raman transition |2〉 ↔ |1〉 is
shown in Fig. 2(a), while the population transferred to state |3〉
through Raman transition |2〉 ↔ |3〉 is shown in Fig. 2(c). The
removed population of state |2〉 represents a cross as shown in
Fig. 2(b). The width of the cross is defined by the pulse duration
τ . As seen from Eqs. (10) and (13), the largest excitation
probability is reached when

1
2 (δ1 − δ2) − pz + py + 1 = 0 or

1
2 (δ3 − δ2) + pz + py + 1 = 0.

The position of the cross can be changed by adjusting the
detunings from the ground states, allowing one to excite
atoms with any two projections of the atomic momentum.
The excitation of atoms through two Raman transitions at
once essentially increases the efficiency of cooling in a tripod
configuration. Note that for Fig. 2, we have used ατ = 1;
but the short-interaction limit gives a good account of the
basic aspects of the process, because the relevant equations
are modified only slightly for increasing ατ (see Sec. II C).

Similar to 1D Raman cooling, an elementary cycle of 2D
Raman cooling consists of two steps. In the first step, atoms
prepared in state |2〉 are selectively transferred by a pulse
of Raman beams. In order to suppress the Raman transfer
of atoms with the momentum projection pz,py = 0, we can
choose the pulse duration

τ = 2π

δ + 2
, (15)

where δ1 − δ2 = δ3 − δ2 = δ. In the second step, atoms return
to state |2〉 via optical pumping. The π -polarized laser is
switched off, and the σ+, σ− lasers are tuned into resonance
with transitions |1〉 ↔ |4〉 and |3〉 ↔ |4〉, respectively. An
atom is excited to state |4〉 with a gain of momentum along
the z direction, so p′

z = pz ± 1. Then the atom returns to state
|2〉, emitting a photon with momentum � �p where |� �p| = 1.
Because of momentum conservation, the atomic momentum

FIG. 2. The momentum distribution of atoms originally prepared
in state |2〉 after they interact with a pulse of Raman beams. (a),
(c) The population transferred to states |1〉, |3〉 through Raman
transitions |2〉 ↔ |1〉 and |2〉 ↔ |3〉, respectively; (b) cross appearing
in state |2〉 due to these transfers. The duration of Raman pulse is
τ = 2, the Rabi frequency of two-photon resonance is α = 0.5. The
detunings from ground states are δm = 0 (m = 1,2,3).

changes by −� �p. So, the atomic population in state |2〉
becomes

|a′
2(pz,py)|2 = |a2(pz,py)|2 + |a1(pz−1+�pz,py+�py)|2

+ |a3(pz+1+�p′
z,py+�p′

y)|2.

Different momentum groups can be excited from state |2〉
by adjusting the duration τ and the difference of detunings δ,
consistent with (15). The set of detunings δ used by us is

δ = 2k − 2, k = 0,1, . . . ,5. (16)

The position of the cross for large τ is situated in immediate
proximity to zero projections, which results in only very cold
atoms being left in state |2〉.
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C. Arbitrary Rabi frequency solution

To simplify the task, we assume that δ1 = δ3 = δ2 + δ,
and consider only the atoms of momentum projection pz = 0.
These atoms are characterized by the coherence between states
|1〉 and |3〉, which in turn is derived from the difference of
Eqs. (7a) and (7c), that is,

i
d

dτ
(b1 − b3) − (

1 + p2
y + δ1

)
(b1 − b3) = 0. (17)

Before the Raman pulse starts, the atoms are contained in state
|2〉. Hence b0

1,b
0
3 = 0, and one obtains from Eq. (17) that

b1 = b3. (18)

After the substitution of Eq. (18), Eqs. (7) are reduced to a
system of two equations:

iḃ1 = (
1 + p2

y + δ1 + 2α
)
b1 + αb2, (19)

iḃ2 = [(py − 1)2 + δ2 + α]b2 + 2αb1. (20)

Then the interaction with Raman beams is described by the
effective Hamiltonian and probability function

Ĥeff =−h̄

(
0 αeff

αeff δeff

)
, �eff =

(
−√

2b1

b2

)
ei(1+p2

y+δ1+2α)τ ,

(21)

where δeff = δ + 2py + α and αeff = √
2α.

The Hamiltonian (21) in the dressed-state picture is pre-
sented by the eigenstates of the probability amplitudes

ψ+ = ψ1 cos φ − ψ2 sin φ, ψ− = ψ1 sin φ + ψ2 cos φ,

(22)

tan φ =
√

4α2
eff + δ2

eff − δeff

2αeff
,

with the corresponding eigenfrequencies

ω± = −δeff

2
± 1

2

√
4α2

eff + δ2
eff,

where ψ1, ψ2 are the probability amplitudes of states in
presentation (21). Expression (22) gives original ψ± after
the substitution of ψ0

1 = 0, ψ0
2 = b0

2, i.e., the probability
amplitudes are written as

ψ+ = −b0
2 sin φ e−iω+τ , ψ− = b0

2 cos φ e−iω−τ . (23)

By inverting Eq. (22) we get

ψ1 = ψ+ cos φ + ψ− sin φ, ψ2 = −ψ+ sin φ + ψ− cos φ,

which gives via Eq. (23) the probability amplitudes

ψ1 = b0
2

2
sin 2φ(e−iω−τ − e−iω+τ ),

ψ2 = b0
2(sin2φ e−iω+τ + cos2φ e−iω−τ ).

Thus the populations in states |1〉, |2〉, consistent with Eqs. (3),
are given by

|a1(−1,py+1)|2 = ∣∣a0
2(0,py)

∣∣2 α2

D2
eff

sin2Deffτ,

|a2(0,py)|2 = ∣∣a0
2(0,py)

∣∣2
(

1 − 2α2

D2
eff

sin2Deffτ

)
,

where 2Deff = √
(δ + 2py + 2 + α)2 + 8α2. Atoms in the

zero velocity group remain in state |2〉 for the pulse duration

τ = 2π√
(δ + 2 + α)2 + 8α2

, (24)

which corresponds to |a2(0,0)|2 = |a0
2(0,0)|2. One can easily

see that in the limit of small α this result agrees with Eq. (15).

D. Full cooling process

Full Raman cooling consists of varying Raman pulses,
decreasing the detuning δ as in set (16). After every six
elementary cycles, the direction of the π -polarized beam
is alternated, so the next cycles excite another side of the
velocity distribution. During cooling process, atoms are piled
up in a narrow peak near zero momentum. As the number
of Raman cycles increases, the number of atoms in the peak
increases, so the momentum distribution becomes narrower,
and the temperature of atoms decreases. The efficiency of
growth increases as the Rabi frequency α of two-photon
resonance increases. Numerical calculations show that deep
Raman cooling is only achieved in the case of quite large
ατ . Figure 3 shows the result after applying 420 elementary
cycles of 2D Raman cooling with α = 1. The velocity spread
of atoms is defined as σ = (FWHM)/

√
8 ln 2 in units of the

recoil velocity vrec. It has been reduced from 3vrec to 0.1vrec,
corresponding to effective temperature Teff = 0.01Trec.

Consider the 2D Raman cooling under conditions of experi-
ment [20] where the same atomic and field configurations were
realized in a metastable Ne beam. The σ+- and σ−-polarized
waves were provided by lasers with λPump = 588 nm, while
laser with λStokes = 617 nm generated the π -polarized wave.
Hence the final effective temperature of cooled atoms is given
by

Teff ≈ 0.01
h̄2

2kBM

(
k2

Pump + k2
Stokes

) = 26 nK,

where kB is the Boltzmann constant, and M is the Ne atomic
mass. The duration of only Raman pulses in our scheme is

FIG. 3. Momentum distribution of atoms after applying 420
elementary cycles of 2D Raman cooling. Atoms have been piled
up in a narrow peak near zero momentum with effective temperature
equal to 0.01Trec. The height of the peak is about 80 times larger
than that of the original distribution, the width (full width at half
maximum, FWHM) is about 0.24 in units of h̄k.
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about 400 ω−1
R , where ω−1

R for metastable Ne equals 6 µs. Full
Raman cooling in turn takes a few milliseconds. The number
Ndecay of atoms spontaneously decaying from the upper state
to a ground state during a Raman pulse is given by

Ṅdecay = γN4, Ndecay ≈ γ τ

ωR

N
g2

�2
= N

γ

ωR�
ατ,

where N is the number of atoms, γ is the decay rate; the
number N4 ≈ Ng2/�2 of atoms in the upper state is obtained
from Eq. (6). Decay from the upper state can be neglected
when Ndecay 	 N1,3. Using Eqs. (12) and (14), one gets the
inequality

Ndecay 	 N (ατ )2, (25)

which can be written in two alternative forms:

ατ � γ

ωR�
,

G2

γ 2
� ωR

γ
, (26)

where in the latter form it was assumed that τ ∼ 1 and α =
G2/ω2

R� [see Eq. (5)]. Thus by increasing either the detuning
related to the upper state or the pulse intensities, we can avoid
the effects of spontaneous emission during the Raman pulses.

III. CONCLUSIONS

We have demonstrated that one can obtain very narrow
velocity distributions (σ <∼ 0.1vrec) simultaneously in two di-
rections with our straightforward scheme. The tripod approach
presented here sets a further restriction on the available
atomic structure, but this is not necessarily a major problem.
Appropriate optically coupled J = 1 and J = 0 states are
available, e.g., in Rb and Ne∗. In addition to 3D cooling
by thermalization, the approach can be used to cool atoms
in a 1D optical lattice, where the sample is “sliced” into 2D
pancake-like structures. This approach is used for investigating
optical frequency standards with alkaline-earth-metal atoms
[6]. The simplicity of our approach, coupled with the expected
efficiency, opens new possibilities for all-optical studies of
ultracold atoms.
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