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Reexamination of relaxation of spins due to a magnetic field gradient: Identity of the
Redfield and Torrey theories
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There is an extensive literature on magnetic-gradient-induced spin relaxation. Cates, Schaefer, and Happer,
in a seminal publication, have solved the problem in the regime where diffusion theory (the Torrey equation) is
applicable using an expansion of the density matrix in diffusion equation eigenfunctions and angular momentum
tensors. McGregor has solved the problem in the same regime using a slightly more general formulation using the
Redfield theory formulated in terms of the autocorrelation function of the fluctuating field seen by the spins and
calculating the correlation functions using the diffusion-theory Green’s function. The results of both calculations
were shown to agree for a special case. In the present work, we show that the eigenfunction expansion of the
Torrey equation yields the expansion of the Green’s function for the diffusion equation, thus showing the identity
of this approach with that of the Redfield theory. The general solution can also be obtained directly from the
Torrey equation for the density matrix. Thus, the physical content of the Redfield and Torrey approaches are
identical. We then introduce a more general expression for the position autocorrelation function of particles
moving in a closed cell, extending the range of applicability of the theory.
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I. INTRODUCTION

The problem of relaxation in nuclear magnetic resonance
due to field gradients has been discussed by many authors but
continues to be a topic of current research. Recently, attention
has been focused on this subject in connection with searches
for new Parity and Time reversal violating forces mediated by
the hitherto unobserved axion [1,2].

We give a short, very incomplete, summary of how the
field has developed until now. In 1950, Hahn [3] used his just-
invented spin-echo technique to study the effect of translational
diffusion on relaxation in NMR. Torrey, in 1953, [4] gave a
derivation of the effect of translational diffusion that had been
alluded to by Hahn. In 1954, Carr and Purcell [5] presented
a more elaborate method for measuring diffusion constants
using relaxation due to translational diffusion in an inhomo-
geneous field with known gradient. Then, in 1956, Torrey
[6] introduced a specific partial differential equation (Torrey
equation) describing the effects of diffusion on relaxation.
He showed that, under conditions when diffusion theory was
valid, the physics were described by adding a diffusion term
to the usual Bloch equations. These treatments of diffusion
did not take into account the effect of the boundaries of the
measurement cell. Ten years later (1966), Baldwin Robertson
[7] gave an approximate solution of the Torrey equation
in a relatively small region defined by two parallel planes,
where the influence of the boundaries was important. Using
the method of phase accumulation and assuming the phase
distribution to be Gaussian, Neuman, in 1973 [8], gave an
approximate solution for planar, cylindrical, and spherical
geometries and showed this was in agreement with Robertson’s
results.

In 1987, Cates, Schaefer, and Happer (CSH) [9] calculated
the relaxation for parameters where the diffusion theory
is appropriate [mean-free path (λ) � the size R of the
measurement cell] using second-order perturbation theory and
an expansion in eigenfunctions of the Torrey equation applied

to the density matrix. At high densities the perturbation theory
breaks down and, at low densities (λ >∼ R), the diffusion theory
is invalid. (The present work shows how to go beyond this latter
limit.) While Torrey [6] originally applied his equation to the
macroscopic bulk magnetization of a sample using arguments
from the classical theory of continuous media to modify the
Bloch equations, the authors of (CSH) seem to have been the
first to apply these ideas to the quantum mechanical density
operator ρ(−→r ,t).

The authors start with the equation of motion for the density
matrix in the presence of diffusion (Torrey equation) [6]:

∂ρ

∂t
= 1

ih̄
[H,ρ] + D∇2ρ. (1)

They consider the deviations of the magnetic field from
the volume-averaged field as a perturbation and the volume-
averaged field (taken along z) as the unperturbed system. Then,
expanding ρ in the “eigenpolarizations” of the unperturbed
problem and carrying out a perturbation expansion in the field
variation, taken to be varying linearly with position, they obtain
a solution valid to second order in the perturbation. These
“eigenpolarizations” are combinations of angular momentum
eigenstates. They were introduced for the purpose of studying
density matrices by Fano [10], who considered position-
independent density matrices. In CSH these eigenstates are
each multiplied by a function of position to allow for the
position dependence of the density matrix. In the present work
we will simplify things by expanding the density matrix in
the Pauli spin operators. Each spin component of the density
matrix is allowed to have its own position dependence and
decay constant.

McGregor [11] has given a slightly more general treat-
ment based on Redfield’s relaxation matrix theory [12],
as presented by Slichter [13]. The starting point of this
treatment is the equation of motion for the density matrix
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expanded to second order in a perturbation (Ref. [13],
equation 5.313):

∂ρ∗

∂t
= 1

ih̄
[H ∗

1 (t),ρ∗(0)]

+
(

i

h̄

)2 ∫ t

0
[[ρ∗(0),H ∗

1 (t ′)],H ∗
1 (t)] dt ′, (2)

where H ∗
1 represents the deviation of the field from

its volume-averaged value and starred quantities are
expressed in the interaction representation with the
volume-average field considered as the unperturbed
system.

The results show that the relaxation depends on the
autocorrelation function of the fluctuating field (frequency
spectrum of the field fluctuations), as seen by the spins
as they move through the measurement cell, and the
correlation function is determined by the diffusion-theory
Green’s function for the case when diffusion theory is
valid.

For high densities, when the boundary conditions do not
play a role, the exact solution obtained by Torrey [6] is valid.

Following this work in 1991, Stoller, Happer, and Dyson
[14] showed how to use the exact eigenfunctions of the
Torrey equation (Airy functions) to get exact solutions in one
dimension. de Swiet and Sen [15] have used this and other
approaches to study a wider range of geometries. Hayden
et al. (2004) give a nice discussion of the Gaussian phase
distribution work along with experimental confirmation in a
cylindrical geometry [16].

As is evident from this rather limited survey, the problem
of relaxation in gradient fields is rather complicated. There are
several characteristic times (Larmor period, mean collision
time, time to diffuse across the sample) or characteristic
lengths (diffusion length, sample size, and “dephasing” length)
as has been emphasized by [17] and also discussed by [16].
The conditions for the validity of their various results have
been discussed in Ref. [9], and Refs. [17] and [16] discuss the
validity of the various expressions they use. These points were
not explicitly mentioned in some earlier publications in this
field.

McGregor [11] has shown that the results of his Redfield
theory treatment are equivalent to those obtained from the
Torrey equation [9] for the special case of the high-pressure
limit in a spherical cell. Nevertheless, it is illuminating to note
that the expansion in the diffusion equation eigenfunctions
obtained by CSH [9] is in fact the usual eigenfunction
expansion of the Green’s function and hence the results
based on the Torrey equation [9] and those of the Redfield
theory [11] are identical for all cases considered by CSH.
We show this in the next section, with details confined
to an appendix. Thus the physical content of the two ap-
proaches are identical in spite of their rather different starting
points.

We then show how these results can be applied beyond
the diffusion-theory limits by giving an analytic expression
for the trajectory correlation functions valid for a range of
pressures (including the ballistic limit) wider than that for
which diffusion theory is applicable.

II. EQUIVALENCE OF THE TORREY EQUATION AND
REDFIELD THEORY RESULTS WHEN DIFFUSION

THEORY IS VALID.

In the appendix we review the calculation of CSH applied
to spin 1/2 and using a slightly altered notation. We expand
the density matrix in the spin-1/2 operators σ0,±1.

The result for T1, equation (A42), compare equation (50),
CSH:

1

T1
= 4

V
Re

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+

×
∑
β ′

(
φβ ′( −→r ′)φβ ′( −→r )(
Dk2

β ′ − i2�o

) )
d3r ′d3r, (3)

is seen to contain the Fourier transform of the eigenfunction
expansion of the Green’ function [18], equation (A46):

G̃( −→r ,−→r ′,ω) =
∑
β ′

(
φβ ′ ( −→r ′)φβ ′( −→r )(

Dk2
β ′ − iω

) )
, (4)

so that we have (equation (A48), equation (9) in [11]):

1

T1
= γ 2

2

∫ ∞

−∞
dτeiωoτ 〈[B1(t)]x[B1(t + τ )]x

+ [B1(t)]y[B1(t + τ )]y〉. (5)

Similarly, the results for T2 (A56) are also equivalent to
McGregor’s results (equation 10 in [11]) when we take (4) in
the form∑

β ′

(
φβ ′( −→r ′)φβ ′( −→r )

Dk2
β ′

)
= G̃( −→r ,−→r ′,ω = 0)

=
∫ ∞

0
dτG(−→r ,t | −→r ′,t ′). (6)

A. Direct solution using Green’s function

As we have shown that the CSH result in terms of diffusion
equation eigenfunctions is identical with the McGregor result
using the Redfield theory and the diffusion-theory Green’s
function, it should be possible to derive the result starting
with the Torrey equation (1) [equation (A5) in Appendix A]
using (A7)

∂ρ

∂t
= 1

i
�0ρ + η

i
�1ρ + D∇2ρ. (7)

We expand ρ as in (A19):

ρ(−→r ,t) =
∑

j

σjfj (−→r ,t), (8)

taking the trace with σT
i obtaining

∂f ′
i

∂t
− D∇2f ′

i = − i

αi

∑
j

[�1]ij f
′
j e

i(�i−�j )t , (9)

with

fi = f ′
i (x,t)e−i�i t , (10)

�i = 2�oMi. (11)

023402-2



REEXAMINATION OF RELAXATION OF SPINS DUE TO A . . . PHYSICAL REVIEW A 83, 023402 (2011)

We will treat the sum on the right-hand side (rhs) as a per-
turbation introducing the Green’s function for the unperturbed
problem, G0(x,τ ), satisfying

∂G0(x,t)

∂t
− D∇2G0(x,t) = δ(3)(x)δ(t), (12)

and the boundary condition

−→n · −→∇ G0 = 0. (13)

Then we can convert (9) to an integral equation for f ′
i :

f ′
i (x,t) = f

′(0)
i +

∫
G0(x − x ′,t − t ′)

1

iαi

×
∑

j

[�1(x ′)]ij f ′
j (x ′,t ′)ei(�i−�j )t ′dx ′dt ′, (14)

which can be solved by iteration [f ′(0)
i being a solution of (9)

with the rhs set equal to 0]:

f ′
i (x,t) = f

′(0)
i +

∫
G0(x − x ′,t − t ′)

1

iαi

∑
j

[�1(x ′)]ij f
′(0)
j (x ′,t ′)ei(�i−�j )t ′dx ′dt ′ +

∫ ∫
G0(x − x ′,t − t ′)

1

iαi

×
∑

j

[�1(x ′)]ij ei(�i−�j )t ′G0(x ′ − x ′′,t ′ − t ′′) × 1

iαj

∑
k

[�1(x ′′)]jkf
′(0)
k (x ′′,t ′′)ei(�j −�k )t ′′dx ′′dt ′′dx ′dt ′. (15)

If we now operate on this with ∂/∂t and use (12), noting
that we will eventually integrate the result over d3x so that
terms containing D∇2G0 will vanish because of the boundary
condition, we find for the second-order term:

ḟ ′
i (x,t)

= 1

iαi

∑
j,k

[�1(x)]ij e
i(�i−�j )t

∫
G0(x − x ′′,t − t ′′) × · · ·

× 1

iαj

[�1(x ′′)]jke
i(�j −�k )t ′′f

′(0)
k (x ′′,t ′′) dx ′′dt ′′, (16)

and averaging over d3x, 〈· · ·〉 = 1
V

∫
d3x(· · ·):

〈ḟ ′
i (x,t)〉 = 1

V iαi

∫ ∫
d3xd3x ′′dt ′′

∑
j,k

[�1(x)]ij e
i(�i−�j )t

×G0(x − x ′′,t − t ′′) × 1

iαj

[�1(x ′′)]jk

× ei(�j −�k )t ′′f
′(0)
k (x ′′,t ′′). (17)

To investigate relaxation we set i = k. As we are inter-
ested in relaxation of a spatially homogeneous gas, we put
f

′(0)
i (x ′′,t) = f

′(0)
i (t) = constant and take it out of the integral

since it is the solution of (9) with the rhs = 0. Then the
relaxation rate will be given by

〈ḟ ′
i (x,t)〉

f
′(0)
i (t)

= − 1

V αi

∫ ∫
d3xd3x ′′dt ′

′ ∑
j,k

[�1(x)]ij e
i(�i−�j )t

×G0(x − x ′′ ,t − t
′ ′) × 1

αj

[�1(x ′′ )]jk

× ei(�j −�k )t ′′ , (18)

where i = 0 will give 1/T1 and i = 1(+) will give 1/T2.

Using equations (A40), (A41), (A50), and (A51) it is easy
to see that we obtain equations (A42) and (A47) for 1/T1 and
(A53) and (A54) for 1/T2.

Thus, the direct solution of the Torrey equation (A5)
containing a diffusion term, using the conventional second-
order perturbation theory based on the Green’s function for
the unperturbed equation, yields results in agreement with
those obtained by McGregor [11] by applying second-order
perturbation theory to the equation of motion for the density
matrix (Redfield theory), where diffusion theory only enters
through the correlation functions of the magnetic field and the
physical content of the two theories is identical.

III. BEYOND DIFFUSION THEORY

Having shown the equivalence of the CSH treatment
based on the Torrey equation to the calculation based on
Redfield theory when diffusion theory is used in evaluating
the correlation functions, we widen the range of applicability
by introducing a form of the correlation function which is also
valid when the diffusion theory breaks down; namely, when the
condition λc � L no longer holds (λc = vτc is the collision
mean-free path and L is a typical size of the containing vessel).

A. Correlation functions for motion in a closed cell

Defining a correlation function as

Rfg(τ ) = 〈f (t)g(t + τ )〉, (19)

with 〈· · ·〉 representing an ensemble and time average, we have
the following relations [19]:

Rxv(τ ) = − d

dτ
Rxx(τ ),

(20)

Rvv(τ ) = − d2

dτ 2
Rxx(τ ),

so the determination of any one will determine the whole
family.

Barabanov et al. [20] have calculated the velocity autocor-
relation function for particles moving in a closed vessel with
specularly reflecting walls. The effect of gas collisions are
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taken into account. The method was initially [20] applied to
cylindrical vessels for a case where only the motion normal
to the axis is relevant, and then to rectangular shaped vessels
[21]. The results have been checked by numerical simulations
for many cases [20–22]. The function Rxv(τ ) obtained from
Rvv(τ ) by means of equation (20) has been applied to the
study of a false electric-dipole-moment effect that arises in
magnetic resonance experiments in the presence of an electric
field [20,22]. The result can easily be applied to spherical
cavities, the only modification being that the distribution of the
angle α (the angle between the trajectory and the normal to the
reflecting surface) will be different in the case of a sphere. The
correlation function, initially obtained for a single velocity,
can be averaged over the appropriate velocity distribution.

For simplicity we will concentrate on a rectangular vessel
in this work. In that case the motions in each of the 3 directions
are independent [21], so we concentrate on one dimension to
begin. Equations (27), (36), and (37) of [20] can be combined
to give [note the rhs of (33) in that article should be set equal
to unity]:

Rvv(τ ) = 8v2
i

τ 2
w

∑
n=1,3,5,...

[
ψn(τ )

ω2
n

]
, (21)

where the wall collision time τw = 2(R/v) sin α, for particles
with velocity v (in the plane of the trajectory), moving in
a cylinder or sphere of radius R. For the rectangular case,
we take α = π/2 and R = Li/2 (the length of the cell along
direction xi), and then τw = Li/vi for particles in a rectangular
vessel, moving along direction xi with velocity vi.

ωn = nπvi

Li

,

ψn(τ ) = η1e
−η1τ − η2e

−η2τ

η1 − η2
, (22)

and

η1,2 = 1

2τc

(1 ± sn), (23)

sn =
√

1 − 4ω2
nτ

2
c , (24)

with τc being the mean time between collisions. We see that
ωnτw = nπ so that

Rvv(τ ) = 8v2
i

∑
n=1,3,5,...

[
ψn(τ )

(nπ )2

]
, (25)

and Rvv(0) = v2
i (B11).

Using equations (20) we find

Rxx(τ ) = 8

π2
v2τc

∑
n=1,3,5,...

1

n2sn

[
e−η2τ

η2
− e−η1τ

η1

]
, (26)

where the constant of integration has been chosen to satisfy
Rxx(∞) = 0 and we see that (B9)

Rxx(0) = 8L2

π4

∑
n=1,3,5,...

1

n4
= L2

12
= 〈x2〉, (27)

in agreement with McGregor’s result [11] [equation (24)] from
diffusion theory.

FIG. 1. (Color online) The normalized autocorrelation function
for particle position for particles moving in a rectangular box as a
function of dimensionless delay time τ ′ with l′ = Lx/λ, where Lx is
the length of the cell in the x direction and λ is the mean-free path
between collisions, as a parameter.

If we introduce dimensionless time τ ′ = τ/τc and note that

ωnτc = nπ

l′
, (28)

sn =
√

1 −
(

2nπ

l′

)2

, (29)

with l′ = Li/λc, where the collision mean-free path λc = viτc,
we can write (26) as

Rxx(τ ′) =
(

L2

12

)
12 × 16

π2l′2
∑

n=1,3,5,...

1

n2sn

×
[

e−(1−sn)τ ′/2

(1 − sn)
− e−(1+sn)τ ′/2

(1 + sn)

]
. (30)

Note that sn can be real or complex representing the transition
between diffusive and ballistic behavior.

Figure 1 shows a plot of Rxx(τ ′)/Rxx(0) for various values
of l′.

B. Spectrum of the correlation functions

We start with the velocity autocorrelation function equa-
tion (21) and take the Fourier transform of (22) by using the
definition of the Fourier integral used by McGregor [11]:

ψn(ω) =
∫ ∞

−∞
ψn(τ )e−iωτ dτ, (31)

so that

ψn(ω) = 2
ω2

τc

1(
ω2 − ω2

n

)2 + ω2/τ 2
c

, (32)

and, following (21),

ψ(ω) = 8v2
i

τ 2
w

∑
n=1,3,5,...

[
ψn(ω)

ω2
n

]
. (33)
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FIG. 2. (Color online) Frequency spectrum (log10) of the auto-
correlation function of Fig. 1 as a function of reduced frequency and
normalized mean-free path l′.

Then the spectrum of the position autocorrelation function,
Gxx(ω), which determines the relaxation, is given by [follow-
ing (20)]:

Gxx(ω) = ψ(ω)

ω2
= 16v2

i

τ 2
wτc

∑
n=1,3,5,...

[
1

ω2
n

[(
ω2−ω2

n

)2+ ω2/τ 2
c

]
]

(34)

= 16L4

λviπ6

∑
n=1,3,5,...

1

(πn)2

1[(
ω′
nπ

)2 − 1
]2 + [

ω′l′
(nπ)2

]2 , (35)

where the last equation is written in terms of a normalized
frequency ω′ = ωL/vi and length l′ = L/λ.

Figure 2 shows S(ω′,l′) = Gxx(ω)/Gxx(0) as a function of
ω′ with l′ as a parameter. Note that this is for a single velocity.
Averaging over the velocity distribution is straightforward.

Taking the limit of (35) for ω′ � 1/π and reintroducing ω,

we find

Gxx(ω) = 16D1

∑
n=1,3,5,...

1

(nπ )2

1

ω2 + [ (nπ)2D1
L2

]2 , (36)

where D1 = viλ is the diffusion constant for one dimension.
This is the Fourier transform of the diffusion-theory Green’s
function for this problem as obtained by McGregor [11]
[equation (24)]. For high frequencies, assuming l′ is large,
we obtain (neglecting the 1 in the denominator in (35):

Gxx(ω) = 2v2
i τc

ω2
(
1 + ω2τ 2

c

) , (37)

which is identical to McGregor’s equation (13) [11] for the
high-frequency limit. In obtaining equation (37), we assumed

ωL

vnπ

 1,

which of course cannot hold for all n. This means we are not
properly accounting for the high-n modes, which in reality
would have a contribution of the form (36), which is anyway
small for large n and is responsible for the fact that (37) is
independent of the size of the vessel. See the discussion under
Fig. 3 in [9].

IV. DISCUSSION

The approaches of the two calculations are quite different.
We have seen that Cates, Schaefer, and Happer [9] solved the
Torrey equation (A1) by assuming an exponential form for the
time dependence of ρ and expanding the decay constant and
amplitude in a power series in the fluctuating field, treated as
a perturbation. McGregor’s approach is based on the Redfield
treatment of the equation of motion for the density matrix,
equation (A1), without the explicit introduction of a diffusion
term. Recursion is used to get a second-order approximation to
this equation and the second-order term is written in terms of
the correlation functions of the fluctuating field components as
seen by the nuclei [13]. The diffusion theory is then introduced
in the calculation of these correlation functions. Lastly, we
have shown that the same results follow from the recursive
expansion of the integral equation, derived by use of the
Green’s function, in the manner of the Born expansion.

Working out the details of the diffusion theory for a
spherical cell, McGregor showed that his result is equivalent
to that of [9] in the high-pressure limit with Neuman boundary
conditions. We have shown that the two approaches give
identical results whenever equation (A1) and the perturbation
theory is valid, thus clearing up any possible confusion as to
when one or the other of the two quite different approaches is
valid. The physical content of both theories is identical.

We have also presented a more general form of the position
autocorrelation function for the case of a rectangular cell which
is valid beyond the region of validity of diffusion theory.
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APPENDIX A: PERTURBATION THEORY OF CATES,
SCHAEFER, AND HAPPER [9]

The authors start with the equation of motion for the density
operator ρ in the diffusion approximation:

∂ρ

∂t
= 1

ih̄
[H,ρ] + D∇2ρ. (A1)

The Hamiltonian H is broken up into a main term H (0) and a
perturbation H (1):

H = H (0) + H (1), (A2)

H (0) = h̄�oσz, (A3)

H (1) = ηh̄
−→
� 1 · −→σ , (A4)

where �o is chosen so that the volume average of
−→
� 1 is zero

and η is an expansion parameter. (Note: normally �o = γBo

so here �o,1 are 1/2 the usual values, �o,1 = γBo,1/2.)
We rewrite (A1) as

∂ρ

∂t
= 1

i
[�oσz,ρ] + η

i
[
−→
� 1 · −→σ ,ρ] + D∇2ρ. (A5)

We will approach the problem using time-independent per-
turbation theory; that is, we substitute ρ = ρ ′e−γ t and obtain
[ρ ′ �= f (t)]

0 =
(

γ + 1

i
�o + D∇2 + η

i
�1

)
ρ ′ (A6)
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where �o and �1 are linear operators (we now drop the prime
on ρ ′, using ρ to indicate the time-independent solution):

�oρ = [�oσz,ρ],
(A7)

�1ρ = [
−→
� 1 · −→σ ,ρ].

We will then expand ρ in the spherical components of the
spin-1/2 operators −→σ :

σ± = (σx ± iσy)/2 = σ1,2, (A8)

σ0 = σz. (A9)

The σi are seen to have the following properties:

Tr
(
σT

i σj

) = δij + δjoδio = δijαj , (A10)

[σ0,σi] = [σz,σi] = 2Miσi, (A11)

with M1,2 = ±1, M0 = 0, and

αj =
{

1, j = 1,2

2, j = 0,
(A12)

Thus,

�oσi = 2�oMiσi. (A13)

We now follow CSH [9] by introducing a perturbation
expansion for ρ( −→r ) and γ into (A6):

ρ( −→r ) = ρ(0) + ηρ(1) + η2ρ(2), (A14)

γ = γ (0) + ηγ (1) + η2γ (2). (A15)

As this must hold for any value of η, we collect terms in equal
powers of η:

0 =
(

γ (0) + 1

i
�o + D∇2

)
ρ(0), (A16)

0 =
(

γ (0) + 1

i
�o + D∇2

)
ρ(1) +

(
1

i
�1+γ (1)

)
ρ(0), (A17)

0 =
(

γ (0)+1

i
�o+D∇2

)
ρ(2)+

(
1

i
�1+γ (1)

)
ρ(1)+γ (2)ρ(0).

(A18)

We look for a solution in the form

ρ(0) = σjf
(0)
j ( −→r ). (A19)

Substituting into (A16) and applying Tr(σT
i ·) to the resultant

equation yields(
γ

(0)
i − i2�oMi + D∇2

)
f

(0)
i ( −→r ) = 0. (A20)

The function fi( −→r ) has to satisfy boundary conditions on the
surface of the measurement cell. CSH [9] have taken the von
Neuman conditions (zero current at the walls) but, as they point
out, the method can be applied to the case where depolarization
takes place at the walls. In any case, equation (A20) along
with the boundary conditions form an eigenvalue problem.
The solutions are given by the solution to(∇2 + k2

α

)
φα = 0, (A21)

where the eigenvalues kα are determined by the boundary
conditions. Then, (A20) implies

γ
(0)
i,α = i2Mi�o + Dk2

α. (A22)

In order to solve for the higher-order correction terms to
the solution it is useful to expand the corrections to fi( −→r )
in a series of the zero-order functions f

(0)
iα ( −→r ) = φiα, [the

eigenfunctions of (A21)]:

ρ
(n)
iα ( −→r ) =

∑
jβ ′

σjφβ ′a
(n)
jβ ′,iα, (A23)

which form a complete set of functions satisfying the boundary
conditions. The index n = 1 or 2 indicates the order of the
correction. Thus, (A17) becomes

0 =
(
γ

(0)
i,α +1

i
�o+D∇2

)∑
j,β ′

σjφβ ′a
(1)
jβ ′,iα+

(
1

i
�1+γ

(1)
i,α

)
σiφα,

0 =
∑

j

(
γ

(0)
i,α + 1

i
2Mj�o + D∇2

)
σj

∑
β ′

φβ ′a
(1)
jβ ′,iα

+
(

1

i
�1 + γ

(1)
i,α

)
σiφα,

where we used (A13). Taking Tr(σT
g ·) of this last equation

yields

0 = αg

(
γ

(0)
i,α − i2Mg�o + D∇2

) ∑
β ′

φgβ ′a
(1)
gβ ′,iα

+ 1

i
[�1]g,iφα + γ

(1)
i,α φαδgiαg, (A24)

where

[�1]g,i = Tr
(
σT

g �1σi

) = TrσT
g [

−→
� 1 · −→σ ,σi]. (A25)

Making use of the orthogonality of the φα, and taking them to
be normalized, ∫

V

d3xφ∗
βφα = δβα, (A26)

we multiply (A24) by φ∗
β and integrate over the volume:

0 = αg

(
γ

(0)
i,α − i2Mg�o − Dk2

β

)
a

(1)
gβ,iα + 1

i
〈β|[�1]g,i |α〉

+ γ
(1)
i,α δgiδαβαg,

0 = αg

(
γ

(0)
i,α − γ

(0)
g,β

)
a

(1)
gβ,iα + 1

i
〈β|[�1]g,i |α〉 + γ

(1)
i,α δgiδαβαg,

(A27)

using (A22), where

〈β|[�1]i,j |α〉�=
∫

V

d3xφ∗
β [�1]i,j φα. (A28)

We note that kα=0 = 0, corresponding to a uniform distribution
in the cell, is a valid solution and we will seek the decay
parameters for this mode. Thus, we put α = β = 0, and i = g

in (A27), obtaining

0 = 1

i
〈0|[�1]i,i |0〉 + γ

(1)
i,0 αi, (A29)

0 = γ
(1)
i,0 , (A30)

a
(1)
gβ,i0 = i〈β|[�1]g,i |0〉

αg

(
γ

(0)
i,0 − γ

(0)
g,β

) . (A31)
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The matrix element in (A29) is seen to be zero for perturbing
fields with a volume average of zero.

Now we use (A18) to evaluate the second-order corrections:

0 =
(

γ
(0)
i,α + 1

i
�o + D∇2

) ∑
jβ ′

σjφβ ′a
(2)
jβ ′,iα +

(
1

i
�1+γ

(1)
i,α

)

×
∑
jβ ′

σjφβ ′a
(1)
jβ ′,iα + γ

(2)
i,α σiφα. (A32)

Again taking Tr(σ ∗
g ·) of this equation gives

0 = αg

(
γ

(0)
i,α + 2

i
Mg�o + D∇2

) ∑
β ′

φβ ′a
(2)
gβ ′,iα

+
∑
jβ ′

1

i
[�1]g,jφβ ′a

(1)
jβ ′,iα + · · ·

+
⎛⎝γ

(1)
i,α

∑
β ′

φβ ′a
(1)
gβ ′,iα + γ

(2)
i,α δgiφα

⎞⎠ αg, (A33)

0 = αg

(
γ

(0)
i,α − γ

(0)
g,β

)
a

(2)
gβ,iα +

∑
j,β ′

1

i
〈β| [�1]g,j |β ′〉a(1)

jβ ′,iα

+αgγ
(1)
i,α a

(1)
gβ,iα + γ

(2)
i,α δgiδαβαg, (A34)

where the last result comes from multiplying by φ∗
β and

integrating over volume. Now taking α = β = 0 and i = g,

we find

0 =
∑
j,β ′

1

i
〈0|[�1]i,j |β ′〉a(1)

jβ ′,i0 + γ
(2)
i,0 αi,

(A35)

αiγ
(2)
i,0 = −

∑
j,β ′

〈0|[�1]i,j |β ′〉 〈β ′|[�1]j,i |0〉(
γ

(0)
i,0 − γ

(0)
j,β ′

)
αj

.

Our derivation has followed the method of time-independent
Rayleigh-Schroedinger perturbation theory. The “states” are
characterized by two “quantum numbers,” a spin index i, and
a spatial index α, which can stand for 3 indices, which appear
when we solve the diffusion equation in three dimensions.

1. Calculation of relaxation times, relation to McGregor’s result

We begin by evaluating (A35) for i = 0. Since σo = σz this
will be equal to 1/T1. We have then (φα=0 = 1/

√
V )

〈β ′|[�1]j,i |0〉 = 1√
V

∫
d3rφβ ′( −→r )[�1]j,0. (A36)

We write
−→
� 1 · −→σ = ([�1]+σ− + [�1]−σ+) + [�1]zσz, (A37)

[
−→
� 1 · −→σ ,σo] = 2([�1]+σ− − [�1]−σ+), (A38)

[�1]j,0 = TrσT
j [

−→
� 1 · −→σ ,σo], (A39)

[�1]−,0 = 2[�1]+, (A40)

[�1]+,0 = −2[�1]−. (A41)

Thus,

γ
(2)
i=0,0 = 1

T1
= − 1

αo

∑
j,β ′

〈0|[�1]0,j |β ′〉 〈β ′|[�1]j,0|0〉(
γ

(0)
0,0 − γ

(0)
j,β ′

)
αj

= 4

V αo

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+

∑
β ′

(
φβ ′ ( −→r ′)φβ ′( −→r )(

Dk2
β ′−i2�o

) )
× d3r ′d3r + c.c.,

1

T1
= 4

V
Re

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+

∑
β ′

(
φβ ′( −→r ′)φβ ′( −→r )(
Dk2

β ′ − i2�o

) )
d3r ′d3r. (A42)

Now the Green’s function for the diffusion equation can be
written as (see Morse and Feshbach [23], chapter 7)

G(−→r ,t | −→r ′,t ′) = u(t − t ′)
∑

β

φβ( −→r ′)φβ( −→r )e−Dk2
β (t−t ′),

(A43)

with u(t) being the unit step function. Then the time Fourier
transform is (τ = t − t ′)

G̃( −→r ,−→r ′,ω) =
∫ ∞

0
dτeiωτG(−→r ,t | −→r ′,t ′) (A44)

=
∫ ∞

0
dτeiωτ

∑
β

φβ( −→r ′)φβ( −→r )e−Dk2
βτ (A45)

=
∑
β ′

(
φβ ′( −→r ′)φβ ′( −→r )(

Dk2
β ′ − iω

) )
. (A46)

Comparing to the sum in (A42) we see that we can write
(α0 = 2)

1

T1
= Reγ (2)

i=0,0 = 4Re

V

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+G̃( −→r ,−→r ′,2�o)d3r ′ d3r

= 4
Re

V

∫ ∞

0
dτei2�oτ

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+G(−→r ,t | −→r ′,t ′)d3r ′ d3r (A47)

= 4Re
∫ ∞

0
dτeiωoτ

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+G(−→r ,t | −→r ′,t ′)po(r ′,t ′)d3r ′ d3r,
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where ωo = γBo and po(r ′,t ′) = 1/V is the uniform density of magnetization. Then the joint probability distribution of an atom
being at −→r at time t and being at −→r ′ at time t ′ is G(−→r ,t | −→r ′,t ′)po(r ′,t ′) and we see that (following McGregor’s notation)

1

T1
= γ

(2)
i=0,0 = 4Re

∫ ∞

0
dτeiωoτ 〈[�1(t)]−[�1(t + τ )]+〉 = 4

∫ ∞

0
dτeiωoτ 〈[�1(t)]x[�1(t + τ )]x + [�1(t)]y[�1(t + τ )]y〉

= γ 2

2

∫ ∞

−∞
dτeiωoτ 〈[B1(t)]x[B1(t + τ )]x + [B1(t)]y[B1(t + τ )]y〉. (A48)

This is the result of the Redfield theory given as equation (9)
in McGregor.

To calculate T2 we have to evaluate γ
(2)
i=+,0:

γ
(2)
i=+,0 = −

∑
j,β ′

〈0|[�1]+,j |β ′〉 〈β ′|[�1]j,+|0〉(
γ

(0)
+,0 − γ

(0)
j,β ′

)
αj

. (A49)

The nonzero matrix elements are

[�1]+,+ = 2[�1]z, (A50)

[�1]o,+ = −2[�1]+, (A51)

so that

γ
(2)
i=+,0 = 1

T2
= −Re

∑
β ′

[
〈0|[�1]+,+|β ′〉 〈β

′|[�1]+,+|0〉(
γ

(0)
+,0 − γ

(0)
+,β ′

) + 〈0|[�1]+,0|β ′〉 〈β ′|[�1]0,+|0〉
2
(
γ

(0)
+,0 − γ

(0)
0,β ′

)]
(A52)

= −Re
∑
β ′

[
4
〈0|[�1]z|β ′〉〈β ′|[�1]z|0〉(

γ
(0)
+,0 − γ

(0)
+,β ′

) + 4
〈0|[�1]−|β ′〉〈β ′|[�1]+|0〉

2
(
γ

(0)
+,0 − γ

(0)
0,β ′

) ]

= 4Re
∑
β ′

[
〈0|[�1]z|β ′〉〈β ′|[�1]z|0〉(

Dk2
β ′

) + 〈0|[�1]−|β ′〉〈β ′|[�1]+|0〉
2
(
Dk2

β ′ − iωo

) ]
,

1

T2
= 4Re

V

∫ ∫
[�1( −→r ′)]z[�1( −→r )]z

∑
β ′

(
φβ ′( −→r ′)φβ ′( −→r )

Dk2
β ′

)
d3r ′d3r

+ 2Re

V

∫ ∫
[�1( −→r ′)]−[�1( −→r )]+

∑
β ′

(
φβ ′( −→r ′)φβ ′( −→r )(

Dk2
β ′ − iωo

) )
d3r ′d3r. (A53)

From (A46) we write

G̃( −→r ,−→r ′,ω = 0) =
∑
β ′

(
φβ ′( −→r ′)φβ ′( −→r )

Dk2
β ′

)

=
∫ ∞

0
dτG(−→r ,t | −→r ′,t ′), (A54)

so that the first term in (A53) can be written

γ 2Re

2

∫ ∞

−∞
dτ

∫ ∫
[B1( −→r ′)]z[B1( −→r )]zG(−→r ,t | −→r ′,t + τ )

×po(r ′)d3r ′d3r = γ 2

2

∫ ∞

−∞
dτ 〈[B1(t)]z[B1(t + τ )]z〉, (A55)

in agreement with the second term in equation (10) of
McGregor.

From (A42) we see that the second term is 1/(2T1) so that
equation (A53) is equivalent to

1

T2
= 1

2T1
+ γ 2

2

∫ ∞

−∞
dτ 〈[B1(t)]z[B1(t + τ )]z〉, (A56)

which is equivalent to equation (10) of [11].

APPENDIX B: SPIN RELATIONS AND MATRIX ELEMENTS

[σ1,σz] = −2σ1, [σ2,σz] = 2σ2, [σ1,σ2] = σz,
−→
� 1 · −→σ = [�1]+σ− + [�1]−σ+ + [�1]zσz,

(σ± = 1
2 (σx ± iσy)), (B1)

[
−→
� 1 · −→σ ,σz] = 2([�1]+σ− − [�1]−σ+), (B2)

[�1]g,i = Tr
(
σT

g [
−→
� 1 · −→σ ,σi]

)
, (B3)

[�1]+,z = −2[�1]−, [�1]−,z = 2[�1]+, (B4)

[
−→
� 1 · −→σ ,σ+] = −[�1]+σz + [�1]z2σ+, (B5)

[�1]z,+ = −2[�1]+, [�1]+,+ = 2[�1]z, (B6)

[
−→
� 1 · −→σ ,σ−] = [�1]−σz − [�1]z2σ−, (B7)
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[�1]z,− = 2[�1]−, [�1]−,− = −2[�1]z. (B8)

Note:

∞∑
n=0

1

(2n + 1)4
= 1

96
π4, (B9)

∞∑
n=0

1

(2n + 1)6
= 1

960
π6, (B10)

∞∑
n=0

1

(2n + 1)2
= 1

8
π2. (B11)
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