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Stochastic variational calculation of zero-energy positron scattering from H, He, and H2
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The confined variational method is used to generate a set of energy-optimized explicitly correlated Gaussians
to describe positrons interacting with H, He and the H2 molecule. These basis functions are then used in a Kohn
variational calculation of the scattering lengths and zero-energy annihilation parameters, Zeff . The results for
the H and He atoms are consistent with previous high-quality variational calculations while the annihilation
parameter for H2 is consistent with experiment. An extensive tabulation of the H2 scattering parameters as a
function of internuclear distance confirm the existence of a virtual state at R ≈ 3.4a0. The scattering length was
−2.71a0 and Zeff was 15.7 at the mean H2 internuclear distance of 1.45a0.
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I. INTRODUCTION

One of the most important developments in few-body
physics in the last decade has been the increasing use of vari-
ational methods using explicitly correlated Gaussians (ECGs)
as basis functions [1–3]. Calculations have been carried
out in the area of subnuclear physics [4], nuclear physics
[5,6], atomic physics [7], condensed-matter physics [8],
and quantum chemistry [9,10]. Two of the more startling
results were the discovery that many neutral atoms could
form electronic stable states with a positron [11,12] and
the recent calculations on small molecules going beyond the
Born-Oppenheimer approximation [10].

The reason for the explosion of calculations using ECG
basis sets comes from their algebraic properties. Quite simply,
the matrix elements of the Hamiltonian between two different
ECG basis functions are algebraically compact and straight-
forward to compute. Coupled with the fact that the memory
requirements of a typical calculation are relatively modest,
this means that close to exact calculations for many-body
systems containing 4–5 particles are feasible with modest
computational resources.

In this paper, we apply ECG basis sets to the scattering
of positrons from small atoms and molecules within the
framework of the Kohn variational method. This represents
a natural evolution in technique from earlier scattering work
using ECG basis functions. An early application used stabiliza-
tion ideas to get low-energy phase shifts for positronium-atom
scattering [13]. Since that time, confining potentials have been
added to the scattering Hamiltonian to generate ECG basis sets
optimized to give a good description in the interaction region
[14–16]. In addition, alternatives to the stabilization approach
have been developed to extract the phase shift [16]. Most
recently, a confining potential plus stabilization method was
used to compute the scattering length for e+-H2 scattering [17].
A common feature of all these methods is that they generate
phase shifts at low but finite energies (although effective
range theory can be used to estimate zero-energy scattering
parameters).

The present paper is specialized to zero-energy scattering
and is restricted to the computation of the scattering length
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and the zero-energy positron annihilation parameter Zeff . The
confined variational method (CVM) [15,16] was initially used
to generate an energy-optimized ECG basis in the interaction
region. These basis functions were then used in zero-energy
Kohn variational calculations of positron scattering from H,
He, and H2. Scattering lengths accurate to a couple of percent
were obtained for all systems. The calculations for H2 were
undertaken in the fixed nuclei approximation.

II. DETAILS OF THE METHOD

A. The scattering Hamiltonian

In this paper the analysis is confined to a positron colliding
with a neutral atom or molecule with infinitely heavy nuclei.
Significant computational simplifications occur when the
scattering particle is a positron since the exchange interaction
between projectile and target is absent.

1. The hydrogen and helium atoms

The Hamiltonian for a positron colliding with a helium
atom with nuclear charge Z = 2 and with N = Z = 2 target
electrons is

H = −
N∑

i=1

1

2
∇2

i − 1

2
∇2

N+1 −
N∑

i=1

Z

ri

+ Z

rN+1

+
N∑

i<j

1

rij

−
N∑

i=1

1

rN+1,i

. (1)

In this expression, particle (N + 1) is identified as the
scattering particle and is a positron. All the other particles
are electrons. It is convenient to partition the Hamiltonian as

H = HN+1 + Hatom, (2)

where

HN+1 = −1

2
∇2

N+1 + Z

rN+1
−

N∑
i=1

1

rN+1,i

(3)

is the Hamiltonian for the scattering particle and

Hatom = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

Z

ri

+
N∑

i<j

1

rij

(4)
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is the Hamiltonian for the atomic target. The function |�0〉 is
the wave function for the target ground state and is expanded
as a linear combination of N0 ECGs, viz.

|�0〉 =
N0∑
k=1

bk exp

(
− 1

2

N∑
i=1,j=1

Bk
ij ri · rj

)
. (5)

This wave function represents a stationary state satisfying

〈�0|Hatom|�0〉 = ε0. (6)

The ground-state wave function is generated using the
stochastic variational method (SVM) [6,12,18]. This wave
function is not an exact eigenstate, but for all practical purposes
can be regarded as an eigenstate so the relation,

Hatom|�0〉 = ε0|�0〉, (7)

can be assumed without risk of any significant error.

2. The hydrogen molecule

The Hamiltonian for e+H2 scattering with N = 2 electrons
and one positron can be written

H = −
N+1∑
i=1

∇2
i

2
−

N∑
i=1

1

|rN+1 − ri |

+ 1

|r1 − r2| + 1

|rN+1 − R/2| + 1

|rN+1 + R/2|

−
N∑

i=1

(
1

|ri + R/2| + 1

|ri − R/2|
)

+ 1

R
. (8)

The vector R/2 is the displacement of the two protons from the
midpoint of the molecular axis. This Hamiltonian can likewise
be partitioned into a molecular Hamiltonian just involving the
electrons and the positron Hamiltonian, for example,

H = HN+1 + Hmolec, (9)

where the positron-molecule Hamiltonian HN+1 is

HN+1 = −1

2
∇2

N+1 −
N∑

i=1

1

|rN+1 − ri |

+ 1

|rN+1 − R/2| + 1

|rN+1 + R/2| , (10)

and the target Hamiltonian is

Hmolec = −
N∑

i=1

∇2
i

2
+ 1

|r1 − r2|

−
N∑

i=1

(
1

|ri + R/2| + 1

|ri − R/2|
)

+ 1

R
. (11)

The wave function, |�0〉, of the H2 ground state is written
as a linear combination of ECGs with shifts, for example,

�k = P̂ exp

(
−1

2

2∑
i=1

Bk,i |ri − sk,i |2
)

× exp

(
−1

2
Ak|r1 − r2|2

)
. (12)

The vector sk,i displaces the center of the ECG for the ith
particle to a point on the internuclear axis. This ensures the
three-particle wave function is of � symmetry. The values
of ak , bk,i , and sk,i are adjusted during the optimization process.
The operator P̂ is used to enforce �g symmetry. This is done by
generating each basis function as a combination of two ECGs.
Once sk,i is set, another ECG with sk,i → −sk,i is added. The
pair of basis functions have the same linear coefficient for a
state of �g symmetry (the coefficients would have opposite
signs in the case of �u symmetry). Each ECG has a total of
five stochastically adjustable parameters. This wave function
is a stationary state satisfying

〈�0|Hmolec|�0〉 = ε0. (13)

The ground-state wave function is not an exact eigenstate, but
for all practical purposes can be regarded as an eigenstate.

B. The confining potential

The first stage of the scattering calculations use the confined
variational method (CVM) [15,16]. A single-body confining
operator VCP is added to the system Hamiltonian. The potential
is written

VCP =
N+1∑
i=1

λ(ri − R0)2�(ri − R0), (14)

where �(r − R0) is a Heaviside function and λ is a small
positive number.

The operator as implemented acts on all particles. Since the
projectile is a positron, it would be possible to have VCP only
acting on the positron. The values chosen for the confining
radius R0 are sufficiently large for the impact of VCP on the
target electron wave functions to be minute.

Calculations with the CVM are used to generate a basis of
ECGs that gives a good description of the target + projectile
wave function when the projectile is close to the target. The
basis is optimized by minimizing the energies of the lowest
few states.

C. The Kohn variational method

The scattering length will be determined with the Kohn
variational method [19–21] with ECGs as trial functions. The
formalism presented here closely follows that outlined in the
monograph of Burke and Joachain [22].

Ignoring symmetry considerations for the moment, the
trial wave function adopted for the present Kohn variational
calculations have the form,

|�t 〉 = |�0〉 + At |�1〉 +
n∑

i=2

ci |�i〉, (15)

where there are two types of (N + 1)-particle short-range basis
functions. The first type consists of a set of simple ECGs,

∣∣�I
m

〉 = exp

(
− 1

2

N+1∑
i=1,j=1

ri · rjP
m
ij

)
. (16)
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For the H2 molecular target, these basis functions are similar
to the �k of Eq. (12) and are written

∣∣�I
m

〉 = exp

(
− 1

2

N+1∑
i=1,j=1

(ri − si) · (rj − sj )P m
ij

)
. (17)

Type I basis functions are generated during the stochastic
optimization of the confined system. The second type consists
of a composite functions with∣∣�II

m

〉 = exp
(− 1

2αr2
N+1

)|�0〉. (18)

Type II basis functions were found to greatly improve the
precision of phase shifts computed using the CVM [15,16]
since they help embed a close to exact description of the
target into the trial wave function. In the case of a molecular
target, some additional molecular-type positron orbitals were
also included in the type II basis. These positron orbitals are
constructed to have �g symmetry and had the form,∣∣�II

m

〉 = [
exp

(− 1
2α

(
rN+1 − s

)2)

+ exp
(− 1

2α
(
rN+1 + s

)2)]|�0〉. (19)

The two functions with continuum boundary conditions for
the positron are

|�0〉 = |�0〉, (20)

|�1〉 =
[
1 − exp

(−βr2
N+1

)]
rN+1

|�0〉, (21)

where the |�0〉 are written as linear combinations of ECGs. The
constant At in Eq. (15) is the first-order value of the scattering
length while the [1 − exp(−βr2

N+1)] prefactor ensures that the
scattering wave function is regular at the origin. The scattering
length will be relatively insensitive to the values of β provided
the basis of short-range functions is of sufficient quality.

The scattering wave function is given by the condition that
the Kohn functional A defined by

A = At − 2〈�t |H − ε0|�t 〉
= At − 2Itt (22)

is stationary. The right-hand side of the Kohn functional,
contains (H − ε0) rather than (H − E) since we are concerned
with scattering at zero energy. Making the Kohn functional
stationary with respect to the linear variational parameters in
the trial wave function leads to the linear equations:

∂A

∂At

= 1 − 2
∂Itt

∂At

, (23)

∂A

∂ci

= 0 = −2
∂Itt

∂ci

. (24)

These equations are solved to determine At and ci . The error
in At upon solving the set of n linear equations is of first
order with respect to variations in the trial wave function.
The notation Iij = 〈�i |H − ε0|�j 〉 is adopted. If either of the
subscripts is 1 or 0 then the matrix elements involve at least one
long-range basis function. Using the variational conditions,
Eq. (24), leads to a set of n simultaneous linear equations:

∂Itt

∂At
→

∂Itt

∂c2
→

...
∂Itt

∂cn
→

⎡⎢⎢⎢⎢⎣
2I11 · · · I1n + In1

I21 + I12 · · · I2n + In2

... · · · ...

In1 + I1n · · · 2Inn

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

At

c2

...

cn

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
2 − (I10 + I01)

−(I20 + I02)

−(I30 + I03)
...

−(In0 + I0n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (25)

All the scattering lengths A reported in this paper are computed
with Eq. (22) since the the error in A is of second order with
respect to variations in the trial wave function.

D. General expressions for ECG matrix elements

The matrix element evaluations require a detailed knowl-
edge of the structure of the different classes of basis functions.
The present calculations are performed under the condition
that the nucleus is infinitely heavy.

The properties of a general ECG are now introduced to be
used later. The following identities are taken from the literature
[3] without derivation. The function G is defined as

G(P,N + 1,s) = exp
(− 1

2 rT P r + sT · r
)
, (26)

where

rT P r =
N+1∑

i=1,j=1

ri · rjPij , (27)

and s is a set of translation vectors,

sT · r =
N+1∑
i=1

si · ri =
N+1∑
i=1

ri · si . (28)

The dimensionality of the P matrix is larger by one than the
dimensionality of the B matrices in Eqs. (5) and (12). The
ECGs for atomic systems do not involve the use of translation
vectors. For notational reasons, the argument of (N + 1) will
be omitted and the omission of s from the argument list means
s = 0.
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The overlap between two ECGs is

O(P ′,s′,P ,s) = 〈G(P ′,s′)|G(P,s)〉 =
(

(2π )N+1

det(P + P ′)

) 3
2

× exp

[
1

2
(s + s′)T (P + P ′)−1(s + s′)

]
.

(29)

The matrix element of the kinetic energy is

〈G(P ′,s′)|
N+1∑
i=1

∇2
i

2
|G(P,s)〉

= O(P ′,s′,P ,s)

[
3

2
Tr(P (P + P ′)−1P ′)

− [P ′(P ′ + P )−1s − P (P ′ + P )−1s′]T

× [P ′(P ′ + P )−1s − P (P ′ + P )−1s′]
]
. (30)

The kinetic energy of the scattering particle is

〈G(P ′,s′)|∇
2
N+1

2
|G(P,s)〉

= O(P ′,s′,P ,s)
3

2
Tr[P (P + P ′)−1P ′�N+1], (31)

where �N+1 is a matrix with all elements set to zero except
the (N + 1),(N + 1) element which is set to 1.

The matrix elements of a one-body operator are derived
using the identities,

V (ri) =
∫

d3u V (u)δ(ri − u), (32)

and

〈G(P ′)|δ(ri − u)|G(P )〉= O(P ′,P )

(
ci

2π

) 3
2

exp

(
−1

2
ciu

2

)
,

(33)

to give

〈G(P ′)|V (ri)|G(P )〉

= O(P ′,P )

(
ci

2π

) 3
2
∫

V (u) exp

(
−1

2
ciu

2

)
d3u, (34)

with
1

ci

= wT ,(i)(P + P ′)−1w(i). (35)

The vector w(i) is defined by w(i)
k = δik (k = 1, . . . ,N + 1). If

the operator V is a simple power of r , then

〈G(P ′)|rα
i |G(P )〉 = O(P ′,P )

2√
π

(
2

ci

) α
2



(
α + 3

2

)
,

(36)
where  is the Gamma function.

The matrix element of the two-body potential is given by

〈G(P ′)|V (ri − rj )|G(P )〉

= O(P ′,P )

(
cij

2π

) 3
2
∫

V (r) exp

(
−1

2
cij r

2

)
d3r, (37)

where

1

cij

= w̃(ij )(P + P ′)−1w(ij ). (38)

The vector w(ij ) is defined by w(ij )
k = δik − δjk (k =

1, . . . ,N + 1). The matrix element of the total potential energy
is easily obtained by summing Eq. (33) over i, j . As a
byproduct of Eq. (33), the matrix element of |ri − rj |α is
obtained since Eq. (33) can be reduced to

〈G(P ′)||ri − rj |α|G(P )〉

= O(P ′,P )
2√
π

(
2

cij

) α
2



(
α + 3

2

)
, (39)

where cij is given by Eq. (38).
It is also necessary to evaluate the potential field produced

by a spherically symmetric ECG. This is expressed as integrals
of the type,

〈G(P ′)|V (r − rj )|G(P )〉

= O(P ′,P )

(
cj

2π

) 3
2
∫

V (|r + u|) exp

(
−1

2
cj r

2

)
d3u.

(40)

The methods for evaluating and applying this integral are
discussed later.

Potential matrix elements involving shifts are more
complicated to evaluate. The fundamental formula is

〈G(P ′,s′)||ri − rj |α|G(P,s)〉

= O(P ′,s′,P ,s)

(
cij

2π

) 1
2 exp

(− 1
2cs2

)
s

×
∫ ∞

0
xα+1e− 1

2 cx2
(ecsx − e−csx) dx, (41)

where s = |w̃(ij )(P + P ′)−1(s′ + s)|. This matrix element
reduces to the form,

〈G(P ′,s′)||ri − rj |α|G(P,s)〉

= O(P ′,s′,P ,s)
1

s
erf

(√
cij

2
s

)
, (42)

when α = −1. When
√

cij

2 s is very small (<5 × 10−3) a finite
number of terms of the power series representation of the
error function are used to approximate the numerator of the
1
s
erf(

√
cij

2 s) quotient.

E. Confining potential matrix elements

For atoms, the matrix element of the confining potential
between two ECGs is

〈G(P ′)|VCP (ri)|G(P )〉 = λO(P ′,P )

√
2

π

∑
i

c
3
2
i

×
∫ ∞

R0

r2
i (ri − R0)2 exp

(
− ci

2
r2
i

)
dri, (43)
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where ci is given by Eq. (35). The one-dimensional integral
on the right-hand side is precomputed for a range of values of
the exponent. The basic integral is defined as

Int(a) = (2a)3
∫ ∞

R0

r2(r − R0)2 exp
[ − a

(
r2 − R2

0

)]
dr. (44)

This integral is done by mapping the x ∈ [−1.0,1.0] interval
to the r ∈ [R0,∞) interval using the transformation,

r = R0 + ra(1 + x)

1 − x
. (45)

The parameter R is chosen to achieve its maximum when
the integrand of Eq. (44) achieves its maximum. Gaussian
quadratures are then used to integrate xi over the [−1.0,1.0]
interval.

The integral Int(ai) is tabulated with ai+1 = 1.00011ai ,
with the value of a ranging between 2.0 × 10−4 and 2.0 × 106.
Values of Int(a) at arbitrary a are interpolated using Everett’s
formula for the logarithmically equally spaced values of a. The
level of accuracy achieved exceeds the need of the present
calculation. This algorithm was designed for the confined
variational method which requires very accurate estimates of
the total energies of the confined system [14].

For the H2 molecule, the matrix elements of the confining
potential are

〈VCP(ri)〉 = λO(P ′,s′,P ,s)

√
ci

2π

∑
i

1

si

exp

(
−1

2
cis

2
i

)
×

∫ ∞

R0

ri(ri − R0)2 exp

(
−1

2
cir

2
i

)
×(exp(cisiri) − exp(−cisiri)) dri, (46)

where si = |w̃(i)(P + P ′)−1(s′ + s)|. The terms in the sum
reduce to

ICP+ = 1

s
exp

(
−1

2
c
(
s2 + R2

0 + 2sR0
)) ∫ ∞

0
r2(r + R0)

× exp

(
−1

2
cr2 − cR0r + csr

)
dr, (47)

and

ICP− = 1

s
exp

(
−1

2
c
(
s2 + R2

0 + 2sR0
)) ∫ ∞

0
r2(r + R0)

× exp

(
−1

2
cr2 − cR0r − csr

)
dr. (48)

The basic integral to be done is of the type,∫ ∞

0
rn exp(−ar2 − br) dr

= a− n+1
2

∫ ∞

0
rn exp

(
− r2 − b√

a
r

)
dr. (49)

The integral f (n,a) = ∫ ∞
0 rn exp(−r2 − ar)dr can be eval-

uated analytically [3]. Therefore, we calculate a series of
f (2,a) and f (3,a) values while a varies from −30.0 to
4.0 × 103 with the equal interval h = 5.0 × 10−3. Then f (n,b)
are interpolated with Everett’s formula for 2 � n � 3 and
b ∈ (−30.0,4.0 × 103).

F. The matrix elements of the Kohn matrix

1. Atomic systems

With these definitions we are in a position to write down
explicit expressions for all the matrix elements of the Kohn
functional. First it is desirable to introduce the auxiliary
function for an electrically neutral atom,

VN+1(rN+1) = 〈�0|
N∑

i=1

(
1

rN+1
− 1

rN+1,i

)
|�0〉

=
∑
i=1

∑
j=1

bibj

(
(2π )N

det(Bi + Bj )

) 3
2

×
N∑

k=1

1

rN+1
erfc

(√
cijk

2
rN+1

)
, (50)

since this is common to a number of the full (H − ε0) matrix
elements. This function has the property that VN+1 → 0 as
rN+1 → 0.

The matrix element I00 = 〈�0|(H − ε0)|�0〉 involving the
two continuum functions simplifies because the total energy is
zero, giving

I00 =
∫

d3rN+1 VN+1(rN+1)

=
∑
i=1

∑
j=1

bibj

(
(2π )N

det(Bi + Bj )

) 3
2

×
N∑

k=1

∫
d3rN+1

1

rN+1
erfc

(√
cijk

2
rN+1

)

=
∑
i=1

∑
j=1

bibj

(
(2π )N

det(Bi + Bj )

) 3
2 N∑

k=1

2π

cijk

, (51)

where we have used the fact that the kinetic energy of the
scattering particle is zero. The other continuum integral I11 is

I11 = 〈�1| − 1

2
∇2

N+1|�1〉 +
∫

d�N+1

∫
drN+1

× [
1 − exp

( − βr2
N+1

)]2
VN+1(rN+1). (52)

The kinetic energy integral, T11 = 〈�1| − ∇2
N+1

2 |�1〉, is

T11 = 4π〈�0|�0〉
∫

d3rN+1 (2β2r2 − β)

× [
exp

(−βr2
N+1

) − exp
(−2βr2

N+1

)]
= 4π

√
β

[
(3/2)

(
1 − 1

2
√

2

)
+ (1/2)

2

(
1√
2

− 1

)]
.

(53)

The potential matrix element V11 is

V11 =
∑
i=1

∑
j=1

4πbibj

(
(2π )N

det(Bi + Bj )

) 3
2 N∑

k=1

∫
d3r

× [
1 − exp

(−βr2
N+1

)]2
erfc

(√
cijk

2
rN+1

)
. (54)
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The integration for V11 is done numerically using Gaussian
quadratures. The I10 = T10 + V10 matrix element has no
kinetic energy term and is written as

V10 =
∫

d�N+1

∫
drN+1 rN+1

× [
1 − exp

( − βr2
N+1

)]
VN+1(rN+1) (55)

= 4π
∑
i=1

∑
j=1

bibj

(
(2π )N

det(Bi + Bj )

) 3
2 N∑

k=1

[√
2

π cijk

−
∫

drN+1 exp
(−βr2

N+1

)
erfc

(√
cijk

2
rN+1

)]
. (56)

The potential energy term for V01 is the same as V10. However,

T01 = 〈�0| − ∇2
N+1

2 |�1〉 is finite and

I01 = 〈�1|(H − ε0)|�0〉 + 〈�0| − ∇2
N+1

2
|�1〉, (57)

where

T01 = −〈�0| 1

rN+1
β
(
1 − 2βr2

N+1

)
× exp

(−βr2
N+1

)|�0〉 = 2π. (58)

The integrals I00, I10, and I11 only need to be evaluated just
once at the beginning of any calculation.

The matrix element between two short-range functions is
evaluated trivially since it is exactly the same as that used in
bound-state calculations with the additional factor of E.

Imn = 〈�m|(H − ε0)|�n〉. (59)

Type I and II basis functions were computed with exactly the
same procedures without taking into account that the electronic
part of the type II basis functions are close to an eigenstate.

The next class of matrix elements are those involving one
continuum function and one of the short-range correlation
terms. There are two terms to consider. The first, involving �1,
is

Im1 = 〈�m| − ∇2
N+1

2

(
1

rN+1

[
1 − exp

( − βr2
N+1

)]) |�0〉

+ 〈�m| Z

r2
N+1

[
1 − exp

(−βr2
N+1

)]|�0〉

− 〈�m|
N∑

i=1

1

rN+1,i

1

rN+1

[
1− exp

(−βr2
N+1

)]|�0〉, (60)

and assumes that Hatom|�0〉 = ε0|�0〉. The kinetic integral
reduces to

Tm1 = −〈�m| β

rN+1

(
1 − 2βr2

N+1

)
exp

(−βr2
N+1

)|�0〉. (61)

Both the Gaussian factor and constant (this is treated as a
Gaussian with exponent zero) can be absorbed into |�0〉 and
the resulting matrix elements are a standard type. This is also
true for the second term. The third term in Eq. (60) requires
integrals of the type,

I = 〈G(P ′,N + 1)| 1

rN+1,i

1

rN+1

× [
1 − exp

(−βr2
N+1

)]|G(P,N )〉. (62)

One first integrates over the electron coordinates to give
an expression resembling Eq. (50). Then it is possible to
numerically integrate over the positron coordinate.

The final matrix element involving |�0〉 and |�i〉 is of a
standard type since the positron wave function in |�0〉 can be
replaced by a Gaussian with exponent zero.

2. Molecular systems

The matrix elements for molecules involve additional com-
plications that require special attention. The integration with
respect to the electrons coordinates are evaluated analytically.
The electric potential produced by the target ground state is
defined as

VN+1(rN+1) = 〈�0|
N∑

i=1

1

|rN+1 − ri | |�0〉

+ 1

|rN+1 − R/2| + 1

|rN+1 + R/2| . (63)

The first term of VN+1(rN+1) involving 1
|rN+1−rk | is in the form,

VN+1(rN+1)

=
∑
i=1

∑
j=1

bibj

(
(2π )N

det(Bi + Bj )

) 3
2 N∑

k=1

1

sk

erf

(√
cijk

2
sk

)
,

(64)

where sk = |((Bi + Bj )−1(Bisi + Bj sj ))k − rN+1| and s is
defined in Eq. (17). Its second and third terms are trivial. This
potential VN+1(rN+1) is obviously dependent on both radius
rN+1 and polar angle θ .

As in the atomic case, the matrix element I00 does not
involve a contribution from the kinetic energy, so

I00 = 〈�0|(H − ε0)|�0〉 =
∫

d3rN+1 VN+1(rN+1). (65)

The matrix elements of VN+1(rN+1) are computed numerically
using Gaussian quadratures on a two-dimensional spherical
polar integration grid. The angular integration variable is θ .
Special care is taken to remove the singularity at the nuclear
centers since these can lead to inaccuracies. The following
identity,∫

d3r
X(r)

|r − R0|
=

∫
d3r

X(r) − X(R0) exp[−β(r − R0)2]

|r − R0| + 2πX(R0)

β
,

(66)

can be used to eliminate the singularity from the numerical
quadrature. The integral over the azimuthal angle is trivial and
leads to a factor of 2π . Generally, X(r) is in the form X(r) =
rn exp(−ar2 + brz) with −2 � n � 0 and a > 0. The value
chosen for β must be large enough for X(R0) exp[−β(r −
R0)2] to approach X(R0) faster than X(r) when r → R0.
Typically, we choose β = a + 2.1.
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The kinetic energy matrix elements of I00, I10, and
I11 are computed in exactly the same way as the atomic
case. The potential energy matrix elements are evaluated
numerically.

There are two types of short-range basis functions with the
following matrix elements:

ImIInII = 〈
�II

m

∣∣HN+1

∣∣�II
n

〉
, (67)

ImIInI = 〈
�II

m

∣∣HN+1

∣∣�I
n

〉
, (68)

ImInI = 〈
�I

m

∣∣(H − ε0)
∣∣�I

n

〉
. (69)

The kinetic energy part of ImIInII is easy to compute analytically
since the positron wave function is effectively decoupled from
the electron wave function. The potential energy integrals over
VN+1(rN+1) are done numerically to avoid the double sums
over the ECGs comprising |�0〉. All the integrals involved in
ImInII and ImInI are done analytically with the usual expressions
for ECG matrix elements.

The next class of matrix elements involves one short-range
and one long-range basis function. Using Hmolec|�0〉 = ε0|�0〉
gives

ImII0 = 〈
�II

m

∣∣HN+1

∣∣�0
〉
, (70)

ImI0 = 〈
�I

m

∣∣HN+1

∣∣�0
〉
, (71)

ImII1 = 〈
�II

m

∣∣HN+1

∣∣�1
〉
, (72)

ImI1 = 〈
�I

m

∣∣HN+1

∣∣�1
〉
. (73)

The ImI0 matrix element is reduced to a standard N + 1
particle matrix element by writing the positron orbital in �0

as a Gaussian with an exponent of zero. The kinetic energy
matrix element for ImII0 is zero. The potential energy matrix
element for ImII0 is evaluated by a numerical integration over
the VN+1(rN+1) of Eq. (63).

The ImII1 potential energy matrix elements are computed
by a numerical quadrature over VN+1(rN+1). The kinetic
energy matrix elements of ImII1 were evaluated by a Gaussian
quadrature after operating with ∇2 on the positron orbital.

The ImI1 matrix elements are the most complicated. The
∇2 first operates on the positron orbital of |�1〉. Once
this is done, the resulting integrals can be recast into the
form 〈G(P ′,s′)||ri |α|G(P,s)〉, which is a type of integra-
tion similar to Eq. (42). For the positron nucleus potential
energy matrix elements of ImI1 one first integrates over
the electron coordinates. The resulting function, which is
in the form of exp(−ar2 + r · d)/|r ± R0|, where d lies
along the internuclear axis, is integrated numerically over
the positron coordinate with the singularities handled using
Eq. (66). The electron-positron matrix elements of ImI1 are
evaluated by first integrating over the electron coordinates.
The resulting numerical two-dimensional integration over the
positron coordinate is straightforward since there the Coulomb
singularity is situated at the origin of the positron coordinate
system.

G. Positron annihilation

The annihilation parameter Zeff is computed from the
scattering wave function using the identity [23–25],

Zeff = 〈�t |
N∑

i=1

δ(rN+1 − ri)|�t 〉. (74)

This expression has been written down after the spin projection
and spin averaging. In the plane-wave Born approximation, the
wave function is written as the product of the ground state and
a plane wave for the positron, and Zeff is equal to the number
of electrons.

The annihilation parameter requires the evaluation of the
matrix element of the interparticle δ function. The matrix
elements involving the continuum positron orbitals are

Z0,0 = N〈�0|�0〉 = N, (75)

Z1,0 = 〈�0|
N∑

i=1

1

ri

[
1 − exp

( − βr2
i

)]|�0〉, (76)

Z1,1 = 〈�0|
N∑

i=1

1

r2
i

[
1 − exp

(−βr2
i

)]2|�0〉. (77)

All the other classes of matrix elements involve the use of
ECGs to represent the positron. In the case of positron-atom
systems, all other matrix elements can be calculated analyt-
ically. In the case of molecules, matrix elements involving
type II basis functions and/or continuum orbitals (e.g., ZmII,nII,
ZmII,0, ZmII,1) reduce to two-dimensional integrals similar to
Eqs. (75)–(77).

All matrix elements involving at least one type I ECG are
done analytically. For example, consider ZmI,1 which involves
a type I ECG with a continuum orbital. This is

ZmI,1 = 〈
�I

m

∣∣ N∑
i=1

δ(rN+1 − ri)

(
1 − exp

( − βr2
N+1

))
rN+1

|�0〉.

(78)

Upon integrating over the positron coordinate, this can be
written

ZmI,1 =
N∑

i=1

〈
�I

m,i

∣∣ [1 − exp
(−βr2

i

)]
ri

|�0〉, (79)

where �I
m,i is an ECG obtained by converting the positron

coordinate in �I
m to that of electron i.

1. Consideration of the internuclear distance

It is quite common in previous work for Zeff to be com-
puted at an internuclear separation of R = 1.4.0a0 since this
represents the minimum in the H2 potential curve. However,
this does not take the shape of the H2 nuclear wave function
into consideration and the preferred internuclear distance for
a comparison with experiment is at the mean distance of the
H2 vibrational wave function.

In the Born-Oppenheimer approximation the scattering
length and Zeff can be treated as parametric functions of R

[i.e., Zeff = Zeff(R)]. The actual values of Zeff to be compared
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with experiment, should be

〈Zeff〉 =
∫

|�vib(R)|2Zeff(R) dR. (80)

Now expand Zeff(R) in a Taylor series about the mean radius,
R0 of the H2 vibrational ground state, that is,

Zeff(R) ≈ Zeff(R0) + (R − R0)

(
dZeff

dR

)
R=R0

+ · · · . (81)

Substituting this expression into Eq. (80). The integral to first-
order variations about R0 reduces to

〈Zeff〉 ≈ Zeff(R0)+
(

dZeff

dR

)
R=R0

∫
|�vib(R)|2(R − R0) dR.

(82)
The remaining integral is zero, and therefore 〈Zeff〉 can be
equated with its parametric value at the mean internuclear
radius.

III. THE SCATTERING OF POSITRONS
FROM ATOMIC HYDROGEN

Calculations on the positron-hydrogen system can be
used to validate the present methodologies since there have
been a number of sophisticated calculations of this system
[14,27–29]. The inner basis used in the variational calculations
came from a CVM calculation. The parameters for the
confining potential were λ = 1.3589904 × 10−4 and R0 =
18.0 a0. The inner basis consisted of a total of 400 ECGs
and the number of states for which the energy was optimized
was two.

The Kohn variational calculation used these 400 inner basis
functions plus another 35 type II basis functions formed by
multiplying the H ground state by a simple Gaussian for the
positron. The positron Gaussians were generated by the rule
αi = α1/T i−1 where α1 was 526.684 and T = 1.435. The
smallest exponent of this set was 2.44673 × 10−3.

The hydrogen ground state was represented by a set of
energy-optimized ECGs (in this case they collapse to ordinary
Gaussians). Table I lists the energy of the hydrogen ground
state as a function of the number of Gaussians. The cutoff
parameter β in |�1〉 was 2.10 a−2

0 .
Table II lists the scattering length and Zeff for different

calculations using ECG expansions of varying length to
represent the confined e+H system and the H ground state.
The relatively small degree of variation in the scattering

TABLE I. Convergence of the energy (in a.u.) for H and He as a
function of the dimensionality of the numbers of ECG basis (N ).

H He

N E N E

10 −0.4999993182 50 −2.903722945661
15 −0.4999999723951 60 −2.903723953521
20 −0.4999999994272 80 −2.903724303851
24 −0.4999999999151 90 −2.903724330121
26 −0.4999999999721 100 −2.903724348174

120 −2.903724363908
Exact −0.50000000000000 Exact [26] −2.903724377034

TABLE II. The convergence of the scattering length and zero
energy annihilation parameter as a function of the number of ECGs
in the representation of the hydrogen ground state and in the energy
optimized inner basis. Calculations by other groups are also listed.

NH Ninner A Zeff

10 435 −2.0522 8.8649
15 435 −2.0523 8.8651
20 235 −2.0368 8.8288
20 285 −2.0442 8.8041
20 335 −2.0412 8.8366
20 385 −2.0463 8.8624
20 435 −2.0525 8.8651
CI-Kohn [29] −2.088 8.565
SVM-stabilization [14] −2.094 8.75
Variational [27,28] −2.104 8.868

length when the dimension of the hydrogen ground state was
increased from 10 to 20 indicates the scattering parameters are
insensitive to the approximate nature of the hydrogen wave
function at the current level of precision.

The scattering length function did not decrease monoton-
ically with increasing basis set size. No rigorous principle
applies here since the wave function with smaller dimension
basis sets are not subsets of the larger dimension basis sets.

The scattering length would seem to be about 2% different
from the best estimate. This is not unexpected since no
basis functions are included to represent the impact of target
polarization on the positron at long range. Such functions are
known to be important in getting an accurate value for the
scattering length [27,30]. This problem did not impact the
SVM-stabilization estimate of the scattering length (using a
similar short-range basis) since the long-range polarization
potential was included when fitting the wave function and
computing phase shifts [14].

No such discrepancy exists for Zeff . The ECG basis set does
a very good job of describing the short-range correlations that
are so important in the annihilation process.

IV. THE SCATTERING OF POSITRONS
FROM ATOMIC HELIUM

Some of the best calculations of low-energy positron
scattering from helium come from the Kohn variational calcu-
lations of Humberston and coworkers at the University College
London (UCL) [31–33]. Another high-quality calculation was
the SVM-stabilization calculation [14] which gave a scattering
length and Zeff that were compatible with the UCL values.

The inner basis used in the variational calculations came
from a calculation using the CVM. The parameters for the con-
fining potential were λ = 1.175520 × 10−4 and R0 = 17.0 a0.
The inner basis consisted of a total of 1600 ECGs and the
number of states used in the energy optimization was two.
The type II basis functions were constructed by multiplying
an ECG representation of the He ground state with an even-
tempered Gaussian basis set. The positron Gaussians were
generated by the rule αi = α1/T i−1 where α1 was 526.684 and
T = 1.435. Table I lists the energy of the helium ground state

022711-8



STOCHASTIC VARIATIONAL CALCULATION OF ZERO- . . . PHYSICAL REVIEW A 83, 022711 (2011)

TABLE III. The convergence of the scattering length and zero
energy annihilation parameter as a function of the number of ECGs
in the representation of the helium ground state and in the energy
optimized inner basis. Calculations by other groups are also listed.

NHe Ninner A Zeff

60 1035 −0.449522 3.975779
80 1035 −0.449541 3.975797
100 1035 −0.449543 3.975800
80 1235 −0.451354 3.980779
80 1435 −0.451929 3.988951
80 1635 −0.452138 3.991765
Variational: UCL [32] −0.50 3.932
SVM-stabilization [14] −0.474 3.955
Experiment, k ≈ 0.045 a−1

0 [40] 3.89 ± 0.04
Experiment, k ≈ 0.045 a−1

0 [41] 3.94 ± 0.02
Experiment, k ≈ 0.045 a−1

0 [42] 3.86 ± 0.04

as a function of the number of ECGs. The cutoff parameter β

in |�1〉 was 2.10 a−2
0 .

Table III lists the scattering length and Zeff for different
calculations using ECG expansions of varying length to
represent the confined e+He system and the He ground state.
The impacts of using approximate target wave functions in
variational calculations of positron scattering from He or
H2 has been a topic of constant concern [31,34–39] over a
long period of time. One typically has to compromise either
the accuracy of the target wave function or the accuracy
of the scattering wave function. This issue did not manifest
itself the present calculations. The variation in the scattering
length when the dimension of the He basis was increased
from 60 to 100 was only 2 × 10−6 a0. The advantage of
the ECG basis is that it is straightforward to generate target
wave functions of sufficient precision to effectively eliminate
errors associated with the use of an approximate wave
function.

The present scattering length of −0.452 a0 is slightly less
negative than the stabilization-SVM estimate −0.474 a0 and
the previous Kohn variational estimate by the UCL group
of −0.50 a0. There is some uncertainty attached to the UCL
scattering length since this was not directly computed by the
Kohn group. Rather, the low-energy k = 0.1 and k = 0.2 a−1

0
phase shifts were used to tune a model potential which was
then used to determine the scattering length.

The current value of Zeff is about 1%–2% larger than
previous calculations. The value of Zeff tended to increase
in size as the dimension of the short-range basis increased in
size. This tendency is something that also happens to positron
annihilation rates in SVM calculations of exotic positron
binding atoms and ions. The UCL Kohn variational Zeff was
taken from a polynomial fit to calculated values. It should
be noted that this polynomial fit had a term linear in k [32],
but effective range theory suggests that such a term is not
possible [43].

Comparison with experiment relies on an estimate of
the change in Zeff with k as the momentum is increased
to 0.045 a−1

0 . The semiempirical method of Mitroy and
Ivanov [44] was applied and this gave an estimate of 3.942
at this momentum. The contribution to Zeff due to p-wave

scattering using the method of [44] was only 0.0050. The
present calculation of Zeff is compatible with the experimental
values given the spread in experiment [40–42].

V. THE SCATTERING OF POSITRONS FROM
MOLECULAR HYDROGEN

There have been a number of calculations of low-energy
e+-H2 scattering and annihilation [17,39,50–54]. At present,
all previous calculations with one exception [17] significantly
underestimate the experimental low-energy annihilation cross
section. The calculation by Zhang et al. [17] can be regarded
as a direct precursor to the present work. One of the more
startling aspects of the Zhang et al. calculation was the
prediction of a virtual state with a scattering length of −13 a0

at an internuclear separation of R ≈ 3.0 a0. Prior to this, the
most sophisticated calculations were the Kohn variational
calculations performed by Armour and colleagues at the
University of Nottingham (UN) [39,51,54,55].

A. The target wave function

Table IV lists the properties of the H2 ground-state wave
function as a function of internuclear distance. The dimension
of the ECG basis used in these calculations was 120. In no
instance are the differences between the present ground-state
energies and the best correlated energies larger than 10−5 a.u.
Comparisons are also made with other calculations of the
quadrupole moment.

A basis of dimension of 120 gave an energy of
−1.17447554 a.u. at R = 1.40 a0. The best H2 energy at an
internuclear separation of 1.40 a0 is −1.17447571 a.u. [48].
Our wave function recovers 99.996% of the correlation energy
of 0.04084 a.u. [56].

A noticeable feature is the maxima in both the quadrupole
moment and the polarizability for R between 3 and 4 a0. The
table lists the scalar (αd ) and tensor (γd ) polarizabilities. The
polarizability at an angle of θ with respect to the internuclear
axis is

α(θ ) = αd + γdP2(cos θ ), (83)

where P2 is a Legendre polynomial. The polarizability is
tabulated for reasons that will become evident later.

B. The static model

In the static model, the wave function for the H2 ground state
is treated as inert and the trial wave function consists of simple
products of positron orbitals multiplying the H2 ground-state
wave function.

There were two classes of type II basis functions used
to represent the interaction of the positron with the H2

target. The first were functions given by Eq. (18). The
αk were an even-tempered set given by the identity αj =
α1/T j−1 with α1 = 526.684 and T = 1.435. A total of
35 functions of this type were added to interaction region
basis. However, an additional 15 molecular type II func-
tions given by Eq. (19) were included. The αk were an
even-tempered set given by the identity αj = α1/T j−1 with
α1 = 56.6685 and T = 1.435. The vector s was on the
internuclear axis and for R = 1.40 a0 was set to lie 0.68 a0
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TABLE IV. Energies, quadrupole moments and polarizabilities of the H2 molecule at different inter-nuclear separations. The dimension of
the ECG basis used in the present SVM calculations was 120.

R E ESVM Q [45] QSVM αd [46,47] γd [46]

1.00 −1.12453968 [18] −1.12453940 0.5130798 0.51269 3.5900 0.7468
1.20 −1.16493520 [18] −1.16493504 0.7060458 0.70547 4.3448 1.2026
1.40 −1.17447571 [48] −1.17447554 0.9136887 0.91291 5.1786 1.8028
1.45 −1.17405704 [18] −1.17405678 0.96612 5.3981 1.9763
1.60 −1.16858334 [18] −1.16858314 1.1280073 1.12699 6.0786 2.5531
1.80 −1.15506870 [18] −1.15506841 1.3402226 1.33893 7.0255 3.4425
2.00 −1.13813292 [18] −1.13813261 1.5408174 1.53924 7.9954 4.4535
2.20 −1.12013208 [18] −1.12013157 1.7197200 1.71795 8.9523 5.5280
2.40 −1.10242257 [18] −1.10242202 1.8645725 1.86473 9.8568 6.6000
2.60 −1.08579120 [18] −1.08579040 1.9702597 1.97042 10.6649 7.5874
3.00 −1.05732624 [18] −1.05732583 2.0300798 2.02975 11.8263 8.9202
3.40 −1.03607537 [18] −1.03607484 1.8776539 1.87755 12.2281 9.0159
3.80 −1.02154973 [49] 11.9599 7.9345
4.00 −1.01639020 [49] −1.01638972 1.3812208 1.38124 11.6697 7.1230
5.00 −1.00378563 [49] 9.4183 2.5650
6.00 −1.00083568 [49] −1.00083510 0.19032 8.9348 1.1248
7.00 −1.00019787 [49] 8.7758 0.5683
7.20 −1.00015095 [49] −1.00015053 0.045953

away from the internuclear center. This vector was usually
chosen to be a distance of (R/2 − 0.02a0) from the center of
the internuclear axis for other internuclear separations.

There were no extensive optimizations for the static model
calculations and the accuracy of the scattering length and Zeff

can be estimated as being of the order of 0.1%–0.5%. The
scattering length at R = 1.40 a0 was about 0.6855 a0 while
Zeff was 0.624.

C. Full variational calculations

The CVM calculations to construct the type I inner basis op-
timized the energies of the two lowest eigenstates. The param-
eters for the confining potential were λ = 1.175520 × 10−4

and R0 = 17.0 a0.
Table V shows the convergence of the scattering length and

Zeff for various size basis sets. The first issue to be addressed is
whether the results showed any significant change with respect
to the variation of the H2 target wave function itself. The
changes in Zeff when the dimension of the H2 wave function
was increased from 60 to 120 were restricted to the fifth
digit. The immediate conclusion is that it is safe to use H2

wave functions of dimension 100 and this was mostly done
in Table VI where the scattering parameters are studied as a
function of internuclear separation. The difference between
the first-order scattering length (i.e., At ) and A for the biggest
calculation using the basis of dimension 1049 was about 0.5%
with At = −2.554 a0.

The variation of the scattering parameters with respect
to the increase in the inner basis dimension is also listed
in Table V. There were typically 50 type II basis functions
for each calculation. The dimension of the largest calculation
included 999 type I inner basis functions. Some of the time
the stochastic optimization resulted in basis functions with
the large exponents exceeding 1000, multiplying the positron
coordinate in Eq. (17). This led to severe inaccuracies in the

evaluation of the ImI1 matrix element. The simplest way to
solve the problem was to selectively omit basis functions
with excessively large positron exponents from the Kohn
calculation.

The current Kohn variational scattering length is compatible
with the estimates of our previous CVM-stabilization calcula-
tion [17]. The largest calculation at R = 1.40 a0 gave a value
of Zeff of 14.60. Experiments give values of 14.7(2) [58],
14.61(14) [59], and 16.02(08) [60]. It has been suggested that
the variation between the different values is related to whether
the positrons are thermalized when the annihilation spectrum is
measured [60]. Even though it is common to report scattering
parameters at R = 1.40 a0, and this was done in Table V,
comparison with experiment is best done by evaluating Zeff at
the mean internuclear separation of the H2 ground vibrational
state, namely 1.4487 a0 [10]. The present calculation gives
Zeff = 15.70 at R = 1.45 a0. This favors the slightly larger
experimental Zeff of 16.02(08) [60].

The Kohn calculations give the zero-energy Zeff and direct
comparison with experiment requires an estimate of the
annihilation at thermal energies. A rough estimate of the
thermal energy Zeff can be made by using an approximate
formula [61], for example,

Zeff(k) ≈ Zeff(k = 0)

1 + (Ascatk)2
. (84)

Application of this result with a scattering length of −2.7 a0

suggests a 1.5% reduction in the annihilation parameter at
thermal energies to a value of 15.5.

Apart from the precursor to the present calculation [17],
the most sophisticated calculations by another group are the
Kohn variational calculations by Armour and colleagues at
the University of Nottingham (UN) [39,51,54,55]. Table V
gives some representative results from calculations by the
UN group. Kohn calculations can be performed within two
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TABLE V. The convergence of the scattering length and zero energy annihilation parameter for positron scattering from the H2 molecule
in the fixed nuclei approximation at an inter-nuclear separation of 1.40 a0. The number of ECGs in the representation of the H2 state and in the
energy optimized inner basis are listed. Results of calculations by other groups are included.

NH2 Ninner A Zeff

60 850 −2.55590 14.6385
80 850 −2.55591 14.6399
100 850 −2.55593 14.6403
120 850 −2.55596 14.6407
100 450 −2.4547 13.1041
100 650 −2.5427 14.3709
100 850 −2.5593 14.6407
100 1049 −2.5648 14.6065
CVM/stabilization: [17] −2.56 14.8
Kohn: Method of models, (1986) [51] −2.2 10.3
Kohn: k = 0.04 a−1

0 [39,55] ≈ 9.6
Kohn: Method of models, k = 0.04 a−1

0 [39,55] ≈ 12.6
Kohn: Method of models, k = 0.01 a−1

0 [57] −2.56 ≈ 13.5

different theoretical frameworks (i.e., one set comes from a
standard Kohn calculation and the other is computed within
the framework of the method of models). Table V shows
significant differences between recent calculations by the UN
group [39,55] using these two methodologies. For example,
the strong variation of Zeff with R at R = 1.4 a0 is absent
in the UN Kohn variation without the method of models [55].
The UN method of models Zeff does increase with increasing
R [55], but the rate of increase is less than half the size of
the present Zeff(R). For a variety of reasons, one being the
differences between calculations with and without using the
method of models, there had been some uncertainty about
the reliability of calculations undertaken using the method of
models [55]. However, examination of variationally optimized
results taken from the thesis of Cooper [62] reveals a scattering
length of −2.56 a0 and a Zeff of 13.5 that are quite close to the
present Kohn values. It appears that the UN method of models
calculations were starting to give a reasonable description of
the scattering dynamics although further increases in the size
of this calculation are desirable.

The R = 1.45 a0 scattering length of −2.709 a0 implies
a zero-energy cross section of σ (0) ≈ 29.3 πa2

0 . A recent
experiment by the Trento group [63] had a cross section of
8.3 πa2

0 at k ≈ 0.086 a−1
0 . The very small experimental cross

section is incompatible with the present zero-energy cross
section. Improving the quality of the Kohn calculation would
only lead to the magnitude of the scattering length increasing,
and thus result in even larger discrepancies with the Trento
cross section [63]. One important class of functions would
be those that include the effect of target polarization on the
positron at large distances from the target [64].

D. Variation with internuclear distance

One of the more interesting aspects of the zero-energy
collision dynamics is the variation in the scattering dynamics
as a function of internuclear separation. Table VI shows the
static model exhibiting relatively little variation with R. Most
of the values of the full calculation in Table VI lie within 1%–
2% of numerical values computed with the CVM-stabilization

TABLE VI. The scattering length A and Zeff for the static model
and the full variational calculation for zero energy e+-H2 scattering.
The number of short-range basis functions for the full calculation was
about 850 (or more) for almost all of the values reported.

static model full calculation

R A Zeff As Zeff

0.00 0.4284 0.6860
0.20 0.4476 0.6761
0.40 0.4854 0.6599
0.60 0.5283 0.6457 −0.876 5.754
0.80 0.5715 0.6352
1.00 0.6127 0.6283 −1.522 8.798
1.10 0.6344 0.6224
1.20 0.6510 0.6248 −1.982 11.23
1.30 0.6688 0.6241 −2.271 12.84
1.40 0.6855 0.6242 −2.565 14.61
1.45 0.6943 0.6240 −2.709 15.70
1.50 0.7015 0.6247 −2.900 16.81
1.60 0.7165 0.6259 −3.233 19.41
1.80 0.7434 0.6295 −4.102 25.91
2.00 0.7663 0.6346 −5.202 35.24
2.20 0.7899 0.6370 −6.392 47.63
2.40 0.8050 0.6466 −7.867 65.48
2.60 0.8211 0.6525
2.80 0.8365 0.6577 −10.97 111.6
3.00 0.8517 0.6617 −12.35 134.4
3.20 0.8674 0.6645 −13.09 150.1
3.40 0.8838 0.6660 −13.18 151.3
3.60 0.9009 0.6665 −12.79 142.2
4.00 0.9471 0.6601 −10.72 107.8
4.40 0.9677 0.6659 −8.911 76.82
4.80 0.9951 0.6673 −7.522 57.77
5.20 1.0172 0.6703 −6.616 46.42
5.60 1.0346 0.6748 −5.996 40.17
6.00 1.0482 0.6799 −5.602 35.04
6.40 1.0589 0.6853
6.80 1.0686 0.6925
7.20 1.0740 0.6960
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approach [17]. At R = 0 a0, the values of A and Zeff should be
the same as those of the static model calculation for helium, and
this is indeed the case. The Zeff decreases as the internuclear
distance increases until R = 1.3 a0. Further increase in R leads
to Zeff increasing. But the overall variation in Zeff as the
internuclear distance changes from 0 to 7.2 a0 was about 10%.
The R dependence of A exhibits more variation, with a 250%
increase occurring from R = 0 to R = 7.2 a0.

The second-order derivative d2Zeff
dR2 is positive near the mean

internuclear nuclear distance of 1.45 a0 which means that
second-order correction to Eq. (82) would result in 〈Zeff〉
increasing. The second-order correction to Eq. (82) would be

δ〈Zeff〉 ≈
(

1

2

d2Zeff

dR2

)
R=R0

∫
|�vib(R)|2(R − R0)2dR

≈
(

1

2

d2Zeff

dR2

)
R=R0

(〈R2〉 − R2
0

)
. (85)

Using the data of Table VI we estimate a value of 40 a−2
0 for

the second derivative. Using 〈R〉 = 1.448738 a0 and 〈R2〉 =
2.127046 a2

0 [10] for the H2 ground-state vibrational wave
function results in δ〈Zeff〉 ≈ 0.6. This corresponds to an
increase of 4% and is largely due to the large size of the second
derivative of Zeff(R). This suggests a zero-energy 〈Zeff〉 for the
ground-state vibrational wave function of about 16.3. Doing
the same calculation, but correcting for the influence of finite
energy using Eq. (84) leads to a correction of δ〈Zeff〉 ≈ 0.5.
This further suggests that the 〈Zeff〉 for the ground vibrational
state at thermal energies should be 16.0. The earlier analysis
should be regarded as an approximate analysis aimed at getting
reasonable estimates of corrections due to finite energies and
internuclear separation effects. Calculations by the UN group
using a Morse function for the H2 vibrational wave function
give 〈Zeff〉 = 13.5 [55] for a trial wave function that gives the
Zeff = 12.6 at R = 1.4 a0.

The mean internuclear distance for the deuterium molecule
D2 is 〈R〉 = 1.434562 a0 [65]. This is 0.014 a0 smaller than
that of H2. A quick linear interpolation suggests that the D2

Zeff should be about 0.3 smaller than the H2 Zeff . At present,
the available experimental measurements find no discernible
difference between the H2 and D2 Zeff [66].

The behavior of the static calculation scattering length
invalidates a suggestion originally put forward to explain the
existence of a virtual state at R ≈ 3.4 a0 [17]. The critical
value for a point quadrupole to bind a positron (or electron) is
2.4 ea2

0 [67]. This is only 20% larger than the H2 quadrupole
moment at R = 3.0 a0. So it had been suggested that the virtual
state owed its existence to the quadrupole moment of the H2

ground state [17]. This is clearly not supported by the existing
calculations in the static model.

At R = 0, the static model results are very close to the
scattering length (0.425) and Zeff (0.689) obtained by a direct
numerical integration of the Schrödinger equation for positron
scattering from the helium ground state. The zero-energy Zeff

and scattering length for the hydrogen ground state are 0.406
and 0.582 a0, respectively.

The full variational Kohn scattering length tabulated in
Table VI varies surprisingly quickly with R. The e+-H2

interaction is quite attractive with values lower than −10 a0

occurring for R between 2.8 and 4.0 a0. The maximum in
the polarizability at 3.4 a0 (Table IV) seems to offer the more
plausible explanation for the existence of the virtual state.
Previous calculations with a model alkali-metal atom revealed
binding for a critical polarizability of 23.5 a3

0 [68] and the
angle-averaged polarizability at R = 3.4 a0, 12.23 a3

0 is more
than twice as large as the H2 polarizability at R = 1.45 a0,
namely 5.40 a3

0 . The peak in A near R ≈ 3.3 a0 also leads to
a peak in Zeff . This is expected since large scattering lengths
inevitably lead to a large threshold Zeff [44,61,69].

The effective scattering length for the H2 vibrational ground
state can be estimated using a procedure similar to that used for
Zeff . The second-order derivative, d2A

dR2 is about −1.95 at R =
1.45 a0. The estimated correction to the scattering length of
−0.027 a0 is about 1% giving a value of −2.736. The increase
in the threshold cross section would be about 2%.

VI. CONCLUSIONS

The scattering lengths for positron scattering from H, He
and the H2 molecule have been determined with a Kohn
variational calculation based on the usage of ECGs to represent
the wave function in the interaction region. The interaction
region basis was optimized by putting a confining potential
around the target and treating the positron-target system as a
bound state. One notable departure from previous variational
calculations is that problems relating to the use of approximate
target wave functions [31,34–39] are simply not an issue.

The main deficiency in the determination of the scattering
length is probably the lack of basis functions to specifically
model the long distance polarization interaction between the
positron and the target. This results in the present scattering
lengths for H and He overestimating the best estimates of the
scattering length by about 0.05 a0. Such an omission is not that
important at present for the positron-H2 system as it is the one
of first treatments of this system with an unrestricted treatment
of the positron-electron interactions. The present results use
essentially the same interaction region wave functions as our
previous work [17] (but with some improvements resulting
from increased computation), but they have a firmer foundation
since they were obtained using a method well known in
scattering theory. Ad hoc procedures were used in Ref. [17] to
extract scattering parameters from the interaction region wave
functions.

The obvious improvements that could be made would be
a better description of the long-range polarization interaction
and the generalization of the current Kohn method to finite
energies. There are no fundamental limitations to accomplish-
ing either of these. Polarization interactions could be included
by adding to the basis a polarized pseudostate (represented as
a linear combination of ECGs) multiplying an even-tempered
set of positron orbitals. There is also no impediment to
performing finite energy calculations since many of the crucial
integrals involving the positron projectile could be performed
numerically after integrating over electron coordinates.

The extension of the present Kohn methodology to electron
scattering is at yet uncertain. The exchange interaction between
the target and projectile in this case would result in a new class
of multidimensional integrals that need to be evaluated.
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