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In this work we investigate 1 + 2 reactions within the framework of the hyperspherical adiabatic expansion
method. With this aim two integral relations, derived from the Kohn variational principle, are used. A detailed
derivation of these relations is shown. The expressions derived are general, not restricted to relative s partial
waves, and with applicability in multichannel reactions. The convergence of the K matrix in terms of the adiabatic
potentials is investigated. Together with a simple model case used as a test for the method, we show results for
the collision of a 4He atom on a 4He2 dimer (only the elastic channel open), and for collisions involving a 6Li
and two 4He atoms (two channels open).
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I. INTRODUCTION

Calculation of phase shifts (or the K matrix) for a given
reaction is often complicated by the necessity of knowing
the wave function of the full system at large distances.
Extraction of the phase shifts can be in principle achieved
by comparison of the large-distance part of the wave function
with its known analytic asymptotic expression. For processes
involving only two particles (1 + 1 collisions) this procedure
can be easily implemented, and therefore the phase shifts
can be computed. However, the more particles are involved
in the reaction the more difficult is the calculation of an
accurate wave function at large distances, or at least the more
expensive it is from the computational point of view. Therefore,
when the number of particles is increased the extraction
of the phase shifts becomes progressively more and more
complicated. In nuclear physics, collisions involving three
and four nucleons have been extensively studied in solving the
Faddeev (A = 3) and Faddeev-Yakubovsky (A = 4) equations
[1,2], and the hyperspherical harmonic (HH) expansion in
conjunction with the Kohn variational principle (KVP) [3,4].
These methods have been tested through different benchmarks
[5,6]. When the interaction between the particles presents a
hard core, as in the case of the atom-atom interaction, a direct
application of these techniques could be problematic. The
Faddeev equation has been modified to deal with a hard-core
repulsion [7] and, in the case of the HH expansion, a correlation
factor has been included [8]. In addition the hyperspherical
adiabatic (HA) expansion method has proven to be a very
efficient tool [9].

In the case of atom-atom interactions, the HA expansion
shows a particularly fast range of convergence in the
description of bound states, as has been shown, for example,
in Ref. [10] for the description of rare gas trimers. In recent
years there was a systematic use of the HA expansion in
the description of three-atom systems in the ultracold regime

(see, for example, Refs. [11,12] and references therein).
These applications raise the question about the convergence
properties of the HA method for scattering states, in particular
in the description of a 1 + 2 collision. In principle the HA
expansion could be applied to describe such a process since it
leads to a clean distinction between all the possible incoming
and outgoing channels. However, as was recently shown,
the convergence of the expansion slows down significantly
in applications directed to describing low-energy scattering
states [13]. This problem appears at the moment of application
of the proper boundary conditions to the hyperradial functions.
In fact, in the HA expansion, the hyperradial functions
are obtained by solving an infinite system of equations
in the hyperradial variable ρ, and the convergence of the
expansion is studied by increasing the number of equations
considered after truncation of the system. For describing a
1 + 2 collision, hyperradial functions are obtained requiring
a hyperradial plane-wave behavior as ρ → ∞. However, in
such a process, this plane-wave behavior refers to the motion
of the incident particle relative to the center of mass of
the two-body bound system. The equivalence between the
two descriptions happens at ρ ≈ ∞ or, in other words, by
inclusion of a very large number of hyperradial functions in
the solutions. This is the cause of the extremely slow observed
convergence.

In Ref. [14] the authors introduced a general method to
compute the phase shift from two integral relations that involve
only the internal part of the wave function. This method is
a generalization to more than two particles of the integral
relations given in [15,16] and it is derived from the KVP. In
the case of the HA expansion, in Ref. [14] it was shown that
for 1 + 2 reactions, the use of the integral relations allows
determination of the phase shift with a pattern of convergence
similar to that in a bound state calculation. Therefore, thanks to
the integral relations, the hyperspherical adiabatic expansion
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method appears as a powerful tool to describe scattering
processes also.

The purpose of this work is to show in detail the use of
the integral relations in conjunction with the HA expansion
method to describe scattering states. In Ref. [14] the particular
case of a 1 + 2 reaction with only the elastic channel open,
and with only relative s waves involved, was considered. The
applicability of the method is not limited to this particular
case. In this work we shall consider processes involving
� � 0 relative angular momenta, and we shall derive the
integral relations for the general case in which more than
one channel is open. The only limitation is that we shall
restrict ourselves to energies below the breakup threshold.
Above it, infinitely many adiabatic terms are in principle
needed to describe the breakup channel, and although the same
procedure could be used to describe it, we leave this particular
case for a more careful investigation in a forthcoming
work.

A different aspect is the applicability of the method to
describe 1 + N reactions with A = 1 + N > 3. In this case,
the main difficulty is to obtain the N + 1 wave function in the
internal region and the N -body bound state function describing
the asymptotic configuration. With this information, the
integral relations apply in exactly the same way as for the
1 + 2 case, but with the bound dimer wave function replaced
by by the corresponding bound N -body wave function. The
extension of the adiabatic expansion to describe more than
three particles is possible. The dependence of the hyperangular
part consists in (3N − 4) hyperangles and, in the case of
systems of identical particles, the problem of constructing
an A-body wave function with the proper statistic has to be
faced. The first applications of the HA expansion to describe a
four-body system already appeared [17]. In this work, however,
we restrict the discussion to 1 + 2 reactions.

In Sec. II we describe the details of the formalism, first
describing the adiabatic expansion in a multichannel reaction,
and second showing how the corresponding K matrix (or
equivalently theS matrix) can be obtained from the asymptotic
wave function. In Sec. III the integral relations for the same
multichannel reaction are derived. They permit us to extract
the K (or S) matrix, requiring only knowledge of the internal
part of the wave function. The results are shown in Sec. IV.
In Sec. IV A we consider a test case with only the elastic
channel open. We investigate a three-body process which is
fully equivalent to a two-body reaction, for which the phase
shifts can be easily computed. This can then be used to test
the accuracy of the integral relations method as well as the
convergence pattern in the adiabatic expansion when � > 0
partial waves are involved. In Sec. IV B we investigate the
elastic collision between a 4He atom and the weakly bound
(4He)2 dimer. Finally, in Sec. IV C we apply the method to
a collision involving a 6Li and two 4He atoms. In particular,
we shall consider incident energies such that the two possi-
ble incoming and outgoing channels, (4He,(4He−6Li)) and
(6Li,(4He)2), are both open. The summary and the conclusions
are given in Sec. V. In Appendix A we show the derivation of
the Kohn variational principle for a multichannel process and,
finally, in Appendix B we have collected some technical details
of the use of the integral relations when projected two-body
potentials are employed.

II. FORMALISM

A. General features of the HA expansion

In this work we consider a process where a particle hits a
bound two-body system. We assume the incident energy to be
below the breakup threshold for the three particles. This means
that the total three-body energy E, which is the sum of the
incident energy k2/2µ > 0 (µ being the reduced mass between
the incident particle and the dimer) and the two-body binding
energy E2b, is negative. In this way only elastic, inelastic, and
rearrangement processes are possible.

The reaction under study is therefore a three-body process,
which, as usual, can be described through the x and y Jacobi
coordinates:

xi =
√

mjmk

m(mj + mk)
(rj − rk),

(1)

yi =
√

mi(mj + mk)

m(mi + mj + mk)

(
r i − mj rj + mk rk

mj + mk

)
,

where mi and r i are the mass and coordinate of particle i

and m is an arbitrary normalization mass. From the Jacobi
coordinates one can construct the hyperspherical coordinates,
which contain a radial one, the so-called hyperradius ρ (ρ2 =√

x2
i + y2

i ), and the five hyperangles � ([�] ≡ [αi,�x,�y]).
The hyperangle αi is defined as tan αi = xi/yi , and �x and
�y give the directions of xi and yi . The five hyperangles
depend on the particular ordering of the particles chosen in
the definition of the Jacobi variables. Three different sets
are possible by cyclic permutations of the indices i,j,k.
In the following the Jacobi coordinates x and y and the
corresponding hyperangular coordinates are given using the
natural ordering of the particles i,j,k ≡ 1,2,3.

Following Ref. [9], we give a brief description of the
HA method. In hyperspherical coordinates the Hamiltonian
operator Ĥ takes the form

Ĥ = − h̄2

2m
T̂ρ + h̄2

2mρ2
Ĝ2 + V (ρ,�) = − h̄2

2m
T̂ρ + Ĥ�, (2)

where T̂ρ = ∂2

∂ρ2 + 5
ρ

∂
∂ρ

is the hyperradial kinetic energy opera-

tor, Ĝ2 is the grand angular operator, and V (ρ,�) = ∑
i Vi(xi)

is the potential energy (i runs over the three Jacobi systems).
The adiabatic expansion is based on the assumption that,

in description of a particular process, the hyperangles vary
much faster than the hyperradius ρ. Under this assumption it
is possible to solve the Schrödinger equation (Ĥ − E)� = 0
in two steps. In the first one the angular part is solved for a set
of fixed values of ρ. This amounts to solving the eigenvalue
problem

Ĥ��n(ρ,�) = h̄2

2m

1

ρ2
λn(ρ)�n(ρ,�) (3)

for each ρ, which is treated as a parameter.
The angular functions {�n(ρ,�)} are used to construct the

HA basis in which the basis elements form an orthonormal
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basis for each value of ρ. The full three-body wave function is
then expanded as

�(x, y) = 1

ρ5/2

∞∑
n=1

fn(ρ)�n(ρ,�). (4)

Obviously the summation above has to be truncated, and
only a finite number nA of adiabatic terms are included in
the calculation. For simplicity we are omitting in �, fn, and
�n the quantum numbers giving the total three-body angular
momentum and its projection.

In a second step, the radial wave functions fn(ρ) in the
expansion of Eq. (4) are obtained after solving the following
coupled set of radial equations:

nA∑
n′=1

(Ĥnn′ − Eδnn′ )fn′ (ρ) = 0, (5)

where the operator Ĥnn′ acts on the radial functions and takes
the form

Ĥnn(ρ) = h̄2

2m

[
− d2

dρ2
− Qnn(ρ) + 1

ρ2

(
λn(ρ) + 15

4

)]
(6)

for the diagonal terms, and

Ĥnn′ = − h̄2

2m

(
2Pnn′ (ρ)

d

dρ
+ Qnn′(ρ)

)
(7)

when n �= n′.
The coupling terms Pnn′ and Qnn′ in the expressions above

follow from the dependence on ρ of the HA basis. Their
explicit form is

Pnn′ (ρ) =
〈
�n(ρ,�)

∣∣∣∣ ∂

∂ρ

∣∣∣∣�n′ (ρ,�)

〉
�

,

(8)

Qnn′(ρ) =
〈
�n(ρ,�)

∣∣∣∣ ∂2

∂ρ2

∣∣∣∣�n′ (ρ,�)

〉
�

,

where 〈 〉� represents integration over the five hyperangles
only.

The one-dimensional set of coupled differential equations
given in Eq. (5) can be written in a matrix form as⎛⎜⎜⎜⎜⎜⎝

Ĥ11 − E Ĥ12 · · · Ĥ1nA

Ĥ21 Ĥ22 − E · · · Ĥ2nA

...
...

...
...

ĤnA1 ĤnA2 · · · ĤnAnA
− E

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f1

f2

...

fnA

⎞⎟⎟⎟⎟⎠ = 0,

(9)
and the three-body wave function is

�(x, y) = 1

ρ5/2

(
f1,f2, · · · ,fnA

)
⎛⎜⎜⎜⎜⎝

�1

�2

...

�nA

⎞⎟⎟⎟⎟⎠ . (10)

It is important to note that the diagonal terms Ĥnn in Eq.(6)
contain the angular eigenvalues λn(ρ) introduced in Eq. (3).
They appear in the effective adiabatic potentials, which are
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FIG. 1. Typical effective adiabatic potentials for a three-body
system where two two-body bound states are present. The two lowest
adiabatic potentials go asymptotically to the binding energies E

(1)
2b

and E
(2)
2b of the two-body bound states. For a given three-body energy

E, when E
(1)
2b < E < E

(2)
2b only one channel is open, while when

E
(2)
2b < E < 0 both channels are open.

given by

V
(n)

eff (ρ) = h̄2

2m

(
λn(ρ) + 15

4

ρ2
− Qnn(ρ)

)
. (11)

A typical behavior of the adiabatic potentials is shown in
Fig. 1. They correspond to a three-body system where two of
the two-body subsystems have a bound state. This is reflected
in the fact that the two lowest effective adiabatic potentials
go asymptotically to the binding energies E

(1)
2b and E

(2)
2b of

each bound two-body system. The angular eigenfunctions
associated with these two adiabatic potentials have the general
asymptotic form [9]

�JM
n (ρ,�)

ρ→∞→ ρ3/2
[
ψjx

n (x) ⊗ [
Y�y

(�y) ⊗ χsy

]jy

]JM

,

(12)
where for this particular case n = 1,2 and we have now made
explicit the quantum numbers. The wave function ψ

jx
n (x),

normalized to 1 in the x Jacobi coordinate, describes the bound
two-body system associated with the effective potential V

(n)
eff ,

whose angular momentum is jx . Asymptotically it tends to
the bound state wave function of the corresponding two-body
subsystem. The spin function χsy

describes the spin of the third
particle, which couples to the orbital angular momentum �y

(associated with the Jacobi coordinate y) to give total angular
momentum jy . Finally, jx and jy couple to the total angular
momentum J with projection M of the three-body system.

The analytic form given in Eq. (12) for the asymptotic
expression of the angular eigenfunction �JM

n (�,ρ) makes
evident that it describes an asymptotic spatial distribution for
the three particles corresponding to two of them forming a
bound state, described by ψ

jx
n (x), and a free third particle

moving in the continuum. In other words, the effective
adiabatic potentials associated with angular eigenfunctions
with the asymptotic form of Eq. (12) are the ones describing the
possible incoming and outgoing channels of a process where
a particle hits a bound state formed by the other two.
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In Fig. 1 the different regions defined by the energy of the
incident particles are depicted. All the three-body energies E

such that E
(1)
2b < E < E

(2)
2b (like E(1) in the figure) correspond

to processes where only one channel is open. Only the elastic
collision between the third particle and the bound two-body
state with energy E

(1)
2b is possible. When the three-body energy

increases up to the region E
(2)
2b < E < 0 (E(2) in the figure)

a second channel is open. Two different collisions are now
possible, the one where a particle hits the bound state with
binding energy E

(1)
2b , and the one where a particle hits the

state with binding energy E
(2)
2b . In the same way, each of these

reactions has two possible outgoing channels, corresponding
to the two allowed bound two-body states and the third
particle in the continuum. In particular, in this energy range
the rearrangement process is open. When E > 0 the breakup
channels are also open. They are described by the remaining
infinitely many adiabatic potentials. Processes with breakup
channels open will be investigated in a forthcoming work.

Therefore, for processes where n0 channels are open,
the full three-body wave function has actually n0 different
components. We shall denote them by �i , corresponding to
the process with incident channel i. Each of the three-body
functions �i is then expanded as in Eq. (4), but the radial
functions need now an additional index i (i � n0) indicating
the incident channel to which they correspond:

�i = 1

ρ5/2

nA∑
n=1

fni(ρ)�n(ρ,�). (13)

For each open channel i (i = 1,2, . . . ,n0) the correspond-
ing radial wave functions fni(ρ) satisfy the set of radial
equations of Eq. (5), and Eq. (9) can be generalized to⎛⎜⎜⎜⎜⎜⎝

Ĥ11 − E · · · Ĥ1nA

Ĥ21 · · · Ĥ2nA

...
...

...

ĤnA1 · · · ĤnAnA
− E

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

f11 f12 · · · f1n0

f21 f22 · · · f2n0

...
...

...
...

fnA1 fnA2 · · · fnAn0

⎞⎟⎟⎟⎟⎠
= 0, (14)

which describes the full process. The full three-body wave
function is now given by

� =

⎛⎜⎜⎜⎜⎝
�1

�2

...

�n0

⎞⎟⎟⎟⎟⎠ = 1

ρ5/2

⎛⎜⎜⎜⎜⎝
f11 f21 · · · fnA1

f12 f22 · · · fnA2

...
...

...
...

f1n0 f2n0 · · · fnAn0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

�1

�2

...

�nA

⎞⎟⎟⎟⎟⎠ .

(15)

B. Asymptotics: K matrix and S matrix

For scattering states and energies below the breakup
threshold (E < 0), Eqs. (14) decouple asymptotically, and for
a given incident channel i (i = 1, . . . ,n0) the only equations
surviving are the ones of the form

(Ĥnn − E)fni(ρ) = 0 (n = 1, . . . ,nA), (16)

which, by use of Eq. (6), can be written as(
− h̄2

2m

d2

dρ2
+ V

(n)
eff (ρ) − E

)
fni(ρ) = 0, (17)

where V
(n)

eff is given by Eq. (11).
When n corresponds to a closed channel, the radial wave

functions fni vanish asymptotically. When n corresponds to an
open channel, the asymptotic behavior of fni is dictated by the
asymptotics of the corresponding adiabatic potential V

(n)
eff . A

careful analysis of the large-distance behavior of the λn(ρ) and
Qnn(ρ) functions in the case of bound two-body subsystems
can be found in Ref. [9]. In particular, Eqs. (91) and (93) of
that reference allow the above equation to be rewritten for the
case n � n0 as[

d2

dρ2
+ (

k(n)
y

)2 − �y(�y + 1)

ρ2

]
fni(ρ) = 0, (18)

where

k(n)
y =

√
2m

h̄2

(
E − E

(n)
2b

)
, (19)

E
(n)
2b is the binding energy of the bound two-body system

associated with the open channel n, and �y is the orbital angular
momentum associated with the Jacobi coordinate y, which
amounts to the relative orbital angular momentum between
the projectile and the two-body bound target.

From Eq. (18) it is now clear that the asymptotic behavior
of the fni functions (n,i � n0) is given by

fni(ρ) →
√

k
(n)
y ρ

[
A

(K)
in j�y

(
k(n)
y ρ

) + B
(K)
in η�y

(
k(n)
y ρ

)]
, (20)

where j�y
and η�y

are the usual regular and irregular spherical
Bessel functions, respectively. The superscript (K) indicates
that, with this particular choice, the coefficients A

(K)
in and B

(K)
in

will permit extraction of the K matrix. Conversely, using the
spherical Hankel functions in Eq. (20) the coefficients will
form the S matrix and the superscript (S) will be used (see
below).

Therefore, asymptotically, the matrix containing the radial
wave functions in Eq. (15) reduces to the n0 × n0 matrix
A(K)J + B(K)Y , where A(K) and B(K) are n0 × n0 matrices
whose components are the A

(K)
ij and B

(K)
ij coefficients of

Eq. (20), and J and Y are two n0 × n0 diagonal matrices
with diagonal terms [

√
k(i)
y ρj�y

(k(i)
y ρ)] and [

√
k(i)
y ρη�y

(k(i)
y ρ)],

respectively. Thus, the asymptotic behavior of the full three-
body wave function (15) can be finally written as

� → A(K)F (K)
ρ + B(K)G(K)

ρ , (21)

where F (K)
ρ and G(K)

ρ are column vectors with n0 terms

of the forms [
√

k(n)
y j�y

(k(n)
y ρ)�n/ρ

3/2] and [
√

k(n)
y η�y

(k(n)
y ρ)

�n/ρ
3/2], respectively.

From Eq. (21) we then have that for a given incident channel
i the asymptotic form of the corresponding three-body wave
function (13) takes the form

�i →
n0∑

n=1

(
A

(K)
in F (K)

ρ,n + B
(K)
in G(K)

ρ,n

)
, (22)
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where

F (K)
ρ,n =

√
k

(n)
y j�y

(
k(n)
y ρ

)[
ψjx

n ⊗ [
Y�y

(�y) ⊗ χsy

]jy
]JM

,
(23)

G(K)
ρ,n =

√
k

(n)
y η�y

(
k(n)
y ρ

)[
ψjx

n ⊗ [
Y�y

(�y) ⊗ χsy

]jy
]JM

,

and where we have made use of Eq. (12), which relates the
angular eigenfunction �JM

n and the two-body wave function
ψ

jx
n . When two or three identical particles are present in the

system, these functions should be correctly symmetrized or
antisymmetrized depending on whether they are bosons or
fermions.

From Eq. (21) we can now easily write

� → A(K)
(
F (K)

ρ − KG(K)
ρ

)
, (24)

where

K = −A(K)−1
B(K) (25)

is the K matrix of the reaction, whose dimension is n0 × n0

(with n0 being the number of open channels).
The discussion in this subsection could also have been made

by replacing j�y
and η�y

in Eq. (20) with the spherical Hankel

functions h
(2)
�y

and h
(1)
�y

, respectively. This would then lead to

� → A(S)F (S)
ρ + B(S)G(S)

ρ , (26)

where now F (S)
ρ and G(S)

ρ are column vectors with

n0 terms of the forms [
√

k(n)
y h

(2)
�y

(k(n)
y ρ)�n/ρ

3/2] and

[
√

k(n)
y h

(1)
�y

(k(n)
y ρ)�n/ρ

3/2], respectively. We can then write

� → A(S)(F (S)
ρ + SG(S)

ρ

)
, (27)

where

S = A(S)−1
B(S) (28)

is the so called S matrix of the reaction. The S and K matrices
are related through the well-known simple expression

S = (1 + iK)(1 − iK)−1. (29)

It is important to keep in mind that while A(K), B(K), and K
are real, the matrices A(S), B(S), and S are in general complex.

III. SECOND-ORDER INTEGRAL RELATIONS

In Ref. [14] the applicability of the HA expansion for
extraction of phase shifts for 1 + 2 reactions when only the
elastic channel is open has been discussed. In that reference
it was found that, when the number of adiabatic channels nA

included in the calculation is increased as much as possible,
the difference between the computed phase shift and the exact
value remains significant. As mentioned in the Introduction,
this is related to the fact that the asymptotic structure of
the system has to be describe in terms of spherical Bessel
functions depending on kyy, where y is the modulus of the
Jacobi coordinate between the center of mass of the outgoing
bound two-body system and the third particle. Instead, the
asymptotic behavior using the HA basis is given in terms
of spherical Bessel functions depending on kyρ. Since the
equivalence between kyy and kyρ is not achieved for any finite
value of ρ, the correct boundary condition is achieved only at
ρ ≈ ∞ and nA → ∞.

For a general multichannel process the adiabatic expansion
obviously shows the same deficiency. The correct asymptotic
wave function is given by Eq. (21), but where F (K)

ρ and G(K)
ρ

in Eq. (23) have to be replaced by F (K) and G(K), which are
column vectors whose nth element is

F (K)
n =

√
k

(n)
y j�y

(
k(n)
y yn

)[
ψjx

n ⊗ [
Y�y

(�y) ⊗ χsy

]jy

]JM

,

(30)

G(K)
n =

√
k

(n)
y η�y

(
k(n)
y yn

)[
ψjx

n ⊗ [
Y�y

(�y) ⊗ χsy

]jy

]JM

.

In these expressions yn refers to the modulus of the Jacobi
coordinate describing the center of mass of the bound two-
body system ψ

jx
n and the third particle.

It is important to recall that the Bessel functions η� are
irregular at the origin, which creates difficulties from the
numerical point of view. It is then convenient to regularize
such functions, in such a way that G(K)

n given in Eq. (30) has
to be replaced by

G̃(K)
n = (

1 − e−γyn
)�y+1

G(K)
n , (31)

where γ is a nonlinear parameter. The results are stable for
values of γ within a small range around γ ∼ 1/r0, with r0 the
range of the potential.

For simplicity in the notation, from now on, we shall refer
to the matrices {F (K),G̃(K)} as {F,G}, in such a way that we
can write the asymptotic behavior of the wave function as

� → AF + BG, (32)

and K = −A−1B.
The vectors F and G satisfy the following normalization

condition:

− 2m

h̄2 [〈F |Ĥ − E|G〉 − 〈G|Ĥ − E|F 〉T ] = I, (33)

where I is the identity matrix. In Eq. (33) we have introduced
a notation to be used from now on in which the overlap of
two vectors is a matrix whose elements are, for example,
(〈F |Ĥ − E|G〉)ij = 〈Fi |Ĥ − E|Gj 〉. The normalization con-
dition allows us to extract a first-order estimate of the matrices
A and B from the scattering wave function � as

B1st = −2m

h̄2 [〈F |Ĥ − E|�〉T − 〈�|Ĥ − E|F 〉], (34)

A1st = −2m

h̄2 [〈�|Ĥ − E|G〉 − 〈G|Ĥ − E|�〉T ]. (35)

Clearly, when � is an exact solution of (Ĥ − E)� = 0, the
above expressions reduce to the following integral relations:

B = 2m

h̄2 〈�|Ĥ − E|F 〉,
(36)

A = −2m

h̄2 〈�|Ĥ − E|G〉.

Explicitly, each matrix element Bij and Aij is given by

Bij = 2m

h̄2 〈�i |Ĥ − E|Fj 〉, (37)

Aij = −2m

h̄2 〈�i |Ĥ − E|Gj 〉, (38)
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which can be seen as the extension to multichannel scattering
of the expressions valid for the single-channel case. Now the
same formula applies for each possible incoming channel
described by �i and each possible outgoing channel whose
asymptotic analytic form is given by a linear combination of
Fj and Gj .

As demonstrated in Refs. [14,18] for a single-channel
process, the relation K = −A−1B computed using Eqs. (37)
and (38) can be considered accurate up to second order when
a trial wave function �t is used. Moreover the two integral
relations of Eqs. (37) and (38) can be directly derived from
the Kohn variational principle. As shown in Appendix A, the
matrix form of the KVP, necessary to describe a multichannel
process, establishes that each matrix element of A−1B2nd is a
functional given by

A−1B2nd = A−1B + 2m

h̄2 A−1〈�t |Ĥ − E|�t 〉(A−1)T , (39)

which is stationary with respect to variations of the wave
function. Taking into account the general asymptotic behavior
in Eq. (32), we can write the full trial wave function
schematically as

�t = �c + AF + BG, (40)

with �c → 0 as ρ → ∞. Furthermore �c can be expanded
in terms of a (square integrable) complete basis {bi,i =
1, . . . ,m}:

�c =

⎛⎜⎜⎜⎜⎝
�c,1

�c,2

...

�c,n0

⎞⎟⎟⎟⎟⎠ = 1

ρ5/2

⎛⎜⎜⎜⎜⎝
c11 c12 · · · c1m

c21 c22 · · · c2m

...
...

...
...

cn01 cn02 · · · cn0m

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

b1

b2

...

bm

⎞⎟⎟⎟⎟⎠ .

(41)

The variation of the functional with respect to the linear
parameters cij and with respect to the matrix elements of A−1B

leads to

〈�c|Ĥ − E|�t 〉 = 0,
(42)

〈G|Ĥ − E|�t 〉 = 0.

When � is replaced by �t , the second expression above and
Eq. (35) result in

A = −2m

h̄2 〈�t |Ĥ − E|G〉. (43)

Replacing now Eq. (40) into (39), and making use of Eqs. (42),
we also get

B2nd = B1st + 2m

h̄2 〈F |Ĥ − E|�t 〉T , (44)

and, taking into account that B1st is given by Eq. (34) we can
then obtain the final result:

B2nd = 2m

h̄2 〈�t |Ĥ − E|F 〉,
(45)

A = −2m

h̄2 〈�t |Ĥ − E|G〉,

which according to Eqs. (25) and (29) permit one to obtain the
second-order estimate of the K matrix or the S matrix, K2nd

or S2nd, respectively.
In practical cases, application of the integral relations given

in Eq. (45) requires the calculation of each individual matrix
element Aij and Bij , which relate each possible incoming
channel i, described by �i , with each possible outgoing
asymptotic given by Fj and Gj . Details about the calculation
of these matrix elements are given in Appendix B, in particular
for the case of two-body potentials projecting on the partial
waves.

The integral relations of Eq. (45) depend on the short-range
structure of the scattering wave function �t as F and G are
asymptotically solutions of (H − E)F,G = 0. This property
allows for different applications of the integral relations, as
discussed in Ref. [18]. In the present work interest is in
the study of the pattern of convergence of K2nd in terms of
the number of equations nA considered in the description of
�t using the HA expansion. As we will see, with increase
in nA, both matrices A and B2nd slightly change, showing
individually a very slow rate of convergence. Conversely, the
rateK2nd = −A−1B2nd shows a pattern of convergence similar
to that observed in a bound state calculation.

IV. RESULTS

A. Test of the method: A model 1 + 2 collision

To test the method we have chosen a 1 + 2 reaction where
the target dimer is made up of an infinitely heavy particle and a
light one, and where we consider a projectile interacting only
with the heavy particle (see Fig. 2). In the collision particle 2
does not play any role, and the process is equivalent to
a two-body reaction between particles 3 and 1. Therefore
the results obtained through the three-body calculation and
the integral relations can be easily tested by means of a simple
two-body calculation.

In particular, we consider a two-body target made by two
spin-zero bosons with masses 0.5m and 1012m (with m =
938.694 61 MeV) interacting via a simple central potential
given by

V12(r) = −80 e−r2/1.63
, (46)

V13 V12

1

3

2

FIG. 2. (Color online) Scheme of the model reaction used to test
the integral relations. The light projectile 3 hits the dimer made by
particles 1 and 2. Particle 1 is infinitely heavy and particles 2 and 3
do not interact.
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TABLE I. Partial wave phase shifts δ� for different values of nA

[number of adiabatic terms used in the expansion (4)]. In the last row,
the result using a two-body calculation is shown.

nA δs δp δd

1 40.554 0.6658 0.0136
2 38.988 0.6892 0.0113
3 38.642 0.6921 0.0121
5 38.693 0.6911 0.0119
8 38.702 0.6918 0.0118
10 38.701 0.6918 0.0118
Two body 38.699 0.6917 0.0117

where r is given in fermi (fm) and the strength in MeV. This
system has only one s-wave bound state with binding energy
−6.2757 MeV.

The projectile, which is chosen to have a mass of 0.51m,
does not interact with particle 2, while it does it with particle
1 through the Gaussian potential

V13(r) = −30 e−r2/1.62
, (47)

where again r is in fm and the strength in MeV. This potential
is not able to bind particles 1 and 3. Finally, as described
above, V23 = 0.

We have chosen an incident energy of 3 MeV, which implies
a total three-body energy of −3.2757 MeV. We are then below
the threshold for breakup of the two-body target, and only the
elastic channel is open. Therefore, B and A in Eq. (45) are just
numbers, and they are such that tan δ� = −B/A (note that the
definitions of B here and in [14,18] have opposite signs).

We have computed the phase shift for this reaction for
relative s, p, and d waves between the projectile and the target.
The convergence of the expansion (4) is shown in Table I,
where we show the phase shift for the different partial waves
and for different values of nA, which is the number of adiabatic
terms included in the calculation. As we can see, inclusion of
eight to ten adiabatic potentials is enough to reach convergence
for the three partial waves. Furthermore, the converged result
agrees with the phase shift obtained from the two-body
calculation describing the collision between particles 3 and 1.

The efficiency of using the integral relations in Eq. (45)
is made evident in Fig. 3, where we show the partial wave
phase shifts δ� as functions of nA. The solid line gives the
results obtained from the integral relations (given in Table I),
and the thick dashed line shows the results extracted by direct
comparison of the computed asymptotic radial wave functions
and the analytic expression in Eq. (20). The thin dashed line
indicates the phase shifts obtained from a two-body calcula-
tion. As we can immediately see in the figure, the pattern of
convergence of the phase shifts obtained from Eq. (20) (thick
dashed curves) is very slow. A simple extrapolation of these
curves up to the correct value permits one to foresee that the
number of adiabatic terms needed to obtain accurate values
of δ� is far larger than that needed when the integral relations
are used. In fact, at the scale of the figure, the calculations
with the integral relations are already indistinguishable from
the correct result for nA = 4 (see also Table I).

As seen in Table I, the d-wave phase shift is already
rather small and therefore, at the considered energy, the cross

FIG. 3. (Color online) Phase shift for s, p, and d partial waves
for the model reaction in Sec. IV A as a function of the number of
adiabatic terms included in the calculation. The solid line is the result
obtained through the integral relations, and the thick dashed curve has
been obtained from the asymptotic expression (20). The thin dashed
line is the result obtained from a two-body calculation.

section contributions from higher angular partial waves are
negligible. In Fig. 4 the differential cross section of the process
with cumulative inclusion of one (solid), two (dashed), and
three (dot-dashed) partial waves is shown. As can be seen, s,
p, and d partial waves are enough to obtain a converged cross
section of the process. In fact, the partial waves beyond the s

wave have a modest contribution, and the total cross section
approaches quite closely the characteristic sin θ function of
the s waves.

B. A realistic case: The 4He-4He2 collision

In this section we discuss an interesting simple physical
case, but one that is technically similar to the model case
described in the previous section. This is the collision of a 4He
atom with the weakly bound 4He2 dimer. The helium dimer

FIG. 4. (Color online) Cumulative contributions to the differen-
tial cross section as a function of the scattering angle θ for the model
collision in Sec. IV A.
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has a single s-wave bound state, and as soon as the incident
energy is below the dimer breakup threshold, again only the
elastic channel is open.

The two-body helium-helium interaction is chosen to be
the simple effective Gaussian potential given in [19]. This
is enough for our purpose of illustrating how this kind of
processes can be easily described by use of the integral
relations. This potential is built to reproduce the s-wave scat-
tering length (189.054 a.u.) and effective range (13.843 a.u.)
of the LM2M2 interaction [20], which is the second mimic of
the second Liu and McLean potential introduced in [21], and
it is given by

V2B(r) = −1.227e−r2/10.032
, (48)

where r is given in a.u. and the strength is in kelvin (K). This
potential leads to a bound 0+ 4He2 dimer with a binding energy
Ed = −1.2959 mK, a scattering length a = 189.947 a.u., and
an effective range of 13.846 a.u. Simple representations of
the atom-atom potentials are often used to describe reactions
in the ultracold regime (see for example Refs. [22,23]). In
this regime the process is largely independent of the shape of
the potential and can be characterized only by the scattering
length.

With this interaction the helium trimer has two bound
states at −150.0 and −2.467 mK. These states have been
obtained using the Gaussian potential active only in s waves.
Increase in the number of partial waves up to �x = �y = 8
results in a very small change for the ground and excited state
binding energies, which become now 150.4 and −2.472 mK,
respectively. In fact, more than 99% of the norm of the
bound state wave functions is provided by the lowest adiabatic
term, whose corresponding adiabatic potential is close to
identical in both calculations. Accordingly, in the following
we restrict the calculations to include only the �x = 0
channel.

When the LM2M2 potential is used, these two states are
found to have binding energies −126.4 and −2.265 mK,
respectively [8]. As we can see, the ground state is not very
well reproduced when the Gaussian version of the potential
is used. In this very deep state, the three atoms are close to
each other and the correct structure cannot be described with
the simplified potential. Conversely, the excited state, which
has the characteristics of an Efimov state, has a structure in
which the third atom orbits very far from the bound state of
the other two. This particular structure is well described by the
attractive Gaussian potential.

In order to study the convergence properties of the HA
expansion for a 1 + 2 collision, we have chosen an incident
energy of 0.5 mK (or a three-body energy E = −0.7959 mK).
The phase shifts for the different partial waves have been
computed as in the previous subsection. The results are shown
in Table II for s, p, d, and f waves. A good convergence is
obtained already after inclusion of about 10 adiabatic terms,
except for s waves, where about 18 are needed. The last row in
the table shows the phase shift obtained for an s-wave collision
when the hyperspherical harmonic method is used. The two
methods are in close agreement.

At this particular energy we have calculated the differential
cross section. Figure 5 shows the cumulative contributions of

TABLE II. Partial wave phase shifts δ� showing convergence of
these values with the number nA of adiabatic potentials used in the
calculation. The last row shows the result when the hyperspherical
harmonic method [4] is used.

nA δs δp δd δf

1 −39.72 −13.19 2.01 −0.27
2 −40.30 −13.13 2.11 −0.28
4 −40.43 −13.11 2.13 −0.28
8 −40.50 −13.11 2.14 −0.28
18 −40.54 −13.11 2.14 −0.28
22 −40.54 −13.11 2.14 −0.28
HH calculation −40.55

the s, p, d, and f partial waves. We observe that the p-wave
contribution is rather important and produces a deviation from
the sin θ shape. Moreover, four partial waves are needed to
reach a good convergence.

In Fig. 6 we show the computed s-wave phase shift as a
function of the incident energy (E − Ed ). Our results are given
by the stars. For comparison we also show the results reported
in [24], [25], and [26] (solid curve, squares, and dashed curve,
respectively). As we can see, the phase shifts obtained in this
work are a few degrees above the ones obtained in the previous
calculations, where the 4He-4He interaction is treated in more
detail. In fact the reason for this discrepancy is the hard core
repulsion present in the 4He-4He interactions used in [24–26].
For the same reason the atom-dimer scattering length aa-d

obtained with the Gaussian potential used in this work, aa-d =
166 a.u., differs from the typical values of around aa-d =
220 a.u. (≈116 Å) obtained when hard core potentials are
used [25,27].

C. A multichannel collision: The 4He-4He-6Li system

In this section a reaction where more than one channel
is open is discussed. To this end, we have chosen a process
involving two helium and one lithium atoms. The cross section
for this kind of reaction is the necessary ingredient to obtain
the recombination rate for such three-body systems. As quoted
in [28], where the three-body recombination for cold-helium–
helium–alkali-metal systems is investigated, such collision

FIG. 5. (Color online) The same as Fig. 4 for the 4He-4He2

collision. With four partial waves the convergence is fairly good.
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FIG. 6. (Color online) s-wave phase shift δs as a function of the
incident energy for the 4He-4He2 collision. The stars are the results
obtained in the present work. The solid curve, the squares, and the
dashed curve correspond to the results given in [24], [25], and [26],
respectively.

processes are important in ultracold gas experiments using
buffer-gas cooling, since it might limit the lifetimes of the
trapped atoms.

To describe this three-body system we take the same
helium-helium interaction as in the previous section, which
leads to a 0+ 4He2 dimer with a binding energy of −1.2959 mK.
The lithium-helium interaction is also chosen to have a
Gaussian shape, and it is taken to be

V(6Li-4He)(r) = −0.273 68e−r2/20.142
, (49)

where r is in a.u. and the strength is in K. The parameters have
been adjusted to give a scattering length of −173.5 a.u. and an
effective range of 26.475 a.u. in agreement with the values
obtained in [29] (a = −173.8 a.u. and re = 26.483 a.u.),
where the more sophisticated Kleinekathöfer-Tang-Toennies-
Yiu potential is used. This potential leads to a 0+ bound
6Li-4He system with a binding energy of −1.4225 mK.

The adiabatic potentials obtained for the 4He-4He-6Li
three-body system follow the same pattern as the potentials
in Fig. 1, where E

(1)
2b corresponds now to the binding energy of

the 6Li-4He dimer (−1.4225 mK) and E
(2)
2b corresponds to the

binding energy of the 4He2 dimer (−1.2959 mK). The three-
body system presents one bound state at E = −58.12 mK.

Thus, as soon as the three-body energy lies in the same
region as E(2) in the figure, two different channels are open.
One of them corresponds to a bound 6Li-4He dimer and the
second 4He atom in the continuum (we shall refer to it as
channel 1), and the other one corresponds to the bound 4He2

dimer and the 6Li atom in the continuum (we shall refer to
it as channel 2). In other words, when taking channel 1 as
the incoming channel we are considering a process where the
4He atom hits a bound 6Li-4He dimer, while when choosing
channel 2 as the incoming channel we are then considering
the process of a 6Li atom hitting a 4He2 dimer. For each of
the two possible incoming channels we have two different
outgoing channels, the elastic one, and a rearrangement
process where the projectile is captured by one of the

TABLE III. K-matrix elements are given as a function of the
number of adiabatic potentials used in the calculation (nA).

nA K11 K12 K21 K22

2 −2.460 −0.650 −0.648 −1.411
3 −2.765 −0.821 −0.801 −1.496
4 −2.691 −0.775 −0.776 −1.468
6 −2.699 −0.781 −0.781 −1.471
8 −2.702 −0.783 −0.783 −1.471
10 −2.710 −0.787 −0.787 −1.473
14 −2.714 −0.790 −0.789 −1.474
18 −2.712 −0.791 −0.790 −1.474

constituents of the dimer, while the second dimer constituent is
released.

The existence of two open channels implies that the K
matrix (or the S matrix) is a 2 × 2 matrix, that can be
obtained through the 2 × 2 matrices A and B2nd in Eq. (45).
Each of the four terms in A and B2nd can be obtained as in
Eqs. (38) and (37), where �i is the trial three-body wave
function for the incoming channel i. Fj and Gj are the
asymptotic functions given in Eqs. (30) for the outgoing
channel j . These functions have to be symmetrized when
the outgoing channel is 1, since the helium atom in the
dimer is identical to the one moving in the continuum. For
outgoing channel 2 this is not necessary, since the dimer wave
function in (30) is already properly symmetrized. In practice,
the symmetrization introduces a factor of

√
2 in Eqs. (37) and

(38) when j = 1. The calculation of each of these terms is
formally identical to the case with only the elastic channel
open.

In the calculation here we have chosen a three-body energy
of −0.7959 mK, which represents an incident energy of
0.6266 mK when channel 1 is the incoming channel and
0.5 mK when channel 2 is the incoming channel. For simplicity
we restrict our attention in this section to relative s waves
between the projectile and the dimer target. The computed
results for the four terms of the K matrix are shown in Table III
for different values of nA. As seen in the table, again a reduced
number of adiabatic terms permits us to reach a reasonable
convergence in the K matrix.

From the computed K matrix we can now easily
obtain the S matrix by means of Eq. (29). This leads to
S11 = −0.673 − 0.663i, S12 = S21 = −0.285 + 0.162i, and
S22 = −0.224 − 0.918i. The square of these elements, |Sij |2,
indicates the probability for the process with incoming channel
i to end up in channel j . In this particular case we get
|S11|2 = |S22|2 = 0.892 and |S12|2 = |S21|2 = 0.108.

It is important to note that the matrices A and B2nd are
not unique. A different definition of the normalization of the
asymptotic states would result in new A and B2nd matrices
which would obviously lead to the sameKmatrix. In particular,
A and B2nd do not fulfill the property of being symmetric,
but they lead to a K matrix with the correct Hermitian
condition. Moreover, using Eq. (29), the computed S matrix
automatically satisfies the unitarity condition S†S = I.
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V. SUMMARY AND CONCLUSIONS

In this work we have discussed the general form of the inte-
gral relations that were introduced in [14,18]. These relations
are derived from the Kohn variational principle and they permit
the particularities of the adiabatic expansion method to be
exploited to describe scattering states. In particular, in [14,18]
it was shown that the convergence of the computed scattering
phase shifts in terms of the adiabatic terms included in the
calculation is rather fast. The resulting convergence pattern is
similar to that of a bound state calculation. The reason for this
success is that when the integral relations are used only the
internal part of the wave function is needed, and an accurate
calculation of it requires a smaller number of adiabatic terms
than when the wave function is computed in the asymptotic
region.

The applications given in [14,18] were limited to processes
involving only relative s waves and with only one channel
open. In this work we have explicitly derived the integral rela-
tions from the KVP in the case of multichannel reactions and
we have computed phase shifts up to f waves. Furthermore,
we have used a vectorial notation for the wave function such
that all the possible channels are simultaneously represented.
With this notation the coefficients weighting the regular and
irregular parts of the asymptotic wave function are n0 × n0

matrices (with n0 being the number of open channels) and
each term of these two matrices is obtained from an integral
relation. Finally, the K matrix for a given process is obtained
as the product of two n0 × n0 matrices.

Although the method derived is completely general, in
this work we have restricted ourselves to describing 1 + 2
reactions with projectile energy below the breakup threshold
in three outgoing particles. Therefore, only elastic, inelastic,
and rearrangement processes are possible.

To test the method when relative partial waves higher than
zero are included, we first used a toy model such that the three-
body reaction is fully equivalent to a two-body process. In this
way the correct phase shift can be easily computed through a
simple two-body calculation. We found a slow convergence of
the phase shifts when they were extracted from the asymptotic
parts of the radial wave functions. Conversely, the rate A−1B

converges much more quickly and the result stabilizes with a
rather small number of adiabatic channels. The convergence is
equally fast for all the partial waves, and around ten adiabatic
terms are enough to reach a good convergence. Furthermore,
the phase shifts obtained with the two-body calculations are
well reproduced.

As the next step, we analyzed a more physical case,
in particular the 4He-4He2 collision. Since we considered
energies below the 4He2 breakup threshold, in this reaction
only the elastic channel is open. This is a process technically
analogous to the previous schematic case for which the
method has been proved to work. In fact, a similar pattern of
convergence is found for the different partial waves included
in the calculation. Inclusion of partial waves with � up to 3 is
needed to obtain a converged cross section for the process. For
s waves the computed phase shift reproduces the one obtained
with the hyperspherical harmonic expansion method.

Finally, we considered a process with two open channels.
We chose a three-body system made by two 4He and one

6Li atoms, where two different dimers, 4He2 and 4He-6Li,
are possible. We therefore simultaneously investigated the
collision between a 4He atom and a 4He-6Li dimer and the
one between a 6Li atom and a 4He2 dimer. For both reactions
two possible outgoing channels (elastic and rearrangement)
are permitted. We then used the method to obtain the 2 × 2 K
matrix. Again, we found a fast convergence of the four terms in
K. Furthermore, the computed K matrix satisfies the required
Hermitian condition, as well as the fact of leading to a unitary
S matrix.

Summarizing, we have shown that the integral relations can
be easily applied to reactions involving nonzero partial waves
and with more than one channel open. Also in this case, the
hyperspherical adiabatic expansion method is a highly efficient
tool that permits scattering wave functions to be obtained. The
Kmatrix, and therefore also theS matrix, converges rather fast.
Also, since the hyperspherical adiabatic expansion method
permits identification of every single incoming and outgoing
open channel with a single adiabatic term, the dimension
of the matrices to be computed is rather modest, typically
of the same size as the number of open channels in the
reaction.
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APPENDIX A: MATRIX FORM OF THE KOHN
VARIATIONAL PRINCIPLE

This derivation is completely analogous to the derivation
presented in Ref. [30]. The only difference is that, in order to
represent each possible incoming channel, we use the vectorial
notation for the wave functions as introduced in the present
work, where the total wave function � has the form given in
Eq. (15).

We start by taking the matrix given by

I ≡ 〈�|Ĥ − E|�〉, (A1)

which vanishes when � is the exact wave function. We then
introduce a test wave function �t = � + δ� so that its radial
wave functions verify

f t
ni(0) = 0,

(A2)

f t
ni(ρ → ∞) →

√
k

(n)
y ρ

[
Ainj�y

(
k(n)
y ρ

) + Bt
inη�y

(
k(n)
y ρ

)]
.

We can then write f t
ni = fni + δfni , where δfni satisfies

δfni(ρ) →
√

k
(n)
y ρ η�y

(
k(n)
y ρ

)
δBin. (A3)

The matrix in Eq. (A1), evaluated at the test wave function,
is

It = δI = 〈�t |Ĥ − E|�t 〉. (A4)
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Using now that the exact wave function verifies that (Ĥ −
E)|�〉 = 0, and keeping only the first order terms, the matrix
above can be written as

δI = 〈�|Ĥ − E|δ�〉 − 〈δ�|Ĥ − E|�〉T (A5)

Using the expansion of � given in Eq. (13) and the
analytical expression of the operator Ĥ from Eq. (2), it can
be seen that each matrix element of δI takes the form

δIij = h̄2

2m

∑
n

∫ ∞

0
dρ

d

dρ

(
dfni

dρ
δfnj − d(δfnj )

dρ
fni

)

− h̄2

m

∑
n

∫ ∞

0
dρ

d

dρ
(Pij (ρ)fniδfnj ), (A6)

where Pij (ρ) are the coupling terms appearing in Eq. (7) and
given in Eq. (8), which vanish when ρ tends to zero or to
infinity. Therefore the last term in the previous expression
vanishes, and, since fni(0) = 0, we get

δIij = h̄2

2m

∑
n

[
dfni

dρ
δfnj − d(δfnj )

dρ
fni

]
ρ=∞

, (A7)

which, using Eqs. (20) and (A3), leads to

δIij = − h̄2

2m

∑
n

AinδBjn = − h̄2

2m
{AδBT }ij , (A8)

or, in a more compact way,

δ

(
I + h̄2

2m
ABT

)
= 0. (A9)

Since for the exact wave function � we have that I = 0,
we finally get

h̄2

2m
ABT = It + h̄2

2m
ABT

t , (A10)

which becomes a variational principle for ABT . Therefore,
given a test wave function �t , we obtain a second order
correction for ABT as

A(B2nd)T = ABT + 2m

h̄2 〈�t |Ĥ − E|�t 〉. (A11)

If we now multiply from the left by A−1 and from the right
by (A−1)T , and make use of the fact that the K matrix is
symmetric, i.e., A−1B = BT (A−1)T , we then finally get the
expression given in Eq. (39).

APPENDIX B: CALCULATION OF THE INTEGRALS
IN A AND B

In this appendix we give details of the calculation of
the integrals A and B, in particular when using two-body
potentials projecting on partial waves. With this aim let us
start from the general expression for A and B in Eq. (45), and
write the L operator in its explicit form,

L = 2m

h̄2 (Ĥ − E) = 2m

h̄2

(
− h̄2

2m
∇2

y1
− h̄2

2m
∇2

x1
+ V̂1(x1)

+ V̂2(x2) + V̂3(x3) − Ed − E0

)
, (B1)

where Ed is the binding energy of the dimer and E0 is
the incident energy of the projectile. The Jacobi coordinates
(x1, y1) are defined such that x1 connects the two particles in
the dimer (particles 2 and 3). The coordinates x2 and x3 are
related to the distances between particles 1 and 3, and between
particles 1 and 2, respectively.

Using F and G as defined in (30) we can rewrite Eq. (45)
as

B2nd = 2m

h̄2 〈�|V̂2(x2) + V̂3(x3)|F (x1, y1)〉,
(B2)

A = −2m

h̄2 〈�|V̂2(x2) + V̂3(x3)|G̃(x1, y1)〉 + I∇,

where

I∇ = −〈
�

∣∣∇2
y1

− k2
y1

∣∣G̃(x1,y1)
〉
, (B3)

and where G̃ refers to the regularized function (31).
If we set B2nd = IB and A = IA + I∇ , we have that, after

substitution of Eq. (30), the integrals in (B2) can also be written
as

IA,B = 2m

h̄2

∑
i=2,3

∫
dρρ5d�i�(ρ,�i)V̂i(xi),

g
�y1
A,B(y1,ky1 )

[
ψ�x1

(x1) ⊗ Y�y1
(�y1 )

]LML
, (B4)

where

g
�y

B (y,ky) = j�y
(kyy),

(B5)
g

�y

A (y,ky) = −η�y
(kyy)(1 − eγy)�y+1,

and where for simplicity in the notation we have assumed that
the particles have zero spin. The corresponding expressions in
this appendix for particles with spin will follow immediately
by coupling the orbital part in the expressions above to the
corresponding spin part.

If the potential operator is given as a sum of projectors on
partial waves, we have that

V̂i(xi) =
∑

�xi
m�xi

V�xi
(xi)

∣∣�xi
m�xi

〉 〈
�xi

m�xi

∣∣, (B6)

where V�xi
represents the interaction between particles j

and k when they are in a relative partial wave with angular
momentum �xi

.
If we also consider Eq. (4) and expand the angular

functions �n(ρ,�) in terms of the hyperspherical harmonics
[�n(ρ,�)LM = ∑

K�x�y
C

(n)
K�x�yL

(ρ)YKLM
�x�y

(�)], we can then
obtain the following expression for the potential operator
acting over the three-body wave function:

〈�|V̂ (x) = 1

ρ5/2

∑
n

fn(ρ)
∑

K�x�y

∑
K̃�̃x �̃y

C
(n)
K̃�̃x �̃yL

× 〈
Y K̃LM

�̃x �̃y

∣∣V�x
(x)

∣∣YKLM
�x�y

〉 〈
YKLM

�x�y

∣∣. (B7)

Expanding now the hyperspherical harmonics in terms
of the Jacobi polynomials P

�x+1/2,�y+1/2
ν (K = 2ν + �x + �y)

with normalization coefficients N
�x�y

K (see [9] for details), we
have that the the integrals IA and IB can then be explicitly
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written as

IA,B =
∑
i=2,3

∫
dρρ5(sin αi)

2(cos αi)
2dαi

1

ρ5/2

×
∑

n

fn(ρ)
∑

K�x�y

∑
K̃�̃x �̃y

C
(n)
K�x�yL

N
�̃x �̃y

K̃
(sin αi)

�̃x (cos αi)
�̃y

×P
�̃x+1/2,�̃y+1/2
ν (2 cos αi)

〈
Y K̃LM

�̃x �̃y

∣∣V�x
(xi)

∣∣YKLM
�x�y

〉
×R

�̃xi
�̃yi

,�x1 �y1
i1

[
φ

�x1
d (x1)g

�y1
A,B(ky1 ,y1)

]
, (B8)

where φ
�x1
d is the radial part of the dimer wave function

ψ�x1
(x1).

It is important to note that in Eqs. (B2) and (B4) the potential
operators and the functions F and G̃ are written in different
Jacobi sets. Therefore, when computing the integrals one has
to rotate the whole integrand into the same Jacobi set. This is
done in the expression above by the function Rij , which is a
rotation function defined as

R
�xi

�yi
,�xj

�yj

ij

[
W�xj

�yj
(xj ,yj )

]
=

∫
d�xi

d�yi

[
Y ∗

�xi

(
�xi

) ⊗ Y ∗
�yi

(
�yi

)]LML

×W�xj
�yj

(xj ,yj )
[
Y�xj

(
�xj

) ⊗ Y�yj

(
�yj

)]LML

. (B9)

It rotates any function W�xj
�yj

(xj ,yj ) written in terms of the
coordinates and angular momenta defined in the Jacobi set j

into the coordinates and angular momenta corresponding to
the Jacobi set i.

As already mentioned, V�(x) is the total two-body
interaction when the two particles are in a relative partial
wave with angular momentum �x . In general, for particles
with spin, the partial waves are identified by the quantum
numbers {�x,sx,jx}, where sx is the coupling of the spins
of the two particles, which in turn couples to �x to give the
total two-body angular momentum jx . In this case the matrix
element 〈Y K̃LM

�̃x �̃y
|V�x

(x)|YKLM
�x�y

〉 in Eq. (B7) or (B8) has to be
replaced by〈[

Y K̃L
�̃x �̃y

⊗ χS
sx,sy

]JM ∣∣V�xsxjx
(x)

∣∣[YKL
�x�y

⊗ χS
sx,sy

]JM 〉
, (B10)

where sy is the spin of the third particle, χS
sx,sy

is the
three-body spin wave function, and J,M are the total three-
body angular momentum and its projection. In general, the
partial wave two-body potential V�xsxjx

(x) could consist of a
sum of central, spin-orbit, spin-spin, and tensor potentials.
Therefore, in this case, calculation of the matrix element
in (B10) implies calculation of the matrix element of the
corresponding spin-spin, spin-orbit, and tensor operators. In
the simplest case with only a central potential and particles
with zero spin the matrix elements of the potential operator
reduce to:〈

Y K̃LM
�̃x �̃y

∣∣V�x
(x)

∣∣YKLM
�x�y

〉 = V�x
(x)δ�x,�̃x

δ�y ,�̃y
δK,K̃ , (B11)

simplifying the expression (B8).
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