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Electromagnetic vacuum of complex media: Dipole emission versus light propagation,
vacuum energy, and local field factors
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We offer a unified approach to several phenomena related to the electromagnetic vacuum of a complex
medium made of point electric dipoles. To this aim, we apply the linear response theory to the computation of
the polarization field propagator and study the spectrum of vacuum fluctuations. The physical distinction among
the local density of states which enter the spectra of light propagation, total dipole emission, coherent emission,
total vacuum energy, and Schwinger-bulk energy is made clear. Analytical expressions for the spectrum of dipole
emission and for the vacuum energy are derived. Their respective relations with the spectrum of external light and
with the Schwinger-bulk energy are found. The light spectrum and the Schwinger-bulk energy are determined by
the Dyson propagator. The emission spectrum and the total vacuum energy are determined by the polarization
propagator. An exact relationship of proportionality between both propagators is found in terms of local field
factors. A study of the nature of stimulated emission from a single dipole is carried out. Regarding coherent
emission, it contains two components. A direct one which is transferred radiatively and directly from the emitter
into the medium and whose spectrum is that of external light. And an indirect one which is radiated by induced
dipoles. The induction is mediated by one (and only one) local field factor. Regarding the vacuum energy, we
find that in addition to the Schwinger-bulk energy the vacuum energy of an effective medium contains local field
contributions proportional to the resonant frequency and to the spectral line width.
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I. INTRODUCTION

Dipole emission and the Casimir effects in dielectric
media are long-standing research topics in quantum electro-
dynamics. They constitute paradigmatic phenomena of the
matter-radiation interaction which are related to the quantum
nature of the vacuum. Regarding dipole emission, it is known
since the work of Purcell [1] that the spontaneous emission
rate of an atom, �, in a dielectric host medium depends on
the interaction of the emitter with the material environment.
This is so because the back-reaction of the medium on the
atom via the self-polarization field modifies its self-energy.
In the first place the host medium modifies the density of
channels into which the atom can radiate [i.e., the local density
of states (LDOS)] and hence the value of �. Second, the
integration of the associated self-energy gives rise to a shift in
the resonant frequency of the atom. Third, the dipole-transition
amplitude also gets modified. As a result, the medium is said
to renormalize the polarizability of the emitter.

In addition and complementarily, the medium polarizes
the electromagnetic (EM) vacuum since material degrees
of freedom couple to the EM fluctuations. As a result,
polarization fluctuations arise. In particular, this reflects in
a renormalization of the susceptibility of the medium, which
in turn determines the vacuum energy.

We will postulate two distinguishable EM vacua attending
to the existence of two different spectra of fluctuations. These
are a light vacuum in which the light from an external source
propagates through the medium, and an emission vacuum
in which the radiation emitted from a dipole within the
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medium lives. When the dipole constituents of the medium
are equivalent to each other, the spectra of fluctuations in both
vacua are related by an exact mathematical expression. It will
be shown that the spectrum of the light vacuum is only part of
the spectrum of the emission vacuum.

In accordance with the previous distinction, pairs of homol-
ogous quantities ascribe to each vacuum. These are the light
propagation spectrum and the dipole emission spectrum; the
bulk-Dyson field and the dipole field; and the Schwinger-bulk
energy and the total vacuum energy. The relationships between
the members of each pair are determined by local field factors.
The finding of analytical expressions for these relations is the
main achievement of the present work.

We will deal with a dielectric medium made of isotropic
point dipoles. The distribution of dipoles is statistically homo-
geneous and isotropic. Ours is a classical Green’s-function-
based approach. The system is linear, being characterized by a
transference matrix T̄ . The coupling matter-radiation is weak
so that in any multiple-scattering process photons are asymp-
totically free in between any two scattering events. Therefore,
the propagator of the radiation in the medium can be computed
in terms of a stochastic Lippmann-Schwinger equation over
the ensemble of scatterer configurations. Our approach is
compatible with the existence of internal resonances in single
scatterers and geometrical resonances in clusters. However,
excitons proper of high-order systems in the strong coupling
regime [2] are disregarded.

The medium under consideration is stationary with respect
to (w.r.t.) the emission processes. All the quantities computed
are time-independent ensemble-averaged quantities. No other
mechanism but radiation is considered in the processes of gain
and loss of energy by the dipoles. In particular, collisional
effects and the Doppler shift are disregarded. For the latter, the
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condition v/c � �/ω is required, v being the typical velocity
of the scatterers and ω the frequency of interest. There is also
the weak-coupling condition ω � �. Finally, in order to treat
the scatterers as point dipoles we demand that ω/c � a−1 and
ξ � 3a, a being the typical radius of a dipole and ξ being the
minimum distance between them.

Our approach is based on the microscopical diagrammatic
treatments carried out by Foldy [3], Lax [4], Frisch [5],
Dzyaloshinskii et al. and Abrikosov et al. [6,7], and Bullough
and Hynne [8,9]. We base on Milonni’s work [10–12] to apply
our classical Green’s function formalism to the computation
of quantum quantities.

The article is organized as follows. In Sec. II we derive
the fundamental relation between the Dyson propagator and
the polarization propagator. The self-polarization propagator
determines the radiative corrections which renormalize the
single-particle polarizability. This issue is addressed in Sec. III
together with the derivation of an expression for the optical
theorem in complex media. That expression yields the total
dipole emission, which is decomposed into coherent and
extinguished components in Sec. IV. In Sec. V the light
vacuum and the emission vacuum are related via symmetry
transformations. The role of the local field factors in coherent
emission and field renormalization is explained. In Sec. VI
we calculate the vacuum energy of a generic complex medium
using the Schwinger variational method and particularize to the
case of an effective medium. In Sec. VII we comment on the
difference between LDOSes and discuss some misconceptions
present in previous works. In Sec. VIII we offer an alternative
derivation of the fundamental relation between Dyson’s and the
polarization propagators based on the coupled-dipole method.
The most relevant results are summarized in Sec. IX.

Regarding notation, we will label three-spatial-component
vectors with arrows and three-by-three tensors with overlines.
We will denote the Fourier transform of functionals with
q-dependent arguments instead of the r-dependent arguments
of their position-space representation.

II. THE LOCAL DENSITY OF STATES

In application of the fluctuation-dissipation theorem, the
LDOS at a point �r for photons of frequency ω and any
polarization is given by the imaginary part of the trace (Tr)
of the ω mode of the propagator for virtual photons created
and annihilated at �r [7,13–16],

ρL(�r,ω) = − 2ω

πc2
Im{Tr[Ḡ(�r,�r; ω)]}. (1)

When dipoles are present in the medium, in addition to the
in-free-space EM fluctuations, polarization fluctuations arise
as a result of the matter-radiation interaction. Consequently,
the EM vacuum gets polarized and the dielectric matter
acquires additional self-energy. The field whose fluctuations
in vacuum are named EM vacuum fluctuations is the self-
polarization field, also called radiation reaction field [10].

Amongst the polarization fluctuations, polaritons are exci-
tations which satisfy certain dispersion relations and propagate
coherently [17]. That is, they are normal modes and they
determine the spectrum of coherent dipole emission. We
will show in Sec. IV that coherent emission consists of two

components. Those are a direct component which is transferred
radiatively and directly from an emitter into the medium, and
an indirect component which corresponds to the coherent
emission radiated by the induced dipoles surrounding the
emitter.

We will denote the total LDOS accessible to the photons of
frequency ω emitted from a dipole at �r by N emis(�r,ω). We will
show that the aforementioned direct coherent emission has
the same spectrum as the radiation which propagates through
the medium from an external (uncorrelated) source. Thus, we
will denote by N light(�r,ω) that part of N emis(�r,ω) accessible
to monochromatic external light of frequency ω. As long as
all the dipoles have the same polarizability, any point �r is
statistically equivalent to any other so that we can drop the �r
dependence on both LDOSes in this case.

A. The propagator of the coherent-Dyson field and N light

A generic random medium is made of N + 1 point dipoles
or scatterers in a volume V such that, in the thermodynamical
limit N,V → ∞, the average numerical density ρ = N+1

V
is finite. Each dipole is labeled by a subscript i which
takes integer values in [0,N ]. Each scatterer configuration is
determined by a set of N + 1 scatterer position vectors { �Ri}
and a set of N + 1 renormalized isotropic polarizabilities { ¯̃αi}
such that ¯̃αi = α̃i Ī (see the following for the definition of
renormalized polarizability). In a statistically homogeneous
and isotropic medium all the dipoles have a common polar-
izability, α̃i = α̃ ∀i = 0, . . . ,N , and the position vectors are
statistically equivalent as performing ensemble averages. We
will stick to a statistically homogenous and isotropic medium
unless otherwise specified.

N light(ω) is given by the Green function of the radiation
which propagates from an external source (i.e., ideally located
at infinity) through the medium to any point. It is sketched as
a series of multiple-scattering diagrams in Fig. 1. Because
both the external source and the end point are spatially
uncorrelated w.r.t. any of the scattering events in all the
diagrams, the corresponding Green’s function or propagator
is the radiative component of Dyson’s, Ḡ(�r,�r ′; ω) [6,7]. The
stochastic Lippmann-Schwinger equation for Ḡ(�r,�r ′; ω) reads
[5]

Gij (�r,�r ′; ω) = G
(0)
ij (�r − �r ′; ω) +

∫
V

d3r
′′
d3r

′′′
G

(0)
ik (�r − �r ′′

; ω)

× 〈
tωkm(�r ′′

,�r ′′′
)
〉
1PIGmj (�r ′′′

,�r ′; ω), (2)

where Ḡ(0)(�r − �r ′; ω) is the in-free-space propagator, k =
ω/c, and summation over repeated indices is implicit. The
functional t̄ ω(�r ′′

,�r ′′′
) denotes the t̄ matrix of each specific

configuration. It relates to the auxiliary matrix t̄ω( �Ri, �Rj )
through

t̄ ω(�r ′′
,�r ′′′

) =
N∑

i,j=0

t̄ω( �Ri, �Rj ) δ(3)(�r ′′ − �Ri)δ
(3)(�r ′′′ − �Rj ). (3)

t̄ω( �Ri, �Rj ) propagates photons along all possible multiple-
scattering trajectories connecting the dipoles i and j at points
�Ri and �Rj . It has a cluster expansion, t̄ω( �Ri, �Rj ) = −k2α̃δij +∑

n=2 t̄(n)
ω ( �Ri, �Rj )i �=j , where the nth term in the sum contains
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FIG. 1. Diagrammatic representation of the Dyson propagator, Ḡ.

n factors −k2α̃ and n − 1 tensors Ḡ(0)( �Rm − �Rl ; ω). As an
example,

t̄(4)
ω ( �Ri, �Rj ) = (−k2α̃)4

N∑
l,m=0;l �=m,i;m�=j

Ḡ(0)( �Ri− �Rl ; ω)

·Ḡ(0)( �Rl− �Rm; ω) · Ḡ(0)( �Rm− �Rj ; ω). (4)

The big brackets in Eq. (2) stand for the average performed
over the ensemble of scatterer configurations. The subscript
1PI signals the restriction to one-particle-irreducible (1PI)
correlations. Thus, the stochastic kernel of Eq. (2) is the
electrical susceptibility function made of the sum of 1PI
multiple-scattering processes [5,8],

χ̄ω(�r ′′
,�r ′′′

) = −k−2〈t̄ ω(�r ′′
,�r ′′′

)〉1PI. (5)

The average process may be performed over both the classical
and the quantum degrees of freedom of the configurations. In
the simplest case, only spatial correlations among the scatterers
are considered [3].

The in-free-space propagator, Ḡ(0)(�r − �r ′; ω), is the expec-
tation value of the electric field generated at the point �r by a
classical dipole at �r ′ oscillating with frequency ω. Equivalently
it is the ω mode of the Green function of Maxwell’s equation
in free space,[

ω2

c2
Ī − �∇ × �∇ ×

]
Ḡ(0)(�r − �r ′; ω) = δ(3)(�r − �r ′)Ī. (6)

Ḡ(0)(�r − �r ′; ω) has also a quantum-mechanical interpretation.
It is the scattering amplitude, computed at second order of per-
turbation theory, of the interaction between two point dipoles
of unit dipole moment placed at �r and �r ′, respectively (see,
e.g., [18]). Ḡ(0)(�r; ω) consists of an electrostatic (Coulombian)
dipole field propagator,

Ḡ
(0)
stat.(r; ω) =

[
1

k2
�∇ ⊗ �∇

]( −1

4π r

)
, (7)

and a radiation field propagator,

Ḡ
(0)
rad.(r; ω) = ei kr

−4πr
Ī +

[
1

k2
�∇ ⊗ �∇

]
ei kr − 1

−4πr
. (8)

In the reciprocal space and for an isotropic medium, any
tensor can be decomposed into longitudinal and transverse
components with respect to the propagation direction, �q. In
free space,

Ḡ(0)(�q; ω) = G
(0)
⊥ (q; ω)(Ī − q̂ ⊗ q̂) + G

(0)
‖ (q; ω) q̂ ⊗ q̂,

where q̂ is the unitary vector parallel to �q and

G
(0)
⊥ (q; ω) = 1

k2 − q2
, G

(0)
‖ (q; ω) = 1

k2
. (9)

While the radiative component is fully transverse, the electro-
static one is fully longitudinal.

For a given medium, Ḡ(�r,�r ′; ω) is the expectation value
of the coherent-Dyson field or bulk field, �Eω

D(�r), generated
at �r by a source at �r ′, being both points uncorrelated w.r.t.
any of the scatterers in the medium. In particular, when �r ′
is located at infinity, it is the transverse component w.r.t. the
propagation, Ḡ⊥(�r,�r ′; ω), that propagates coherent external
light [8]. Ḡ is obtained averaging over the ensemble of scatterer
configurations all possible multiple-scattering propagation
trajectories which start at �r ′ and end at �r . Ḡ(�r,�r ′; ω) is said
to be the analog of Ḡ(0)(�r − �r ′; ω) in a complex medium in the
sense that it satisfies an ensemble-averaged Maxwell equation
analogous to that in Eq. (6),〈[

ω2

c2
eω(�r)Ī − �∇ × �∇ ×

]
ḡ(�r,�r ′; ω)

〉
= δ(3)(�r − �r ′)Ī. (10)

In the previous expression eω(�r) = 1 + ∑N
i=0 α̃δ(3)(�r − �Ri)

and ḡ(�r,�r ′; ω) are, respectively, the dielectric tensor and the
Green function of each specific scatterer configuration. The
integral version of Eq. (10) is that of Eq. (2) for Ḡ(�r,�r ′; ω) ≡
〈ḡ(�r,�r ′; ω)〉.

In a statistically homogeneous medium Ḡ(�r,�r ′; ω) and
χ̄ω(�r,�r ′) are functions of �r − �r ′ for any pair of points. In the
Fourier space, isotropy allows one to split the Dyson equation
for Ḡ(q) in two uncoupled and mutually orthogonal algebraic
equations,

G⊥,‖(q) = G
(0)
⊥,‖(q) − k2 G

(0)
⊥,‖(q) χ⊥,‖(q) G⊥,‖(q). (11)

In the previous equation and in the following we will omit for
brevity the explicit dependence of the functionals on ω. The
same as for the t̄ matrix, χ⊥,‖(q) adjust to cluster expansions
of the form,

χ⊥,‖(q) =
∞∑

n=1

X
(n)
⊥,‖(q)ρnα̃n. (12)

The functions X
(n)
⊥,‖(q) incorporate the spatial dispersion

due to the 1PI spatial correlations within clusters of n

scatterers. In addition, they account for the intermediate
multiple-recurrent-scattering processes among them. In field
theory terminology, χ̄ is proportional to the self-energy tensor,
	⊥,‖(q) = −k2χ⊥,‖(q). Alternatively, Eq. (11) can be written
in terms of the ensemble-averaged T̄ matrix,

G⊥,‖(q) = G
(0)
⊥,‖(q) + G

(0)
⊥,‖(q) T⊥,‖(q) G

(0)
⊥,‖(q), (13)

where, in application of isotropy and homogeneity, T⊥,‖ are
defined through

〈t̄(�q,�q ′)〉 = (2π )3δ(3)(�q − �q ′)T̄ (�q),

T̄ (�q) = T⊥(q)(Ī − q̂ ⊗ q̂) + T‖(q) q̂ ⊗ q̂.

The solutions to Eq. (11) are the Dyson propagator compo-
nents,

G⊥(q) = 1

k2[1 + χ⊥(q)] − q2
,

(14)
G‖(q) = 1

k2[1 + χ‖(q)]
.
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In terms of free propagators and self-energy tensors, Ḡ can be
depicted perturbatively as in Fig. 1. Normal modes are given
by the poles of G⊥,‖(q). They satisfy the dispersion relations,

k2ε⊥(q) − q2|q=knor.
⊥ = 0, (15)

ε‖(q)|q=knor.
‖ = 0, (16)

with ε⊥,‖(q) = 1 + χ⊥,‖(q) being the dielectric functions for
transverse and longitudinal modes, respectively. Longitudinal
modes need coupling to matter to propagate while external
light excites only transverse modes [8]. Thus, we have

N light(ω) = − 4ω

πc2
Im

{∫
d3q

(2π )3
G⊥(q; ω)

}
. (17)

B. The propagator of the polarization field and N emis

The Green function which determines N emis(ω) through
Eq. (1) is that of the polarization field, Ḡ. For a given medium,
Ḡ(�r,�r ′; ω) is the expectation value of the electric field generated
at the point �r by a classical dipole oscillating at frequency ω at
a point �r ′ within the medium. It is in this sense that Ḡ(�r,�r ′; ω) is
the analog of Ḡ(0)(�r − �r ′; ω) in a complex medium. Because,
by assumption, our medium is made of indistinguishable point
scatterers we choose the dipole emitter to be the 0th scatterer
out of the N + 1. Thus, the ensemble-averaged Maxwell
equation reads, here,〈[

ω2

c2
eω(�r)Ī − �∇ × �∇ ×

]
ḡ(�r,�r ′; ω)

〉∣∣∣∣
�r ′= �R0

= δ(3)(�r − �R0)Ī.

(18)
The restriction |�r ′= �R0

signals the fact that the ensemble
averaged is performed keeping �r ′ fixed at the position vector
of the 0th scatterer. This simple but crucial fact makes Eq. (18)
different from Eq. (10). The resultant integral Lippmann-
Schwinger stochastic equation for Ḡ(�r,�r ′; ω) = 〈ḡ(�r,�r ′; ω)〉 is

Gij (�r,�r ′; ω) = G
(0)
ij (�r − �r ′; ω) +

∫
V

d3r
′′
d3r

′′′
G

(0)
ik (�r − �r ′′

; ω)

×〈
tωkm(�r ′′ − �r ′,�r ′′′ − �r ′)

〉
1PI|�r ′= �R0

Gmj (�r ′′′
,�r ′; ω).

(19)

The expression,〈
tωkm(�r ′′ − �r ′,�r ′′′ − �r ′)

〉
1PI|�r ′= �R0

, (20)

is a symbolic manner of writing the stochastic kernel. The
explicit dependence of t̄ ω on �r ′ and the restriction |�r ′= �R0

denote
that while performing the average over all the 1PI processes, �r ′
in Ḡ(�r ′′′

,�r ′; ω) is kept fixed at the center of the 0th dipole. This
is a consequence of the fact that the stochastic operator on the
left-hand side of Eq. (18) is correlated to the source term on
the right-hand side of that equation. In Eq. (19) the dipole at �r ′
acts as a source and hence it is a dipole emitter. In general, the
presence of an emitter would break statistical homogeneity in a
random medium and Ḡ would depend explicitly on the emitter
location, �R0. However, in a statistically homogeneous medium,
since all the position vectors are equivalent as performing
ensemble averages, we can drop the explicit dependence on
�R0 in favor of a generic argument �r ′ as in Eq. (19). Note that if

we replace �r ′ by �r in the stochastic kernel and fix �r at a dipole,
that dipole would be a particle being polarized instead.

Our interest is in the self-polarization propagator that enters
N emis(ω). It is computed out of Eq. (19) by setting |�r ′ − �r| < a.
This way, the dipole emitter is at the same time the dipole
being polarized. In turn, the distinction between �r and �r ′ is just
formal as it cannot be resolved for point dipoles. We will set
�r = �r ′ without loss of generality. Ḡ(�r,�r; ω) carries the radiative
corrections which enter the renormalized polarizability of the
emitter, α̃. Because both the fluctuations of the classical self-
polarization field and those of the quantum vacuum field are re-
lated by the fluctuation-dissipation theorem (see, e.g., [10,11]),
both classical and quantum corrections can be treated within
the same formalism. Clarifications on this point will be
provided where necessary.

The explicit dependence of Eq. (20) on the emitter position
in Eq. (19) makes that any scattering process of the virtual
photons in their way from and toward the emitter be correlated
w.r.t. the emitter position. When the emitter is in all equivalent
to the rest of the host scatterers, such a correlation is the same
as that among the host scatterers themselves. In the simplest
case the only correlation is that of an exclusion volume. It is in
this sense that the homogeneity of the medium is only virtually
broken and the exclusion volume around the emitter is referred
to as virtual cavity. Should the emitter be distinguishable w.r.t.
the other scatterers, that correlation would differ. Homogeneity
would be actually broken and the cavity would not be virtual
but a real cavity. The breaking of homogeneity, either virtually
or actually, makes the computation of Ḡ(�r,�r ′; ω) different to
that of the ordinary Dyson’s propagator and the stochastic
kernel of Eq. (19) different to the susceptibility tensor. We
will refer generically to the scenario in which the emitter is in
all equivalent to the host dipoles as stricto sensu (s.s.) virtual
cavity (VC) scenario. It is for this scenario that there exists
a close relation between Ḡ(�r,�r; ω) and Ḡ(�r,�r; ω) which we
proceed to investigate.

In the following, we will work in Fourier space and write
Ḡ(�r,�r; ω) as

Ḡ(�r,�r; ω) = 1

3

[ ∫
d3q

(2π )3
2G⊥(q; ω) +

∫
d3q

(2π )3
G‖(q; ω)

]
Ī

≡ 1

3
[(2ϕ

ω(0)
⊥ + ϕ

ω(0)
‖ ) + 2ϕωsc

⊥ + ϕωsc
‖ ]Ī, (21)

where ϕ
ω(0)
⊥,‖ are the in-free-space values which contain real

divergences to be regularized. ϕωsc
⊥,‖ are the divergenceless

scattering pieces. Physically, the ϕ factors account for the
dipole self-energy associated with self-polarization photons.
The numerical prefactor 2 in front of ϕ⊥ stands for the
two transverse polarization modes. The ω dependence will
be omitted hereafter unless necessary. We first observe that
Ḡ(�r,�r) is made of 1PI diagrams in which the end points
coincide. Those diagrams amount to the so-called recurrent
scattering. Let us draw them as linear processes as in Fig. 2.
The second observation is that, by reciprocity, every interme-
diate scattering event in Ḡ(�r,�r) which is correlated to the fixed
dipole at �r will be correlated either at the near end or at the
rare end of each diagram, indistinguishably. Taking advantage
of this feature in every multiple-scattering diagram like that
in Fig. 2(b), we can attribute all the irreducible correlations
of the intermediate scattering events to the emitter on the left.
By proceeding so, we end up with an effective separation of
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(a)

(b)

(c) (d)

FIG. 2. (a) Feynman rules. Only two-point irreducible correlation
functions, h(r), have been used for the sake of simplicity. (b)
Diagrammatic representation of the equivalence between multiple-
scattering processes amounting to Ḡ(�r,�r). Reciprocity applies. µ

represents the virtual presence of the emitter. (c) and (d) Diagram-
matic representations of the integration in q of Eqs. (22) and (23),
respectively.

all those pieces irreducibly correlated to the emitter on the left
completely untangled from those non-1PI pieces on the right.
The sum of the 1PI pieces on the left amounts to χ̄/ρα̃, where
the factor 1/ρα̃ stands for the removal of the first random
scatter which enters the diagrams of χ̄ in favor of the fixed
emitter location. The sum of the non-1PI pieces on the right
amounts to the bulk propagator Ḡ. As a result, we end up with
the formulas [Figs. 2(c) and 2(d)],

GVC
⊥ (q) = χ⊥(q)

ρα̃
G⊥(q) = χ⊥(q)/(ρα̃)

k2[1 + χ⊥(q)] − q2
, (22)

GVC
‖ (q) = χ‖(q)

ρα̃
G‖(q) = 1

ρα̃

χ‖(q)

k2[1 + χ‖(q)]
. (23)

The previous expressions contain both G
(0)
⊥ and G

(0)
‖ which

carry divergences. The scattering terms,

ϕVC
⊥ =

∫
d3q

(2π )3

[
χ⊥(q)/(ρα̃)

k2[1 + χ⊥(q)] − q2
− G

(0)
⊥ (q)

]
, (24)

ϕVC
‖ =

∫
d3q

(2π )3

[
1

ρα̃

χ‖(q)

k2[1 + χ‖(q)]
− G

(0)
‖ (q)

]
, (25)

are, however, fully convergent.
Alternatively, we can write ḠVC(q) in other forms making

use of Dyson’s equation. Using Eq. (11) we get

GV C
⊥,‖(q) = 1

k2ρα̃

[
1 − G⊥,‖

G
(0)
⊥,‖

]
. (26)

In function of the T̄ matrix of Eq. (13) it reads

GV C
⊥,‖(q) = −1

k2ρα̃
T⊥,‖(q) G

(0)
⊥,‖(q). (27)

The reader can find in Sec. VIII an alternative proof of Eq. (27)
using the formalism of the coupled-dipole method.

Finally, we write the Lippmann-Schwinger equation of
Eq. (19) for the polarization field propagator in Fourier space,

GV C
⊥,‖(q) = G

(0)
⊥,‖(q) + G

(0)
⊥,‖(q) �V C

⊥,‖(q) GV C
⊥,‖(q), (28)

where

�V C
⊥,‖(q) = −ρα̃

χ⊥,‖ G
(0)
⊥,‖

[
1 − χ⊥,‖

ρα̃
+ k2χ⊥,‖ G

(0)
⊥,‖

]
(q)

(29)
is the stochastic kernel of Eq. (20) expressed as a function of
χ̄ , Ḡ(0) and ρα̃.

In terms of the ϕ factors defined in Eq. (21), the LDOS of
emission reads

N emis(ω) = − 2ω

πc2
Im{2ϕ

ω(0)
⊥ + 2ϕωsc

⊥ + ϕωsc
‖ }. (30)

Note that, differently from the case of N light(ω), even for
the case that longitudinal normal modes do not exist, both
transverse and longitudinal modes contribute generally to
N emis(ω) as it does not solely include coherent modes. This is
so regardless of the absorptive properties of the medium.

III. RENORMALIZATION OF THE SINGLE-PARTICLE
POLARIZABILITY

The propagator Ḡ(�r,�r; ω) carries the radiative corrections
which renormalize the so-called bare-electrostatic polarizabil-
ity α0 of a given dipole. α0 can take different forms depending
on the nature of the dipole. We refer to [19] for a comprehensive
summary. In Appendix A we adopt a semiclassical model in
which dipoles are spherical nanoparticles of permittivity εe(ω)
and radius a � c/ω with α0(ω) = 4πa3 εe(ω)−1

εe(ω)+2 . In Appendix B
we adopt a two-level atom model in which the atom is in a
spherically symmetric quantum state.

Let us consider first the classical model and compute the
off-resonant renormalized polarizability of a classical dipole.
Let us suppose that the dipole is stimulated by a stationary
external field which oscillates in time with frequency ω, �E0.
The processes of absorbtion and emission of radiation by the
emitter become stationary after a relaxation time of the order
of �−1. In function of the ϕ factors, the average power emitted
and absorbed by the stimulated dipole reads (see Appendix A)

W tot
ω = ωε0

2
Im

{
α0

1 + 1
3k2α0[2ϕ

(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ ]

}
| �E0|2 (31)

= −ω3ε0

6c2

[
|α0|2Im{2ϕ

(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ }

|1 + 1
3k2α0[2ϕ

(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ ]|2

− 3

k2

Im{α0}
|1 + 1

3k2α0[2ϕ
(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ ]|2

]
| �E0|2. (32)

The explicit dependence of the ϕ factors on k = ω/c has
been omitted. The term in Eq. (32) corresponds to the power
absorbed within the emitter while that of Eq. (31) corresponds
to the power transferred to the medium.

We can write W tot
ω in terms of a renormalized polarizability

α̃ as W tot
ω = ωε0

2 Im{α̃ �E0 · �E∗
0 } = ωε0

2 | �E0|2Im{α̃}, with

α̃(k) = α0

1 + 2
3k2α0ϕ

(0)
⊥ + 1

3k2α0[2ϕsc
⊥ + ϕsc

‖ ]
. (33)

Because the computation has been assumed for frequencies far
from resonances, it is possible to regularize the real divergence
of ϕ

(0)
⊥ by setting it to zero [19] so that 2ϕ

(0)
⊥ = −i k

2π
in
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the previous equation. Finally, writing Eqs. (31) and (32) in
the form,

W tot
ω

= −ω3ε0

6c2
|α̃E0|2

[
Im{2ϕ

(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ } − 3

k2

Im{α0}
|α0|2

]
,

(34)

we obtain an expression for the optical theorem in complex
media.

Next, let us consider the polarizability of a quantum
two-level atom. In good approximation, we can adjust α̃ to
a renormalized Lorentzian polarizability [20],

α̃ = 1

3
α̃0k

2
res

[
k2

res − k2 − i�k3/
(
ck2

res

)]−1
. (35)

This way, α̃ gets parametrized in terms of the renormalized
values of α̃0, kres, and �. Radiative corrections enter in the
same fashion as for the classical model previously mentioned
[10] (see also Appendix B). Therefore, the parametrization
in Eq. (35) allows us to give a physical meaning to the ϕ

factors and to their in-free-space divergent terms. In free space
α0 relates to the dipole-transition matrix element µ and the
bare resonant frequency, ω0 = ck0, through α0 = 2|µ|2

ε0h̄ck0
. In

addition, the previous parametrization yields an automatic
regularization of the divergent real part of 2ϕ

(0)
⊥ , Re{2ϕ

(0)
⊥ } =

−3
k2

0α0
. This regularization procedure determines the in-free-

space Lamb shift when coupling to bare radiative modes is

considered [21]. By consistency, �0 = cα0k
4
0/6π = k3

0
3πε0h̄

|µ|2
is the in-free-space decay rate. Comparison of Eq. (33) with
Eq. (35) yields the following expressions for the renormalized
parameters in terms of the ϕ factors,

� = − c

3
α̃0k

3Im{2ϕ
(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ }|k=kres

= −�0
2π

k2
0

kIm{2ϕ
(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ }|k=kres, (36)

where kres is a real non-negative root of the equation,

(k/k0)2 − 1 = 1

3
α0k

2Re{2ϕsc
⊥ + ϕsc

‖ }|k=kres, (37)

and α̃0 = α0(k0/kres)
2. (38)

Except for Eq. (38), the formulas for kres and � have been
already derived using a fully quantum-mechanical (QM)
formalism [21–24]. In [23,24] the same self-consistency
requirement between Eqs. (36) and (37) was obtained. Note,
however, that only the resonant term of the level shift is ac-
counted for in Eq. (37) [23], that is, we have implicitly assumed
that the level shift due to the van-der-Waals interactions is the
same for the two atomic levels [22] (see also Sec. VI).

The underlying reason why the radiative corrections which
yield the spectrum of stimulated emission in Eq. (34) enter in
the same fashion the spontaneous decay rate in Eq. (36) is that
the spectrum of the self-polarization field relates to that of the
vacuum field by means of the fluctuation-dissipation theorem.
While it can be interpreted that only the latter contributes to
Eq. (34), both of them, and in the same fashion, contribute to
Eq. (36). Following Milonni’s arguments [10,12], this explains

why the Einstein coefficient for spontaneous emission is twice
that for stimulated emission.

IV. ON THE NATURE OF STIMULATED EMISSION

Let us consider the emission term of Eq. (31) for a scenario
in which only one of the classical dipoles of a statistically
homogeneous dielectric is stimulated by an external field. We
will refer to the emitter as dipole source as well. The ϕ factors
are those for the virtual cavity scenario and we can write

W tot
w = Wo

∫
d3q

(2π )3
Tr

{
Im

[
χ̄ω(�q)

ρα̃
· Ḡ(�q; ω)

]}
, (39)

where Wo = −ω3

6c2ε0
| �p0|2, being �p0 = ε0α̃ �E0(�r) the dipole mo-

ment induced by the monochromatic external field �E0(�r) of
frequency ω on the emitter at �r .

The first obvious decomposition is that between transverse,
W tot

⊥ , and longitudinal emission, W tot
‖ ,

W tot
⊥ = Wo

∫
d3q

(2π )3
2Im

{
χ⊥(q)

ρα̃
G⊥(q)

}
, (40)

W tot
‖ = Wo

∫
d3q

(2π )3
Im

{
χ‖(q)

ρα̃
G‖(q)

}
. (41)

Hereafter we drop the script ω bearing in mind that all the
quantities depend on the frequency of the external field.

Coherent emission is that carried by the coherent-Dyson
field itself and by any other averaged-field component in-phase
with it. That is, the power carried by the total ensemble-
averaged field radiated [4]. This is the radiation whose modes
satisfy the same dispersion relations as the normal modes in
the bulk, Eqs. (15) and (16) [2,8,25]. They are the poles of
G⊥(q) and G‖(q) in the integrands of Eqs. (40) and (41). The
rest of the radiation goes into dispersion and absorbtion. It is
termed generically extinguished emission [26]. Therefore, we
define

WCoh
⊥ = Wo

∫
d3q

(2π )3
2Re

{
χ⊥(q)

ρα̃

}
Im{G⊥(q)}, (42)

W ext
⊥ = Wo

∫
d3q

(2π )3
2Im

{
χ⊥(q)

ρα̃

}
Re{G⊥(q)}, (43)

WCoh
‖ = Wo

∫
d3q

(2π )3
Re

{
χ‖(q)

ρα̃

}
Im{G‖(q)}, (44)

W ext
‖ = Wo

∫
d3q

(2π )3
Im

{
χ‖(q)

ρα̃

}
Re{G‖(q)}. (45)

The definitions of formulas [Eqs. (42) and (44)] as transverse
and longitudinal coherent emission are inspired by the spec-
trum of the on-shell modes of field theories [7,27]. Hence,
the sourceless counterpart of WCoh

ω = WCoh
⊥ + WCoh

‖ is the
spectrum of polaritons. In the following, we examine WCoh

ω in
the framework of Classical Optics to show that it corresponds
indeed to the ordinary classical interpretation of coherent
radiation. Let us write WCoh

ω as

WCoh
ω = −ω3

6c2ε0
| �p0|2

×
∫

d3r ′Tr{Re[χ̄ (�r − �r ′)/ρα̃] · Im[Ḡ(�r ′,�r)]}, (46)
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where both χ̄ and Ḡ are written in the position-space repre-
sentation for convenience. Considering the fields classically,
the fluctuation-dissipation relation reads [7,15,16]

Im{Ḡ(�r ′,�r; ω)} = −πε0

h̄k2

〈 �Eω
D(�r ′) ⊗ �Eω∗

D (�r)
〉
, (47)

where �Eω
D(�r) is the ω mode of the coherent-Dyson field1

and the script D stands both for Dyson and for direct
emission for the reasons explained below. Using Eq. (47) and
writing Re{χ̄(�r − �r ′)/ρα̃} = [Re{χ̄(�r − �r ′)/ρα̃} − δ(3)(�r −
�r ′)Ī] + δ(3)(�r − �r ′)Ī in Eq. (46), we separate explicitly the
field radiated directly by the source dipole from that which is
emitted by the induced surrounding dipoles,

WCoh
ω = πω

6h̄
| �p0|2

〈 �Eω
D(�r) · �Eω∗

D (�r)
〉

+ πω

6h̄
| �p0|2Tr

{ ∫
d3r ′〈[Re{χ̄(�r − �r ′)/ρα̃}

− δ(3)(�r − �r ′)Ī] · �Eω
D(�r ′) ⊗ �Eω∗

D (�r)
〉}

, (48)

where the angular brackets here denote vacuum expectation
values. The first term on the right-hand side of Eq. (48)
contains the coherent power carried by the field directly
radiated by the dipole source into the medium [28], WCoh

D =
πω
6h̄ | �p0|2〈| �Eω

D(�r)|2〉. Its transverse component is the same
expression as that for the coherent intensity carried by a
propagating light beam whose source sits out of the medium
[4]. In the rest of the right-hand side we can identify part of
the field emitted at �r ′ by the induced dipoles sitting around
the dipole source which propagates toward the source itself
located at �r ,

�Eω
I (�r) =

∫
d3r ′[χ̄ (�r − �r ′)/ρα̃ − δ(3)(�r − �r ′)Ī] · �Eω

D(�r ′).

(49)
The subscript I stands both for induced and for indirect.
Therefore, we can write

WCoh
ω = πω

6h̄
| �p0|2

[〈∣∣ �Eω
D(�r)

∣∣2〉 + Re
{〈 �Eω

I (�r) · �Eω∗
D (�r)

〉}]
(50)

and WCoh
ω = WCoh

D + WCoh
I , with

WCoh
I = πω

6h̄
| �p0|2Re

{〈 �Eω
I (�r) · �Eω∗

D (�r)
〉}

. (51)

As expected, Eq. (51) is the coherent power of that component
of the averaged field induced on the surrounding dipoles
which is in-phase with Dyson’s (see [29] for an analogous
computation in a simpler scenario).

Alternatively we can write

WCoh
D = −ω3

6c2ε0
| �p0|2Tr{Im[Ḡ(�r ′,�r)]}, (52)

WCoh
I = −ω3

6c2ε0
| �p0|2

∫
d3r ′Tr{Re[χ̄(�r − �r ′)/ρα̃

− δ(3)(�r − �r ′)Ī] · Im[Ḡ(�r ′,�r)]}. (53)

1Throughout this paper the electric field vectors with script ω

are frequency modes of the field, not to be confused with the
monochromatic external electric field of frequency ω used in Secs. III
and VIII.

In the diagrammatic representation of WCoh
D , Ḡ is directly

attached to the emitter. Im{G⊥} yields the transverse normal
modes or actual photons which mediate the radiative energy
transfer from the emitter into the medium [18]. The diagram-
matic representation of WCoh

I can be split in two pieces. The
induction piece, χ̄(�r − �r ′)/ρα̃ − δ(3)(�r − �r ′)Ī, is attached to
the emitter. Its nontrivial real part, Re{χ̄(�r − �r ′)/ρα̃}, does not
possess any normal transverse mode. In particular, no actual
photon emerges from the emitter, being the induction due
to nonradiative energy transfer mediated by virtual photons.
The second piece amounts to Ḡ and is attached to the host
dipoles. Im{G⊥} yields the transverse normal modes or actual
photons emitted by the induced dipoles which are in phase
with those of WCoh

D . We conclude that only the spectrum of the
power transferred radiatively and directly into the medium is
equivalent to the spectrum of external light.

In the extinguished emission the factors Im{χ⊥,‖(q)
ρα̃

} of
Eqs. (43) and (45) contain both absorbtion and dispersion,
which are in principle indistinguishable observationally. The
former is attributed to the intrinsic imaginary part of the bare
polarizabilities, Im{α0}. The latter is captured by the bare trans-
verse modes affected by correlations [9], that is, incoherent
radiation (in the classical sense) which cannot be written in a
form analogous to that of Eq. (51).

Observationally, the power collected in the far field at
a distance r ′ � ξ from the emitter—ξ being the typical
correlation length—using an integrating sphere would be the
sum of the coherent and the dispersed emissions. On the
contrary, the coherent component would be proportional to
the integral of the square of the averaged field measured by
an observer on a sphere of radius r ′. In an effective medium it
relates to WCoh

⊥ through the Beer-Lambert attenuation factor2

,

WCoh(r ′) = WCoh
⊥ exp{−2κωr ′/c}

= cnε0r
′2

2

∫ ∣∣∣〈 �E(r ′,�)
〉∣∣∣2

d�, (54)

where n,κ are the refractive index and the extinction coefficient
of the medium, respectively, and the big angular brackets
denote the ensemble average.

V. RELATION BETWEEN LIGHT PROPAGATION, DIPOLE
EMISSION, AND THEIR VACUA

A. The vacuum of light versus the vacuum of emission

It is plain from the previous equations that only in free space
Ḡ(�r,�r) and Ḡ(�r,�r) are equal to Ḡ(0)(�r,�r) and so are N light(ω)
and N emis(ω) to N 0(ω) = ω2

π2c3 . On the other hand, the
fluctuation-dissipation theorem relates the quadratic vacuum
fluctuations of the electric field operator at a point �r with the

2Note that the fields within brackets in Eqs. (47)–(51) are operators
acting on the vacuum state. In contrast, the electric field in Eq. (54)
is an expectation value. The big brackets there stand for ensamble-
average.
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imaginary part of its propagator from �r to �r [7,15,16],

〈�| �̂Eω(�r) ⊗ �̂E
†
ω(�r)|�〉 = − h̄ω2

ε0c2π
Im{Ḡ(�r,�r; ω)}. (55)

Therefore, we infer that the photons emitted by an isolated
excited dipole propagate in the same vacuum as the radiation
which propagates from an external source in absolute absence
of dipoles. This is obvious since the source is an isolated dipole
itself. However, because in a complex medium Ḡ(�r,�r) �=
Ḡ(�r,�r), we infer that the EM vacuum in which external light
propagates, |�〉light, is different from that of the photons
emitted by the point dipoles, |�〉emis,

light〈�| �̂Eω(�r) ⊗ �̂E
†
ω(�r)|�〉light = −h̄ω2

ε0c2π
Im{Ḡ⊥(�r,�r; ω)}, (56)

emis〈�| �̂Eω(�r) ⊗ �̂E
†
ω(�r)|�〉emis = −h̄ω2

ε0c2π
Im{Ḡ(�r,�r; ω)}. (57)

Let us consider the s.s. virtual cavity formulas of Sec. II B
and let us represent polaritons and EM fluctuations in general
by closed loops of virtual photons created and annihilated
at the location of a probe dipole, �r . We can compute the n-
scattering loops which amount to ḠV C(�r,�r) out of (n + 1)-
scattering loops with undefined reference frame [see Fig. 3(a)].
To do so, �r must be chosen amongst the n + 1 position vectors
of the scatterers and we must treat the scatterer chosen as a
virtual-probe emitter to be removed. If �r is uncorrelated w.r.t.
any other point along the original loop, the resultant polariton
amounts to Ḡ(�r,�r) and hence, to ḠVC(�r,�r) [see Fig. 3(b)].
That is the same situation met by the photons coming from
an external light source at infinity. On the contrary, if �r is
correlated to any of the remaining dipoles in the original loop,
the resultant polariton amounts to ḠV C(�r,�r) but not to Ḡ(�r,�r)
[Fig. 3 (c)]. Translation invariance holds statistically in the
sense that it is the origin of the probe-dipole reference frame,
�r , that can be any point in the medium.

The finding that the polaritons in Ḡ(�r,�r) are all included in
ḠV C(�r,�r) was already obtained through the study of coherent

(a)

(b) (c)

FIG. 3. (a) Five-scattering closed loop with undefined reference
frame. (b) Fixing the reference frame at the position of the
uncorrelated (removed) scatterer labeled as 1 yields a polariton in
Ḡ(�r,�r). It can be excited either by external light or by dipole emission.
(c) Fixing the reference frame at the position of the correlated
(removed) scatterer labeled as 3 yields a polariton in ḠVC(�r,�r) which
is not in Ḡ(�r,�r). It can be excited by dipole emission only.

emission. Another way to look at this relation is by considering
the symmetries of each vacuum. If the origin �r of one
of the n-scattering loops of ḠV C(�r,�r) is translated to any
of the remaining n scatterer position vectors of the original
(n + 1)-scattering loop, the resultant loop is also a polariton
that amounts to ḠV C(�r,�r). On the contrary, if the same
transformation is carried out on a given n-scattering loop of
Ḡ(�r,�r), there is a chance that the resultant polariton amounts to
ḠV C(�r,�r) but not to Ḡ(�r,�r). Only those transformations which
transport �r to another uncorrelated scatterer generate a loop
in Ḡ(�r,�r). The group of transformations which leave Ḡ(�r,�r)
invariant is the symmetry group of |�〉light and likewise for
ḠV C(�r,�r) and |�〉emis. Therefore, we conclude that the group
of symmetry of the light vacuum is included in that of the
emission vacuum.

B. Local field factors as renormalization functions

The relation of proportionality between Dyson’s and the
polarization propagator in Fourier space,

G⊥,‖(q; ω) = L⊥,‖(q; ω) G⊥,‖(q; ω), (58)

serves us to define LVC
⊥,‖(q; ω) = χω

⊥,‖(q)
ρα̃

as the local field
factors (LFFs) of the s.s. virtual cavity scenario. A relation
of the same kind in the specific scenario of emission from an
Onsager cavity drilled in a continuous dielectric was found by
Tomaš [30] and Dung et al. [31] for long-wavelength modes. In
the present case the proportionality relationship holds for the
whole q spectrum and the result applies to a generic random
medium. We now recognize that the induction process which
enters WCoh

I in Sec. IV is mediated by LFFs.
We discuss here in field-theory terms the proportionality

relationship between the spectrum of light and that of coherent
emission, which derives from the expression Im{GCoh

⊥,‖ (q; ω)} =
Re{χω

⊥,‖(q)
ρα̃

}Im{G⊥,‖(q; ω)}. From our derivation of the direct
and indirect components of the coherent emission we know

that Re{χω
⊥,‖(q)
ρα̃

} takes account of the actual polarization due
to the closest scatterers around the emitter. An analogous
phenomenon take place with the virtual polarization of
the vacuum in quantum electrodynamics (QED) [see, e.g.,
[32] and Chapters 7 and 10 of [27]]. Further integration
of Im{GCoh

⊥,‖ (q; ω)} in momenta gives the residues Z
p.ω

⊥,‖ ≡
Re{χω

⊥,‖(knor.
⊥,‖ )

ρα̃
} corresponding to the on-shell modes propagated

through the bulk by G⊥,‖(q; ω). Thus, we can write the
propagator of coherent modes in a more familiar way,3

GCoh
⊥,‖ (q; ω) = Z

p.ω

⊥,‖G⊥,‖(q; ω). (59)

In field theory terminology, the functions Z
p.ω

⊥,‖ are renormal-
ization functions. If we stick to the QED interpretation, the
electromagnetic field can be renormalized in order to get rid
off the (Zp.ω

⊥,‖)n factors which arise otherwise in the vacuum
expectation values of the products of 2n EM averaged-field

3The possibility that
χω

⊥,‖
ρα̃

present singularities is disregarded here.
We do not yet understand their possible physical meaning. It is our
guess that it could signal the transition to strong coupling.

022502-8



ELECTROMAGNETIC VACUUM OF COMPLEX MEDIA: . . . PHYSICAL REVIEW A 83, 022502 (2011)

operators. In doing that, the electric field so renormalized is
the Dyson field, �Eω

D|⊥,‖ = [Zp.ω

⊥,‖]−1/2 �Eω
Coh|⊥,‖.

It is perhaps worth repeating to avoid confusion that the
coherent nature of the dipole field here is classical. It is only
the formalism borrowed from QED that is quantum.

C. Coherent emission in a Maxwell-Garnett dielectric

We illustrate the decomposition of the emission spectrum
carried out in Sec. IV with the computation of the spectrum
of coherent emission in a Maxwell-Garnett (MG) dielectric.
By definition, an MG dielectric is a random medium made
of well-separated dipoles whose spatial distribution is
sufficiently well described by a two-point correlation function
of the form [9,26],

hMG(r) = −f (r − ξ ) �
{−1 for r � ξ

0 for r � ξ .

f (r − ξ ) is this way a spherical-exclusion-volume correlation
function of radius ξ . Usual forms are those of a Lennard-Jones
potential and a hard-sphere potential. For long wavelength
modes, qξ � 1, and low frequencies, kξ � 1, the detailed
shape of f (r − ξ ) is irrelevant and the quasicrystalline
approximation becomes exact in the computation of the
effective susceptibility [33]. Thus, it takes the familiar form,

χMG ≡ χMG
⊥,‖ (qξ = 0) = ρα̃

1 − 1
3ρα̃

. (60)

We omit for brevity the explicit dependence on ω. Beside
the long wavelength and the low frequency restrictions, the
MG formula disregards an inherent self-correlation term in
h(r) which gives rise to recurrent scattering. For off-resonant
frequencies Eq. (60) is a good approximation up to O[(ρα̃)3].
Bearing this in mind, we proceed to compute the LDOS of
coherent emission, N Coh, accessible to a point emitter in an
MG dielectric. N Coh is the LDOS of the observable emission
which adjusts to Eq. (54). The emitter can be either one
of the dipole constituents of the medium or an interstitial
dipole [20]. Emission must be stimulated with frequencies
far from internal resonances in order to avoid recurrent
scattering. The calculation is simple for an MG dielectric.
Since there are no longitudinal bulk normal modes in the
regime of frequencies considered, coherent modes are given
by the transverse MG polarization propagator,

GMG
⊥ (q) = LLLGeff

⊥ (q). (61)

In Eq. (61), LLL = ε+2
3 is a Lorentz-Lorenz local field factor

which derives from Eq. (60) and

Geff
⊥ (q) = [εk2 − q2]−1 (62)

is the transverse Dyson propagator of an effective medium
with dielectric constant ε. Straightforward application of
Eqs. (1), (59), and (61) yields

N Coh
MG(�r) = ω2

π2c3

Re{ε} + 2

3
Re{√ε}. (63)

For a nonabsorptive medium the index of refraction satisfies
n2 = ε and thus N Coh

MG(�r) ∝ (n3 + 2n)/3. Note that this
dependence on n differs from that of the light spectrum
in an effective medium [readily derivable from Eq. (62)],

N light ∼ n, due to the presence of a local field factor. The
precise form of this relation is, however, model dependent.
As an example, emission from an Onsager-Böttcher (OB)
cavity would yield N Coh

OB (�r) ∝ 3n3

2n2+1 instead [31], where the
OB local field factor reads LOB = 3ε

2ε+1 .
From Eqs. (61)–(63) it seems that long-wavelength radia-

tive modes are given only by Im{Geff
⊥ (q)} in the transverse

coherent emission. However, Im{χ‖(q)
ρα̃

} contains also trans-
verse parts of the in-free-space propagator [9]. It can be
shown that, for the long-wavelength modes of the effective
MG dielectric, the trace of the scattering longitudinal self-
polarization propagator can be written as [34]

ϕMG
‖qξ�1 =

∫
d3q

(2π )3

[
χ‖(q)/ρα̃

k2[1 + χ‖(q)]
− G

(0)
‖

]MG

qξ�1

� 2
∫

d3q

(2π )3
LLLGeff

⊥ (q)[LLL − 1]. (64)

As a result, the total LDOS for far-field emission contains a
dispersive component proportional to LLL,OB(LLL,OB − 1)n in
the MG and the OB models, respectively. We can conclude
that generically and for the far-field emission in an effective
medium, one local field factor enters the coherent spectrum
while two factors enter the total emission spectrum. Only the
latter is well known [35].

VI. THE VACUUM ENERGY

It has been recognized for a long time that the Casimir ef-
fects, the van der Waals (vdW) forces, and the Lamb-shift share
a common origin. It is customary to ascribe the vdW and Lamb
energies to short-range interactions while the Casimir effects
are thought of as long-range interactions. According to this
qualitative distinction the vdW and Lamb energies have a mi-
croscopical origin. It roots on the EM interactions between the
dipole constituents of the dielectric. For instance, the sum of
many-body interactions yields a sort of virial expansion for the
vdW energy [36]. On the contrary, the Casimir energy would
have a macroscopical origin. It roots on the long-range (re-
tarded) EM interactions between macroscopic dielectrics. Typ-
ically only the long wavelengths of the EM field are relevant
for the Casimir energy and their spectrum gets discrete as the
field obeys macroscopic boundary conditions. Some authors
refer to the energy of discrete modes as Casimir energy while
they term bulk energy that of the continuous spectrum [37–39].

Rather than making the distinction on the basis of the inter-
action range, an alternative terminology consists of referring
to the ground-state EM energy of the system when stored in the
material degrees of freedom (d.o.f.) of the dielectric as binding
energy [7,36,40]. On the contrary, when the ground-state EM
energy is computed out of the EM vacuum fluctuations it is
termed vacuum energy [41]. Evidently, this distinction is just
conceptual and the total binding energy must equal the total
vacuum energy. In either case, the EM energy manifests in
the shifts of bound state levels or in the shifts of the resonant
frequencies of optical normal modes.

Since we deal with an infinite volume complex medium,
surface terms and discrete modes are absent and there is no
need for using the interaction-range-based classification. The
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computation of GVC and the spectrum of vacuum fluctuations
allows us to compute the total vacuum energy density, FV . On
the other hand, the renormalization of the single-particle polar-
izabilities allows us to identify the shifts in the binding energy
of atomic states. Without ambiguity we can term the energy
shift of atomic levels Lamb-shift [21,23]. Correspondingly,
the energy density stored in the internal d.o.f. of every atom
is the Lamb energy density, FL. It follows from the previous
reasoning that FL must be part of FV . Nonetheless, because
other than internal d.o.f. are present in a molecular dielectric, it
is expected that the binding energies of collective (i.e., cluster)
d.o.f contribute also to FV . In Refs. [37,42] the authors have
found that, at leading order in ρα, the Lamb shift can be
derived from the total variation of the vacuum energy. In turn,
this would imply that, at leading order, all the vacuum energy
gets stored in the internal d.o.f. of the dipole constituents.
However, that result is not totally conclusive as near-field
interactions and local field factors are neglected there.

The aims of this section are, in the first place, to obtain
an analytical formula for FV which facilitates future inves-
tigations about its physical content, and second, to compute
the vacuum energy of an effective medium to estimate in first
approximation the contribution due to local field factors.

A. The vacuum energy of a homogeneous and isotropic
molecular dielectric

We apply the variational method of Schwinger to the com-
putation of the total vacuum energy density of a generic com-
plex medium made of point dipoles. According to Schwinger’s
approach, the vacuum energy emerges as an effective potential
of the EM field. In the present case, the effective potential is
induced as the dipole constituents are brought adiabatically
from infinity and are assembled until completing the final
dielectric configuration. To an infinitesimal variation on the
dielectric properties of the medium corresponds a variation
on the spectrum of vacuum fluctuations, N emis, and hence a
variation on the effective potential. The integration of the latter
variations is FV . Following [43–45], the Schwinger formula
for the effective action reads

S[H̄] = −i
h̄

2
Tr

{∫ ∞

0

du

u
eiuH̄+iη

}
, η → 0+, (65)

where the lower limit of integration can be set to zero after
regularization of divergent terms and H̄ is the proper-time
Hamiltonian operator. In our case H̄ is the inverse of the
self-polarization propagator, H̄ = Ḡ−1, in accordance with
the fluctuation-dissipation theorem [11]. The Casimir energy
relates to S by FV = −Re{S}/(VT ), T being an asymptotic
time of observation and V being the (infinite) volume occupied
by the dielectric material. This way, variations on FV are due
to variations of the self-polarization propagator. Replacing H̄
with Ḡ−1, performing the variational derivative, integrating in
u and taking the trace, one obtains

δFV = h̄

2
Im

{ ∫ ∞

−∞

dω

(2π )

∫
d3q

(2π )3
2G⊥(q)δG−1

⊥ (q)

+G‖(q)δG−1
‖ (q)

}
. (66)

The variational derivatives can be performed w.r.t. any func-
tional that characterizes the initial and final vacuum state.
In our case, the final state is determined by ḠVC which is a
function of Ḡ, χ̄ , and α̃. The initial state is that in which
the EM field is free and the dipoles do not interact, being
decoupled from the radiation field. For the two-level atom
model of Appendix B their “initial” polarizability is α′ =
α0
3 /(1 − ω2/ω2

0). Functional integration of Eq. (66) yields

FV = −h̄

2
Im

{∫ ∞

−∞

dω

2π

∫
d3q

(2π )3
ln [(α′/α̃)3]

}
(67)

+ −h̄

2
Im

{∫ ∞

−∞

dω

2π

∫
d3q

(2π )3
ln [χ2

⊥G2
⊥χ‖G‖]

}
(68)

− −h̄

2
Im

{∫ ∞

−∞

dω

2π

∫
d3q

(2π )3
ln [(G(0)

⊥ )2]

}
, (69)

where the ω,q dependence of the integrands has been omitted.
An expression like this was firstly obtained by Bullough
and Obada for a cubic molecular crystal [40]. The authors,
however, failed in not considering the renormalization of the
single-particle polarizability. This is crucial in order to identify
the Lamb energy. For future purposes we will refer to the terms
which involve the bare and Dyson’s transverse propagators in
Eqs. (68) and (69) as Schwinger-bulk energy,

FSch
bulk = −h̄

2
Im

{∫ ∞

−∞

dω

2π

∫
d3q

(2π )3
ln [G2

⊥/(G(0)
⊥ )2]

}
. (70)

Beside the in-free-space Lamb shift, Buhmann et al. have
computed the additional shift due to the interaction of every
dipole with the rest of the dielectric, ELsh

sc [23,24]. In other
words, ELsh

sc amounts to the energy stored in the atomic d.o.f.
that it would cost to take out of the medium one of the dipoles;
note that other possible energy costs in the removal process
are not accounted for in ELsh

sc . ELsh
sc is made of a resonant term

which only contributes if the dipole is in an excited state, ELsh
res. .

And an off-resonant term which depends on the polarizability
of each atomic state, ELsh

off . We just adapt the computations
in [23,24] to our results in Secs. II B and III for two-level
atoms in the VC scenario and obtain

ELsh
res. = |µ|2

3ε0
Re{k2[2ϕVC

⊥ + ϕVC
‖ ]|k=kres+ic�}, (71)

ELsh
off = − h̄c

4π

∫ ∞

0
du u2[2ϕVC

⊥ + ϕVC
‖ ]|k=iu

× [α̃|k=iu + α̃|k=−iu], (72)

where the ϕ factors are implicit functions of k. Equation (71)
equals ch̄(kres − k0) in Eq. (37) except for the fact that it is
not evaluated at k = kres but at k = kres + ic� instead. For
the same polarizability model, α̃|k=±iu in Eq. (72) is given by
Eq. (35) evaluated at the imaginary frequency ck = ±icu. The
expansion of the term in Eq. (67) allows one to verify that both
the in-free-space Lamb shift and ρELsh

off enter that equation
but with opposite sign4. This leads to an interpretation of

4The proof of the equality Eq. (67) = −3FL will be given
somewhere else.

022502-10



ELECTROMAGNETIC VACUUM OF COMPLEX MEDIA: . . . PHYSICAL REVIEW A 83, 022502 (2011)

Eqs. (67)–(69) slightly different from that in [40], that is, FV

takes account of the in-free-space EM modes of Eq. (69) and
the Lamb energy of Eq. (67) and substitutes them with the
optical modes and/or binding energies of the coupled system
of Eq. (68).

The decomposition of FV suggests two questions. Firstly,
in view of the previously mentioned preliminary results, it
seems likely that FL is different from FV . Consequently, the
total energy cost in the removal of one of the dipoles from the
dielectric would be different to ELsh

sc . This must be verified.
Second, provided that FL �= FV , it should be investigated
whether or not there exists any observational signature of such
a distinction. We leave these issues for future work.

B. The vacuum energy of an infinite-volume effective medium

In this section we abandon the microscopical description of
the dielectric and concentrate on the long-wavelength modes
of the vacuum energy density in an infinite-volume effective
dielectric. The original computation carried out by Schwinger
[43] was motivated by the problem of the sonoluminescence
phenomenon on big bubbles. In here we will not try to address
in detail this problem since it involves secondary issues like
those of surface corrections [38], etc. Our purpose is to
investigate how the presence of local field factors, ignored
in previous approaches, modifies the usual Schwinger-bulk
energy.

The Schwinger-bulk scenario restricts to low frequencies
and long-wavelength modes in comparison with the typical
length scale of the dielectric microstructure. Thus, without
much loss of generality, we adopt the Maxwell-Garnett model
of Sec. V C. This way, the MG relation between ε and α̃ in
Eq. (60) can be used and the Lamb shift can be considered
integrated already in α̃. Following [43], we take a large
dielectric body and ignore the surface terms. Thus, we will
refer to the resultant energy as effective-volume energy to
distinguish it from the Schwinger-bulk energy and from the
total vacuum energy which would include short wavelengths.

Instead of using the exact formulas of Eqs. (67)–(69), it is
easier here to start with the functional derivatives of Eq. (66).
For an effective medium of uniform permittivity ε′(ω) = 1 +
χ

′
MG(ω) the variations on the right-hand side of Eq. (66) stand

for

δG−1
⊥,‖(q) = δε′ δ

δε′ {G−1
⊥,‖(q)}, (73)

where the explicit dependence on ω has been omitted. Using
the formulas of Sec. V C, we are left with

FV
MG = h̄

2
Im

{ ∫ ∞

−∞

dω

(2π )

∫
d3q

(2π )3

∫ ε

1
δε′

×
(

2LLLGeff
⊥ (q)

δ

δε′
{
L−1

LL[Geff
⊥ (q)]−1

}

+LLLGeff
‖

δ

δε′
{
L−1

LL[Geff
‖ ]−1

})}
,

where Geff
‖ = 1

ε′k2 and we have omitted the constant term
−3h̄Im{∫ ∞

0
dω
2π

ln [α′]} which is a reminder of the internal

bound energy of the isolated dipoles. The previous formula
presents two separable contributions,

FV
MG = 2h̄

∫ ∞

0

dω

(2π )

ω2

c2
Im

{ ∫ ε

1
δε′

∫
d3q

(2π )3
Geff

⊥

}
(74)

−h̄

∫ ∞

0

dω

(2π )

∫
d3q

(2π )3
Im

{
ln

[
L3

LL/ε
]}

. (75)

The term in Eq. (74) is the usual Schwinger-bulk term
equivalent to that in Eq. (70) for an effective medium,

FSch
bulk = h̄

6π2c3
Re

{∫ ∞

0
dω ω3[1 − ε3/2(ω)]

}

� h̄

6π2c3

∫ ∞

0
dω ω3[1 − n3(ω)], (76)

with n(ω) = Re{√ε(ω)}. Since FSch
bulk has been profusely

studied in the literature we will not attempt to evaluate it
further (see, e.g., [39]). Nonetheless, for future discussions let
us write FSch

bulk as

FSch
bulk =

∫ ∞

0
dω

−1

2
h̄ω

[
N Sch

bulk(ω) − 1

3
N 0(ω)

]
. (77)

By equating Eq. (76) with Eq. (77) we define N Sch
bulk(ω) =

ω2

3π2c3 n
3(ω).

The term in Eq. (75) comes from the combination of the
local field factors and the effective longitudinal propagator. We
will denote it by �FMG. It is not associated with normal modes.
As a matter of fact, only longitudinal photons contribute to the
LFFs in the MG model. Therefore, �FMG must contain the
contribution of internal resonances. We can estimate its value
using a Lorentzian dielectric constant of bandwidth � and
resonant frequency ωres,

ε = 1 + f ω2
res

ω2
res − ω2 − iω�

.

With the previous formula, Eq. (75) reads, approximately,

�FMG ≈ ρf 2

12

[
h̄ωres

2
+ h̄�

2π

]
, (78)

where f is an effective oscillator strength with f � 1 and ρ−1

is the volume-per-dipole such that
∫

d3q

(2π)3 = ρ. Note that the
isolated contribution of LFFs would be of order f instead,

FLFF
MG = −ρh̄

∫ ∞

0

dω

(2π )
Im

{
ln

[
L3

LL

]} ≈ ρf

2

[
h̄ωres

2
+ h̄�

2π

]
.

Except for numerical prefactors, the expression for �FMG

appears generic for the effective-volume energy density of
long-wavelength modes and regardless of the particular micro-
scopical dielectric model. Nonetheless, some comments are in
order regarding the particularities of the MG model. It was
mentioned in Sec. V C that the MG model neglects recurrent
scattering. However, at resonance scatterers overlap optically
and recurrent scattering becomes dominant. Therefore, devi-
ations from the MG results are expected [46]. Nevertheless,
although the precise form of the LFFs changes at resonance,
the integration over ω of Eq. (75) is not expected to vary w.r.t.
the result of Eq. (78) but for the f -dependent prefactors.
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VII. DISCUSSION ON LDOSes

Firstly, let us comment on the distinction between
N Sch

bulk(ω) = ω2

3π2c3 n
3(ω) and N light(ω) = ω2

π2c3 n(ω) for an ef-
fective medium. Although both spectra are computed out of
Geff

⊥ and thus ascribed to the light vacuum, their respective
dependence on the refractive index and their physical meaning
are quite different. We read from Eq. (74) that N Sch

bulk ∝ n3

originates from the integration of the variations of [Geff
⊥ ]−1,

δ[Geff
⊥ (q)]−1

ε′ = ω2

c2 δε′, weighted by the light LDOS of each in-

termediate dielectric configuration of permittivity ε′, N light
ε′ ∼

Im{Geff
⊥ (�r,�r)}ε′ . Because the Schwinger-bulk energy can be

written as an integral in momenta by identifying ω = q c
n

,

FSch
bulk = ∫

d3q

(2π)3 h̄cq(1/n − 1) (cf., [38]), the n3 dependence of

N Sch
bulk(ω) can be fairly attributed to its c−3 dependence [42].

On the contrary, N light ∝ n is just the light LDOS of the final
configuration of permittivity ε and is simply proportional to
Im{Geff

⊥ (�r,�r)}ε . Alternatively, the relation N light = 3n−2N Sch
bulk

can be obtained if one starts from Fermi’s Golden rule and
restricts the quadratic vacuum fluctuations to those of the
Dyson field. The macroscopic quantization of each field
operator yields a factor n−1 while the remainder is the sum
over momenta proportional to n3 [47]. Note, however, that we
have defined originally the LDOSes through relations of the
form of Eq. (1). That is, by definition an LDOS is proportional
to the imaginary part of some physically meaningful Green’s
function. It is in this sense that N Sch

bulk derives (i.e., is not
defined) from the original N light and likewise for the LDOS of
FV which derives from N emis.

Second, let us emphasize that N light must not be identified
with the total radiative LDOS. As mentioned in Sec. III,
both the stimulated and the spontaneous emission of a point
dipole are proportional to the quadratic fluctuations of the
self-polarization field in |�〉emis [10,28]. Thus, we can write

� ∝ emis〈�| �̂E
ωres

(�r) · �̂E
ω
†
res

(�r)|�〉emis. (79)

The previous expression together with Eqs. (56) and (57)
and Eqs. (22) and (23) show clearly that N light5 is not “the
relevant part of the LDOS entering Femi’s Golden rule in the
descriptions of the rate of spontaneous radiative decay”, as
erroneously claimed in [19]. This has been appreciated by
a number of authors (see, e.g., [20,28,30,31,35]) who have
attributed the discrepancy to the presence of LFFs which
relate the microscopical field to the macroscopical-Maxwell
field. We have proved microscopically that this is indeed the
case, but rather than relating microscopical and macroscopical
fields, LFFs in Fermi’s Golden rule relate the self-polarization
propagator to the Dyson-bulk propagator; they both are
computed at the same microscopical level. LFFs emerge in
Fermi’s Golden rule as a result of taking proper account of
correlations. We found in Sec. IV that the correct statement
is that it is only the power transferred radiatively and directly
from the emitter into the medium that has the spectrum of
external light. There are other contributions to the total power

5N light is denoted by Nrad in [19]. Also in this context, radiative
emission is a synonym of far-field emission.

which, although not transferred directly from the emitter into
the medium, are radiative anyways. In particular, the indirect
coherent emission is of course radiative, although that emission
is carried out by induced dipoles and not by the emitter itself.
In the far field, at a distance much greater than the typical
correlation length between the emitter and the surrounding
dipoles, it would not be possible to distinguish between direct
and indirect coherent radiation.

The restrictive identification in [19] of the radiative LDOS
with N light seems to have led to confusion with the authors
of [48] who are interested in the relation between the refractive
index and the radiative decay rate of an emitter embedded in a
random medium. They argue that, since in the long-wavelength
limit of the effective medium theory, qξ → 0, the dielectric
constant becomes a local and isotropic function, correlation
effects can be disregarded and the effective transverse prop-
agator of Eq. (62) determines the radiative LDOS which
enters Fermi’s Golden rule. On the contrary, because under
no physically acceptable condition L|qξ→0 = 1 holds (e.g.,
LLL), that argument is generically erroneous.

A similar reasoning applies to [49] where the authors study
the radiative decay of a dipole emitter embedded in a piecewise
continuous dielectric. They take as LDOS of reference that
of a homogeneous (i.e., one-piece) medium, ∼ n. However,
that is not the appropriate LDOS for emission but for light
propagation, the reason being that it is not possible to embed
an emitter in a continuous medium and take a continuous
limit such that the emitter forms part of the medium and
the effects of LFFs disappear (e.g., in the limit Rq → 0 of
an Onsager cavity of radius R, LRq→0 = LOB �= 1 [30,31]).
Otherwise, unphysical divergences appear for the case that
the permittivity is a complex number. In conclusion, while
N light is well defined in a strictly homogeneous medium,N emis

is not. The computation of G⊥ in [49] for a heterogeneous
medium is correct provided that the dielectric function takes
proper account of the emitter embedding. However, in such a
case there are no divergences in Im{G‖} and there is no need
to restrict the radiative LDOS to Im{G⊥} as claimed by the
authors. In particular, the statement that Im{Tr[Ḡ]} = 2Im{G⊥}
in a medium of real dielectric constant is in general incorrect.
If properly computed, 2Im{G⊥} in an effective medium yields
only coherent modes.

Note, however, that if one were interested only in detecting
the band gaps of radiative emission in an effective medium,
the detection of the gaps of N light, which correspond to bands
of total reflectivity, might suffice. The reason is that, for an
effective medium like that of an MG dielectric, the total radia-
tive spectrum is given by L2

qξ=0(ω)N light(ω) ∝ L2
qξ=0(ω)n(ω)

[20,31,34,35]. Therefore, unless the LFFs diverge at those
frequencies at which the index of refraction vanishes, the
gaps on N light(ω) coincide with those of the spectrum of
total radiation. It is to this respect that the work of [48] is
still useful. In physical terms, this implies that there does not
exist coupling of either the emitter itself or the surrounding
induced dipoles to propagating modes. This, however, does not
preclude the nonradiative energy transfer between the emitter
and the induced dipoles.

Finally, a comment is in order on the application of
Eqs. (22)–(29) to the spontaneous decay rate of a dipole
in a statistically homogeneous complex medium. When the
emission is stimulated, under stationary conditions the rate
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at which the dipole absorbs the energy supplied by the
external source is (ideally) balanced by the rate at which
the dipole radiates that energy. Therefore, its polarizability
can be considered at any time equivalent to that of the rest
of dipoles in the medium and Eqs. (22)–(29) are strictly
applicable so that Wω,N emis(ω) ∝ Tr{Im[ḠVC(�r,�r; ω)]}. In
contrast, when the dipole decays spontaneously from an
excited state, its polarizability is in general different from that
of the rest of surrounding dipoles. This brakes manifestly the
statistical translation invariance of the medium at the emitter
location since it behaves as an impurity. As a consequence,
Eqs. (22)–(29) may be applicable only in an approximate
manner. This is at the root of the distinction between the virtual
cavity and the real cavity scenarios [20,50].

VIII. THE PROPAGATOR OF THE SELF-POLARIZATION
FIELD IN NUMERICAL SIMULATIONS

The computation of α̃ and the measurement of all the
components of Wω can be simulated numerically using the so-
called coupled-dipole method (CDM) [51]. In that method, the
transference matrix t̄ of Sec. II A is computed for each config-
uration of point dipoles before performing the average over the
configuration ensemble. Let us take one of those configurations
composed by N + 1 host scatterers. We decide to stimulate
the dipole at �R0 with an incident (inc) monochromatic field
of frequency ω = kc, �E0. That is, �Einc(�r) = �E0 if �r = �R0

and �Einc(�r) = �0 otherwise. Generally the dipoles are not all
equivalent and have different renormalized polarizabilities α̃i ,
i = 0, . . . ,N . Therefore, the dipole moment of the emitter
reads in terms of the incident field,

�p( �R0) = ε0α̃
0 �E0. (80)

On the other hand, the total field at the emitter location is the
sum of the incident field plus the self-polarization field which
the dipole moment �p( �R0) itself creates at �R0, that is,

�E( �R0) = �E0 − k2

ε0
ḡ( �R0, �R0) · �p( �R0)

= �E0 − k2α̃0ḡ( �R0, �R0) · �E0, (81)

where ḡ( �R0, �R0) is the self-polarization propagator of the
0th dipole for the scatterer configuration considered. The ω

dependence is omitted hereafter. Our interest is in the second
term on the right-hand side of Eq. (81). It can be written also
as the sum of all the fields which propagate from each of the
induced dipoles to �R0,

k2α̃0ḡ( �R0, �R0) · �E0 = k2

ε0

N∑
i=0

Ḡ(0)( �R0 − �Ri) · �p( �Ri). (82)

Except for the emitter, the rest of the dipoles are only induced
by their mutual interactions. The dipole moments induced
can be computed formally using the t̄ matrix of the system.
t̄( �Ri, �Rj ) yields the dipole induced at some point �Ri as a result
of its interaction with the dipole excited by the incident field
at some point �Rj . The dipole moment of a dipole located at �Ri

reads

�p( �Ri) = −
(

k2

ε0

)−1 N∑
j=0

t̄( �Ri, �Rj ) · �Einc( �Rj ). (83)

Because in our case the only dipole excited externally is that
at �R0, we get

�p( �Ri) = −
(

k2

ε0

)−1

t̄( �Ri, �R0) · �E0. (84)

Inserting Eq. (84) into Eq. (82) we end up with

ḡ( �R0, �R0) = 1

−k2α̃0

N∑
i=0

Ḡ(0)( �R0 − �Ri) · t̄( �Ri, �R0). (85)

Should all the dipoles be equivalent with α̃i = α̃ ∀i and density
ρ, it is immediate to obtain 〈ḡ( �R0, �R0)〉 = ḠV C( �R0, �R0) as given
in Eq. (27).

A comment is in order concerning the use of the renormal-
ized single-particle polarizabilities in the previous formulas.
In simulations, it is recognized that the application of the
CDM equations needs of some a priori prescription for the
value of the renormalized single-particle polarizability in
order to obtain physically acceptable values for the scattering
cross section [52]. As a first approximation, one can use
polarizabilities which are only renormalized by in-free-space
radiative corrections (see, e.g., [26]). A priori additional
renormalizations were carried out by Draine and Goodman
in [53] and Chaumet et al. in [52]. Nonetheless, it must be clear
by now that because the ϕ factors depend on the renormalized
value of α̃ and α̃ receives radiative corrections from the ϕ

factors, the problem is one of self-consistency. In physical
terms, this reflects the double and complementary role that
actual dipoles play in a complex medium. On the one hand,
they polarize the vacuum. On the other hand, they renormalize
their own polarizabilities.

IX. CONCLUSIONS

We have computed the propagator of the polarization field
in a statistically homogeneous and isotropic medium made of
indistinguishable isotropic point dipoles. In Fourier space, a
relation of proportionality with Dyson’s propagator has been
found in terms of local field factors [Eqs. (22), (23), and (58)].
The stochastic kernel of its Lippmann-Schwinger equation is
that of Eq. (29). The self-polarization propagator determines
the LDOS of the total dipole emission, N emis. In contrast,
Dyson’s propagator determines only the LDOS of the power
transferred radiatively and directly from a dipole emitter into
the medium. The latter is equivalent to the LDOS of the
coherent light which propagates through the medium from an
external source, N light. Correspondingly, an emission vacuum
and a light vacuum are postulated. The symmetry group of the
latter is included in that of the former.

An expression for the optical theorem in complex media
has been found for classical dipoles [Eq. (34)]. Formulas
for the renormalized values of the resonant frequency, the
decay rate, and the bare polarizability have been derived in
Eqs. (36)–(38) for a two-level atom. They agree with previous
QM approaches.

In the stricto sensu virtual cavity scenario, stimulated
emission has been classified in Eqs. (42)–(45) attending to
its coherent or extinguished nature. Furthermore, the coherent
power has been decomposed in Eq. (50) into a direct and an
indirect component. The direct component carries the energy
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transferred radiatively and directly from the emitter into the
medium, its spectrum is N light, and its field is Dyson’s. The
indirect component is that of the field radiated by the induced
dipoles which is in-phase with the Dyson field. Only one local
field factor enters the coherent spectrum. Correspondingly, the
coherent dipole field is proportional to the Dyson field, being
the constant of proportionality a local field factor [Eq. (59)].

Using Schwinger’s variational method, an expression for
the vacuum energy density has been obtained as a sum
of different physical contributions [Eqs. (67)–(69)]. The
vacuum energy density of an infinite-volume effective medium
has been computed. When local field factors are included,
additional terms proportional to the resonant frequency and the
linewidth arise [Eq. (78)] in addition to the usual Schwinger-
bulk term.

The dependence on the refractive index of the density of
different radiative modes in an effective medium has been
analyzed. We have found that N light ∝ n, N Sch

bulk ∝ n3, N Coh
MG ∝

(n3 + 2n)/3, N emis
MG ∝ (n5 + 4n3 + 4n)/9, where the last two

expressions apply to off-resonant Maxwell-Garnett dielectrics
only since N Coh and N emis are, in general, model dependent.

It is left for future work to verify whether the conjecture of
the equivalence between the Lamb shift and the total variation
of the vacuum energy holds. Should the result be negative,
a physical interpretation for the discrepancy and possible
observational signatures must be investigated.

Also, it would be interesting to extend the present formalism
to more general dielectric configurations. Beyond dipole-
aggregate models it would be necessary to develop a multipole
expansion similar to that in [54,55]. Multipole sources and
propagators should be defined and a similar diagrammatic
analysis to the one performed here carried out.
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APPENDIX A: STIMULATED EMISSION FROM A
CLASSICAL DIPOLE

We adopt a classical model in which the dipole emitter is a
spherical nanoparticle of permittivity εe(ω) and radius a, with
ka � 1 for the frequencies of interest.

Let us consider that the emitter is embedded in a generic
host medium and sits at position �r . It is stimulated by
a stationary external field which oscillates in time with
frequency ω, �E0(�r). Formally, the averaged power emitted
reads [56]

W tot
ω = ω

2
Im

{∫
d3r �(r − a)�p(�r) · �E∗

0 (�r)

}
, (A1)

where �p(�r) is the polarization density induced on the emitter,
which is proportional to �E0(�r) in the linear-small-particle

approximation and is affected by self-polarization effects. We
introduce the self-polarization field through the insertion of
appropriate Green’s functions in the previous expression,

�p(�r) =
∫

d3r ′′�(r − a)ε0χ
ω
e

∫
d3r ′Ḡ(�r,�r ′; ω)

· [Ḡ(0)]−1(�r ′ − �r ′′; ω) · �E0(�r ′′),

so that Eq. (A1) reads

W tot
ω = ω

2
Im

{∫
d3r χω

e �(r − a)
∫

d3r ′d3r ′′Ḡ(�r,�r ′; ω)

· [Ḡ(0)]−1(�r ′ − �r ′′; ω) · �E0(�r ′′) · �E∗
0 (�r)

}
. (A2)

We drop the script ω hereafter unless necessary. In the
previous formulas χω

e = εe(ω) − 1 is the relative electrostatic
susceptibility of the emitter—-not to be confused with the
susceptibility of the host medium—and

Ḡ(�r) ≈ Ḡ(0)(�r)
∞∑

m=0

[
− k2χω

e

∫
�(v − a)Ḡ(v)d3v

]m

(A3)

is the propagator which takes account of the infinite number of
self-polarization cycles which give rise to radiative corrections.
Ḡ(�r,�r ′) propagates virtual photons from a point �r ′ inside the
emitter back to another point �r also within the emitter. All
the equations previously mentioned become simple in the
small particle limit, a � k−1, for the electric field is nearly
uniform within the emitter and so are the polarization density
and the propagator Ḡ(�r,�r ′). The n-point irreducible diagrams
which enter the computation of Ḡ can be approximated by the
series of Fig. 4(b) in which the two-point correlation functions
�(r − a) appear consecutively as factors of a product. That
way the corresponding integrals appear untangled and the
series becomes geometrical, hence, Eq. (A3). The underlying
approximation reads∫

d3r �(r − a)Ḡ(r) � 4π

3
a3Ḡ(0)

= 4π

3
a3[2ϕ

(0)
⊥ + ϕ

(0)
‖ + 2ϕsc

⊥ + ϕsc
‖ ]

1

3
Ī. (A4)

(a)

(b)

(c)

(d)

FIG. 4. (a) Feynman’s rules for the classical regularization
scheme of Appendix A. (b) Diagrammatic representation of Eq. (A3).
(c) Diagrammatic representation of the dressing up of χe leading to
α0. Approximation symbols denote that the field within the emitter
is taken uniform. (d) Diagrammatic representation of one of the
self-polarization cycles which enter the series in (b).
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It was mentioned in Sec. II B that 2ϕ
(0)
⊥ and ϕ

(0)
‖ are divergent.

The divergence of ϕ
(0)
‖ is cured by the presence of the finite

radius a. Since the limit lim{∫ d3r �(r − a)Ḡ(0)
stat.(r; ω)} =

1
3k2 Ī as ka → 0 is conditionally convergent, it is the Heaviside
function of the integrand that yields the finite value 1

3k2 Ī [57].
Any other geometry would give a different numerical value.
By equating that result with 4π

3 a3ϕ
(0)
‖

1
3 Ī (leaving Re{2ϕ

(0)
⊥ }

still free) we obtain ϕ
(0)
‖ = ( 4π

3 a3k2)−1. The net effect of
this regularization procedure is to dress up the single-particle
susceptibility in all the in-free-space electrostatic corrections.
This procedure is depicted in Fig. 4(c). That way we can define
χ̃ω

e ≡ 3
εe(ω)+2χω

e and obtain the bare electrostatic polarizability

α0(ω) ≡ 4πa3 εe(ω)−1
εe(ω)+2 .

With the previous definitions we can rewrite Eq. (A2) in
terms of electrostatically renormalized operators,

W tot
ω = ωε0

2
Im

{∫
d3r χ̃ω

e �(r − a)
∫

d3r ′d3r ′′ ¯̃G(�r,�r ′)

· [Ḡ(0)]−1(�r ′ − �r ′′) · �E0(�r ′′) · �E∗
0 (�r)

}
, (A5)

where

¯̃G(�r,�r ′) ≡ Ḡ(0)(�r − �r ′)
∞∑

m=0

(−k2α0

3

)m

[2ϕ
(0)
⊥ + 2ϕsc

⊥ + ϕsc
‖ ]m.

Inserting the previous equation into Eq. (A5) we obtain
the expressions of Eqs. (31) and (32) and the renormalized
polarizability of Eq. (33).

APPENDIX B: RENORMALIZATION OF A TWO-LEVEL
ATOM ISOTROPIC POLARIZABILITY

The bare polarizability of a two-level atom reads

ᾱ′ = 2ω0

h̄ε0

�µ ⊗ �µ
ω2

0 − ω2
, (B1)

where �µ ⊗ �µ is the tensor product of the dipole-transition
matrix elements and the EM interactions which give rise to the
atomic bound state have been integrated out and parametrized
by the resonant frequency, ω0. This way, only coupling to
radiative modes is still missing. In a spherically symmetric

state, �µ ⊗ �µ = µ2/3Ī, we can write ᾱ′ = 1
3

α0ω
2
0

ω2
0−ω2 Ī with α0 =

2|µ|2
ε0h̄ω0

. The self-polarization of the atom amounts to its coupling
to radiative modes. Each self-polarization cycle carries a factor,

−k2Tr{ᾱ′ · Ḡ(�r,�r)} = −k2

3

α0ω
2
0

ω2
0 − ω2

[2Im{ϕ(0)
⊥ }i+ 2ϕsc

⊥ + ϕsc
‖ ].

(B2)

The infinite sum of cycles is a geometrical series analogous to
that of Fig. 4(b) for classical dipoles. It amounts to 1/3 times
Eq. (33) with the previous definitions.
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[23] S. Y. Buhmann, L. K. Knöll, D. G. Welsch, and H. T. Dung,

Phys. Rev. A 70, 052117 (2004).
[24] S. Y. Buhmann, H. T. Dung, T. Kampf, and D. G. Welsch, Eur.

Phys. J. D 35, 15 (2005).
[25] F. Fano, Phys. Rev. 103, 1202 (1956).
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[27] M. E. Peskin and D. V. Schröeder, An Introduction to Quantum

Field Theory (Addison-Wesley, Reading, 1995).
[28] S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob, J. Phys.

B 29, 3763 (1996).
[29] R. Carminati et al., Opt. Commun. 261, 368 (2006).
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