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Quantum phase transitions in fully connected spin models: An entanglement perspective
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We consider a set of fully connected spin models that display first- or second-order transitions and for which we
compute the ground-state entanglement in the thermodynamical limit. We analyze several entanglement measures
(concurrence, Rényi entropy, and negativity) and show that, in general, discontinuous transitions lead to a jump
of these quantities at the transition point. Interestingly, we also find examples where this is not the case.
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I. INTRODUCTION

During the last decade, the relationship between quantum
phase transitions and entanglement has become an important
research domain [1]. Although it is natural to expect some deep
changes in the ground state of a system at a transition point, the
real problem is to measure these variations or, in other words,
to characterize the quantum state structure. In most cases, the
study of an order parameter or the behavior of correlation
functions is sufficient to detect and analyze a phase transition,
but one may wonder whether more “intrinsic” measures could
be helpful. Following pioneering works in one-dimensional
spin models [2–4], many studies have been devoted to this
problem (see Ref. [1] for a review), but only a few allow for
an exact solution in the thermodynamic limit, which is a key
ingredient to characterize a phase transition.

The goal of this paper is to propose a class of simple,
fully connected (collective) models in which ground-state
entanglement properties can be studied in detail. These models,
in which degrees of freedom (spins 1/2) mutually interact,
can be seen as generalizations of the Lipkin-Meshkov-Glick
model [5–7], for which most entanglement features are now
well known [8–23]. The main reason for introducing these
collective systems is that they not only allow us to study a
second-order phase transition as in the Lipkin-Meshkov-Glick
model, but also allow the study of first-order transitions.
As surprising as it may seem, although “collective” may be
thought to lead to a pure mean-field behavior, we will see that
the ground state is deeply entangled. Furthermore, although
it might be naively expected that entanglement measures will
simply display jumps at first-order transitions, we will show
that this does not hold for one of the models, the spectral
properties of which show some similarities with those of a
system exhibiting a second-order transition.

The study of these collective systems is also motivated
by the fact that they are much simpler to analyze than their
nearest-neighbor counterparts on a finite-dimensional lattice.
Indeed, most entanglement measures rely on a multipartition
of the microscopic degrees of freedom. For instance, the
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concurrence [24] is obtained by separating a system of N

spins into two parts (of sizes N − 2 and 2), the Rényi entropy is
obtained by splitting it into two parts of arbitrary sizes (N − L

and L), a tripartition is required to compute the negativity [25]
of a mixed state, etc. Thus, the main problem often consists
of computing reduced density matrices for a given partition.
In the models studied below, this crucial step can be achieved
since the original spin problem can be mapped onto a quadratic
bosonic Hamiltonian.

The structure of this paper is the following. In Sec. II,
we introduce a family of models and compute their low-
energy spectrum (ground-state energy and gap). This allows
us to determine their phase diagram and characterize the
quantum phase transitions. Analytical expressions are obtained
in the thermodynamical limit and compared with exact
diagonalization results. In Sec. III, we discuss the ground-state
entanglement by focusing on three different measures: the
concurrence, the Rényi entropy, and the negativity, which rely
on a one-mode, two-mode, and three-mode description of the
bosonic Hamiltonian, respectively. Once again, exact results
in the thermodynamical limit are compared to numerical data
for a representative set of parameters.

II. MODELS AND QUANTUM PHASE TRANSITIONS

A. Hamiltonians

We consider a system made of N spins 1/2 with a
Hamiltonian that reads as

H = −N

[
cos ω

(
Sx

S

)m

+ Km,n sin ω

(
Sz

S

)n]
. (1)

In the above equation, Sα = ∑N
j=1 σα

j /2 are total spin opera-
tors along the α = x, y, z directions, with σα

j being the usual
Pauli matrix at site j and S = N/2 denotes the maximum
spin value. This class of model is defined by the non-negative
integer parameters (m,n). In what follows, we shall refer to a
model with given values of m and n as the (m,n) model.

Without loss of generality, we shall restrict ourselves to
m � n� 1. Furthermore, we exclude the trivial case m = n= 1,
since it describes a large spin in a magnetic field and only
displays a crossover, but no quantum phase transition. The
(2,1) model is a collective version of the transverse-field Ising
model, known as the Lipkin-Meshkov-Glick model [5–7].
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FIG. 1. (Color online) Spectra (energies per spin) of six models as
a function of the control parameter ω, for a system of N = 16 spins,
in the maximum spin sector S = N/2. Left (right): n = 1 (n = 2).
From top to bottom: m = 2, m = 3, and m = 4.

The (m > 2,1) models are multispin generalizations of such a
model. The (2,2) model can be seen as a collective version
of the quantum compass model [26]. Note that, in two
dimensions, the latter is dual to the Xu-Moore model [27–29],
but the collective version of the Xu-Moore model, namely,
the (4,1) model, is not dual to the (2,2) model (in fact, as
will be seen below, the latter two models have rather different
properties).

As we shall see, all models under consideration exhibit
a quantum phase transition when the control parameter
ω ∈ [0,π/2] is varied. This quantum phase transition occurs
at ω = π/4, provided one imposes Km,n to take the following
value [30]:

K2,1 = 2, (2)

Km>2,1 = mm/2(m − 2)m/2−1

(m − 1)m−1
, (3)

Km�2,n�2 = 1. (4)

These values can be found easily (see Sec. II B 2 for details).
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FIG. 2. (Color online) Spectra (energies per spin) of six models as
a function of the control parameter ω, for a system of N = 256 spins,
in the maximum spin sector S = N/2. Left (right): n = 1 (n = 2).
From top to bottom: m = 2, m = 3, and m = 4.

Finally, let us note that all Hamiltonians preserve the
magnitude of the total spin, i.e., [H,S2] = 0. When m (n)
is even, the Hamiltonian has a spin-flip symmetry since it
commutes with

∏
j σ z

j (
∏

j σ x
j ).

B. Quantum phase transitions

1. Numerical spectra

Physically, the quantum phase transition stems from the
competition between the ferromagnetic m-spin interaction in
the x direction and the ferromagnetic n-spin interaction in the
z direction if n > 1, or the magnetic field in the z direction if
n = 1.

A numerical study provides an ideaabout the phase transi-
tions of the various models. Such a study can be performed
for rather large number of spins since, as already mentioned,
the Hamiltonians commute with S2. The collective and
ferromagnetic nature of the interactions implies that one can
focus on the maximum spin sector S = N/2 (of dimension
N + 1) where the ground state is found. The energies per spin
e of six different models are shown in Figs. 1 and 2 for N = 16
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and 256, respectively. From the evolution of the full spectra
between these two figures, one can infer the behavior of the
various models in the thermodynamical limit.

The (2,1) model displays a collapse of levels onto the
ground state at the transition point ω = π/4, but the ground-
state energy displays no cusp. From these features, the
quantum phase transition is likely to be of second order. All
other models [except the (2,2) model] have avoided level
crossings, which tend to become true level crossings in the
thermodynamical limit. In particular, the ground-state energy
has a cusp, and the transition is of first order. Note that, in
Fig. 2, the darker regions are those where one finds many
levels (which are finite-size precursors of singularities in the
density of states in the thermodynamical limit). But, contrary
to what happens for the (2,1) model [31,32], these regions do
not touch the ground-state energy at the transition. This is,
however, not true for the (2,2) model, which displays both a
collapse of levels onto the ground state as well as a cusp in the
ground-state energy. From the second feature, one concludes
that the transition is first order, although the first feature is
reminiscent of a second-order quantum phase transition. Let us
stress that the (2,2) model is trivially integrable at the transition
point, since its Hamiltonian reads H = − 2

√
2

N
(S2 − S2

y ), where
S2 = (N/2)(N/2 + 1). This additional symmetry ([H,Sy] = 0)
is responsible for the presence of nonavoided level crossings at
the transition point, even at finite N . Actually, all these models
are exactly solvable, but not in such a trivial way [33–35].

It is this variety of behaviors displayed by the different
models that motivates the study of entanglement measures
and their sensitivity to the characteristics of the quantum phase
transition. Before turning to this, we shall, however, provide
analytical results for the low-energy spectrum, which will
allow us to introduce the basic techniques needed to perform
analytical computations of entanglement measures.

2. Ground-state energy

Since a large spin behaves classically, a classical analysis is
expected to provide exact results for the ground-state energy
of the collective models in the thermodynamical limit. We
are therefore led to substitute the spin operators by their
expectation values, namely,

(〈Sx〉,〈Sy〉,〈Sz〉) = N

2
(sin θ cos φ, sin θ sin φ, cos θ ) , (5)

where θ ∈ [0,π ] and φ ∈ [0,2π [ are the usual angles of
spherical coordinates. They are the variational parameters that
will be tuned to minimize the associated classical energy per
spin:

e(θ,φ) = − cos ω(sin θ cos φ)m − Km,n sin ω(cos θ )n. (6)

When m > n = 1, the analysis follows the mean-field
calculation of Ref. [30] [see also Refs. [13] and [36] for the
(2,1) model]. At “large” ω (close to π/2), the state (θ0 = 0,φ)
is the only minimum, with energy e(0,φ) = −Km,1 sin ω. At
“small” ω (close to 0), φ0 = 0 (φ0 = 0 or π ) when m is
odd (even), and the angle θ0 minimizing the energy satisfies
m cos θ0 sinm−2 θ0 = Km,1 tan ω. Requiring that the transition

take place at ω = π/4, one is led to solve the following system
of equations:

Km,1 = m cos θ∗
0 sinm−2 θ∗

0 , (7)

Km,1 = sinm θ∗
0 + Km,1 cos θ∗

0 , (8)

where the second equation stems from the continuity of e at
the transition, and θ∗

0 is the value of θ0 at the transition in the
small-ω phase. The solution of this system yields Eqs. (2) and
(3), as well as cos θ∗

0 = 1
m−1 . It is therefore clear that, except

for the (2,1) model, θ0 is discontinuous at the transition, which
is thus of first order for all (m > 2,1) models.

For the (2,1) model, the transition is of second order (see,
e.g., Ref. [36]), as can be seen from the discontinuity of the
second derivative ∂2e

∂ω2 , which jumps from the value −3
√

2 at

ω = (π/4)− to
√

2 at ω = (π/4)+. The large-ω phase is a
symmetric phase with a nondegenerate ground state, while the
small-ω phase is a broken phase with a doubly degenerate
ground state, with the broken symmetry being the parity
Sx ↔ −Sx . The validity of the classical analysis can be
assessed in Fig. 3, where numerical data can be seen to
converge to the classical result.
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FIG. 3. (Color online) Ground-state energy per spin e0 of six
models as a function of ω, for N = 16, 32, 64, 128, 256, and in the
thermodynamical limit (red thick line with dots). Left (right): n = 1
(n = 2). From top to bottom: m = 2, m = 3, and m = 4.
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When m � n � 2, one can proceed in the same way. One
finds that the transitions are all of first-order nature, that Eq. (4)
has to hold in order to have a transition at ω = π/4, and that
the angles θ0 and φ0 take the following values:

ω π/4 ω π/4
θ0 = π/2 θ0 = 0 (π)
φ0 = 0 (π) any φ0

>>

(9)

The values in parentheses are other possible values depending
on the parity of m and n. For ω � π/4, the states (π/2,0) and
(π/2,π ) are degenerate when m is even, whereas for ω � π/4,
the states (0,φ0) and (π,φ0) are degenerate when n is even.
The degeneracies are already predictable from Fig. 1, and the
validity of the classical results can again be checked in Fig. 3.

3. Gap

In order to conclude the analysis of the spectrum and of the
quantum phase transition of these models, let us now turn to the
computation of the gap in the maximum spin sector S = N/2.
We follow the procedure described in Refs. [11] and [13] and
refer the reader to these references for details. As a first step,
we perform a rotation around the y axis in order to bring the
z axis along the classical magnetization direction⎛

⎝Sx

Sy

Sz

⎞
⎠ =

⎛
⎜⎝

cos θ0 0 sin θ0

0 1 0

− sin θ0 0 cos θ0

⎞
⎟⎠

⎛
⎜⎝

S̃x

S̃y

S̃z

⎞
⎟⎠ . (10)

Next, we make use of the bosonic Holstein-Primakoff
representation of the rotated spin operators [37]

S̃z = N

2
− a†a and S̃+ = (N − a†a)1/2a = S̃

†
−, (11)

whereS̃± = S̃x ± iS̃y and the a operator is a bosonic annihi-
lation operator, satisfying [a,a†] = 1. As we shall only focus
on the thermodynamical limit, it will be sufficient to keep
terms of order N1 and N0 in the Hamiltonian, neglecting all
terms that go to zero as N → ∞ (assuming a finite number
a†a of bosons). For example, in the large-ω phase, one can
write Sx = S̃x = N1/2(a† + a)/2. Note that no term of order√

N appears, thanks to the rotation we have performed. The
Hamiltonian then reads as

H = Ne0 + γ + δ a†a + γ (a†2 + a
2
), (12)

where e0, γ , and δ have the following expressions (the value
of θ0 has been given in Sec. II B 2):

e0 = − cos ω(sin θ0)m − Km,n sin ω(cos θ0)n, (13)

γ = −1

2
[m(m − 1) cos ω(sin θ0)m−2(cos θ0)2

+n(n − 1)Km,n sin ω(cos θ0)n−2(sin θ0)2], (14)

δ = 2[m cos ω(sin θ0)m + nKm,n sin ω(cos θ0)n] + 2γ.

(15)

Note that e0 is simply the minimum of the classical ground-
state energy (6).

Such a quadratic Hamiltonian is diagonalized via a Bogoli-
ubov transformation

a = cosh(
/2)b + sinh(
/2)b†, (16)
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FIG. 4. (Color online) Gaps to the first two excited states of six
models as a function of ω, for N = 16, 32, 64, 128, 256, and in the
thermodynamical limit (red thick line with dots). Left (right): n = 1
(n = 2). From top to bottom: m = 2, m = 3, and m = 4.

where b is a bosonic annihilation operator satisfying[
b,b†

] = 1. The value of 
 diagonalizing the Hamiltonian
satisfies tanh 
 = ε = −2γ /δ. With these notations,

H = Ne0 + γ + δ

2

(√
1 − ε2 − 1

)
+ �b†b, (17)

where the gap is � = δ
√

1 − ε2. Let us emphasize that � is
the gap above the possibly degenerate ground state, but does
not capture the energy splitting between the ground states if
they are degenerate. We compare the spectrum of Eq. (18) with
numerics in Fig. 4 for the gap to the first and second excited
states, so we get at least one (and possibly two) nonzero value
in the thermodynamical limit. The relevance of this simple
“spin-wave”-like approach can be appreciated.

III. ENTANGLEMENT MEASURES

A. Technical prerequisite

We shall now compute three entanglement measures,
namely, the concurrence, the entanglement entropy, and the

022327-4



QUANTUM PHASE TRANSITIONS IN FULLY CONNECTED . . . PHYSICAL REVIEW A 83, 022327 (2011)

logarithmic negativity. These measures have already been
computed for the (2,1) model in Refs. [11–13,15,17], and [23] .
As can be inferred from these works, the analytical computa-
tions require us to write the spin operators as the sum of one,
two, or three spin operators for the concurrence, entanglement
entropy, and negativity, respectively. Then, one should use the
Holstein-Primakoff representation. The necessary steps for the
computation of the concurrence have already been performed
in Sec. II B 3, but let us give the key ingredients that are useful
to obtain the other entanglement measures.

The very first step is to perform the rotation (10). Then,
one splits the system into p subsystems so that the the
spin operators read as S̃α = ∑p

i=1 S̃(i)
α , where α = x, y, or

z. Depending on the entanglement measure one wishes to
compute, one has p = 1, 2, or 3. One then introduces p bosonic
operators ai and their conjugates a

†
i for each subsystem.

Denoting the number of spins of each subsystem by Ni , with∑p

i=1 Ni = N , the p Holstein-Primakoff representations read
as

S̃(i)
z = Ni

2
− a

†
i ai and S̃

(i)
+ = (Ni − a

†
i ai)

1/2ai. (18)

One can then insert these expressions in the Hamiltonian,
expand all operators, and keep terms of order N1 and N0,
neglecting contributions that vanish in the thermodynamical
limit. After simple algebra, one gets a quadratic Hamiltonian

H = Ne0 + γ + δ

p∑
i=1

a
†
i ai + γ

p∑
k,l=1

√
τkτl(a

†
ka

†
l + H.c.),

(19)

where e0, γ , and δ are given in Eqs. (13)–(15) and where
τi = Ni/N . Let us note that, to obtain this precise quadratic
form with only diagonal boson-conserving terms, one must
get rid of terms of the form a

†
kal with k 	= l. To this end,

one should use the relation
∑

α S̃2
α = S(S + 1), written in the

bosonic language, namely,∑
k 	=l

√
τkτl(a

†
kal + H.c.) = 2

∑
i

(1 − τi)a
†
i ai . (20)

Of course, Eq. (19) yields Eq. (12) when only one bosonic
mode is considered.

In the three subsections that follow, we shall give a minimal
amount of computational details, knowing that these can
already be found in the literature.

B. Concurrence

The concurrence C measures the entanglement between
two spins half, these spins being in either a pure or a
mixed state [24]. Here, we are interested in quantifying the
entanglement between any two spins, the others being traced
over. Finding the concurrence amounts to computing the
entries of the reduced density matrix, which can be done easily
for symmetric states [38]. However, except in the case of
systems possessing a spin-flip symmetry, finding a simple
analytical formula for the concurrence is not such an easy
task [16]. Although we have no formal proof, we have checked
numerically for finite-size systems and a couple of values of m

and n (even when m and n are odd so that there is no spin-flip

symmetry) that the rescaled concurrence CR could be simply
expressed as

CR = (N − 1)C = 1 − 4
〈
S2

y

〉
N

. (21)

This rescaling is needed here because each spin shares
entanglement with its N − 1 “neighbors.” [8] Thanks to the
Holstein-Primakoff representation (11) and to the Bogoliubov
diagonalization of the associated Hamiltonian (17), one can
show [13] that, in the thermodynamical limit,

α = lim
N→∞

4
〈
S2

y

〉
N

=
√

1 − ε

1 + ε
, (22)

where ε is given just before Eq. (18). Figure 5 displays numer-
ical results for increasing system sizes that clearly converge
toward the expression computed above in the thermodynamical
limit.

As can be inferred from this figure, the concurrence is
cusped but continuous at the second-order quantum phase tran-
sition for the (2,1) model, while it displays a jump at the first-
order transition of the (m,n) models, except for the (2,2) model
where it shows a cusp and is continuous. The spectral pecu-
liarities of the latter, which have been discussed in Sec. II B 1,
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FIG. 5. (Color online) Concurrence of six models as a function
of ω, for N = 16, 32, 64, 128, 256, and in the thermodynamical limit
(red thick line with dots). Left (right): n = 1 (n = 2). From top to
bottom: m = 2, m = 3, and m = 4.
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do not lead to a discontinuous concurrence. It therefore seems,
in this very special case, that an entanglement measure such
as the concurrence is more sensitive to the “level collapse” on
the ground state (Anderson’s tower structure) than to the level
crossing when both effects are present. We shall show that this
conclusion remains valid for the other entanglement measures
we have calculated, starting with the entanglement entropy.

C. Entanglement entropy

The ground-state entanglement between two complemen-
tary subsystems A and B can be quantified by the Rényi
entropy, defined by

Eq = 1

1 − q
ln[Tr(ρA

q)]. (23)

In the above equation, ρA = TrBρ is the reduced den-
sity matrix of subsystem A (ρ is the ground-state density
matrix) and q is a positive number. In the limit q → 1,
one recovers the usual von Neumann entropy, namely,
E = limq→1 Eq = −Tr[ρA ln ρA]. The technique for comput-
ing ρA has been exposed in Refs. [15] and [17]. To use this
method, one simply needs the Bogoliubov transformation,
which diagonalizes the Hamiltonian (19) for p = 2 given in
the Appendix. In summary, for subsystems A and B of sizes
NA = τN and NB = (1 − τ )N , one has (in the thermodynam-
ical limit and in an appropriate basis)

ρA = 2

µ + 1
exp

[
− ln

(
µ + 1

µ − 1

)
c†c

]
, (24)

with

µ =
√

[τ + (1 − τ )/α][(1 − τ ) + τ/α], (25)

where c and c† are bosonic annihilation and creation operators
and where α has been defined in Eq. (22). It is then
straightforward to compute the Rényi entropy

Eq = 1

1 − q
{q ln 2 − ln[(µ + 1)q − (µ − 1)q]}, (26)

as well as the von Neumann entropy

E = µ + 1

2
ln

(
µ + 1

2

)
− µ − 1

2
ln

(
µ − 1

2

)
. (27)

We have computed the latter numerically. As can be seen in
Fig. 6, when the system size grows, the numerical results
converge to the analytical expressions obtained above (to
which one must, in fact, add a term ln 2 when the ground
state is twofold degenerate).

One can further see that similar conclusions to those for
the concurrence can be drawn here. Indeed, the von Neumann
entropy of the (2,2) model diverges at the first-order transition
point, like the entropy of the (2,1) model, but contrary to the
entropy of all other models, which are finite but discontinuous
at the transition. In fact, the entropies of the (2,2) model
and the (2,1) model diverge logarithmically at the transition
as (1/2) ln N and (1/6) ln N , respectively (see Refs. [12]
and [15]). So, once again, from an entanglement perspective,
the peculiar first-order transition of the (2,2) model looks like
a second-order transition.
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FIG. 6. (Color online) Von Neumann entanglement entropy of
six models as a function of ω, for N = 16, 32, 64, 128, 256, and
in the thermodynamical limit (red thick line with dots). In all cases,
the system is separated in two parts of equal sizes N1 = N2 = N/2.
Left (right): n = 1 (n = 2). From top to bottom: m = 2, m = 3, and
m = 4.

D. Logarithmic negativity

As a final study of the ground-state entanglement properties
of our class of models, let us compute the logarithmic nega-
tivity [25]. This quantity, which quantifies the entanglement
between any two subsystems (in a mixed or in a pure state), was
already worked out for the (2,1) model [23] and is obtained
as follows. The system is divided into three subsystems A,
B, and C of respective sizes N1, N2, and N3. One then traces
the ground-state density matrix over one of the subsystems,
say B, to obtain the reduced density matrix ρAC = TrBρ. The
logarithmic negativity L is defined as

L = ln Tr

[√(
ρ

TA
AC

)†
ρ

TA
AC

]
, (28)

where TA denotes the partial transposition with respect to
subsystem A. In a basis of states |φ,ψ〉 = |φ〉A ⊗ |ψ〉C ,
this operation reads as 〈φ′,ψ ′|ρ TA

AC |φ,ψ〉 = 〈φ,ψ ′|ρAC |φ′,ψ〉.
Since L measures the entanglement between subsystems A
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FIG. 7. (Color online) Logarithmic negativity of six models
as a function of ω, for N = 16, 32, 64, 128, 256, and in the
thermodynamical limit (red thick line with dots). In all cases, one
first traces over N2 = N/2 spins, and the logarithmic negativity
is computed for the remaining spins, which are partitioned in two
subsystems of equal sizes N1 = N3 = N/4. Left (right): n = 1
(n = 2). From top to bottom: m = 2, m = 3, and m = 4.

and C, we would obtain the same result by considering TC in
Eq. (29).

In Ref. [23], Wichterich et al. have shown that once the
Hamiltonian is written as a three-boson Hamiltonian, that is,
Eq. (19) with p = 3, the logarithmic negativity is given by

L = −1

2
ln

[
1 + g −

√
g2 + 4τ1τ3(α + 1/α − 2)

]
, (29)

with

g = [τ1 + τ3 − (τ1 − τ3)2](α + 1/α − 2)/2, (30)

where α is given in Eq. (22). This result, which is valid
in the thermodynamical limit, is plotted in Fig. 7. One can
further see in this figure that the finite-size data from exact

diagonalizations converge to the value (30) when the system
size N grows. In addition, all that was said for the behavior
of the concurrence of the various models under investigation
holds again here for the logarithmic negativity.

IV. CONCLUSION

The concurrence, the entanglement entropy, and the loga-
rithmic negativity, although different entanglement measures,
show similar features when used to characterize the quantum
phase transitions of the class of collective models we have
introduced in this paper. However, when the transition is of
first-order nature but accompanied by a collapse of levels on
the ground state [see model (2,2)], as is usually characteristic
of second-order transitions, the entanglement of the ground
state does not show any discontinuity at the transition, but
behaves exactly as in a usual second-order transition. In such a
situation, one may wonder whether other “intrinsic measures”
would be more sensitive to this discontinuous transition.
One may think about studying the fidelity that has already
been analyzed for the (2,1) (Lipkin-Meshkov-Glick) model
at zero [22,39–41] and at finite temperature [42,43] or to the
geometric entanglement, which is also known for the (2,1)
case [20]. We have computed these quantities for the (2,2)
model and found that their behavior is similar in the (2,1)
and the (2,2) cases, although, as already underlined, finite-size
scalings are different. We wish to underline that this is not an
isolated case since, for all (m,m) with m � 2, one has a first-
order transition and the symmetry of the Hamiltonian under the
exchange (x ↔ z) implies that entanglement measures must
be continuous. However, as can be checked from the exact
formulas given in this paper, there is no entanglement for
(m,n) models when m � n � 3. Thus, from this perspective,
the (2,2) model is a bit singular.

To conclude, let us emphasize that we focused here on the
ground-state entanglement. Nevertheless, it would be worth
considering the full spectrum of these models to investigate
finite-temperature entanglement, which may unveil interesting
properties [44,45]. This is beyond the scope of this paper, but
it will be the topic of a forthcoming publication [46].

APPENDIX: DIAGONALIZATION OF THE TWO-MODE
HAMILTONIAN (19)

To compute the entanglement entropy, one needs to di-
agonalize the Hamiltonian (20) for p = 2. This is done by
performing the following Bogoliubov transformation :

a1 = [cosh(
/2)b1 + sinh(
/2)b†1]
√

τ1 + b2
√

τ2, (A1)

a2 = [cosh(
/2)b1 + sinh(
/2)b†1]
√

τ2 − b2
√

τ1, (A2)

where tanh 
 = ε = −2γ /δ. New bosonic operators mutually
commute and satisfy [b1,b

†
1] = [b2,b

†
2] = 1.

Inserting these relations in Eq. (19) for p = 2, one gets

H = Ne0 + γ + δ

2

(√
1 − ε2 − 1

)
+ �1b

†
1b1 + �2b

†
2b2,

(A3)

where �1 = δ
√

1 − ε2 and �2 = δ.
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