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Two local observables are sufficient to characterize maximally entangled states of N qubits
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Maximally entangled states (MES) represent a valuable resource in quantum information processing. In
N -qubit systems the MES are N -GHZ states [i.e., the collection of |GHZN 〉 = 1√

2
(|00 · · · 0〉 + |11 · · · 1〉)] and its

local unitary (LU) equivalences. While it is well known that such states are uniquely stabilized by N commuting
observables, in this article we consider the minimum number of noncommuting observables needed to characterize
an N -qubit MES as the unique common eigenstate. Here, we prove, rather surprisingly, that in this general case
any N -GHZ state can be uniquely stabilized by only two observables. Thus, for the task of MES certification,
only two correlated measurements are required with each party observing the spin of his or her system along one
of two directions.
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I. INTRODUCTION

From both a theoretical and practical perspective, max-
imally entangled states (MES) play an important role in
quantum information science. While there may be different
ways to consider some state more entangled than another, one
can work from an axiomatic perspective to define “maximally”
entangled states in the multipartite setting. This is the approach
taken by Gisin and Bechmann-Pasquinucci who identify N -
GHZ states as maximally entangled in N -qubit systems [1].

Here an N -GHZ state has the form
√

1
2 (|00 · · · 0〉 + |11 · · · 1〉)

for some local choice of basis which, in three-qubit form, is
the well-known Greenberger-Horne-Zeilinger state. One justi-
fication for considering these states as maximally entangled is
that they maximally violate the Bell-Klyshko inequalities [2], a
generalization of the Bell inequalities to more than two parties.
Chen advanced the work of [1] by proving N -GHZ states to be
the unique family of states which demonstrate such a maximal
violation [3]. In this article, we adopt the perspective of these
works and regard N -GHZ states as the maximally entangled
multiqubit states.

At the same time, MES have been recognized as key
ingredients in quantum information processing (QIP). The
pioneering bipartite tasks of quantum key distribution (QKD)
[4,5], teleportation [6], superdense coding [7], and quantum
direct communication [8] all utilize the Einstein-Podolsky-
Rosen (EPR) state |�+〉 = 1√

2
(|00〉 + |11〉) to achieve their

powerful nonclassical effects. Multipartite generalizations of
these procedures have been developed [9–12], as well as novel
schemes such as quantum secret sharing [9,13], which like
their bipartite ancestors, involve manipulations and measure-
ments on MES. The general attraction of MES for information
processing is dual since they not only allow for complete
correlation between measurements on subsystems, but their
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purity also ensures these correlations to exist exclusively
within the system (i.e., no external eavesdropper can be
correlated with any of the subsystems).

Since the use of MES is critical to the success of the
aforementioned QIP schemes, it is important for the parties to
verify that they indeed are encoding their information in MES
and not other types of states. One method of doing this is to
prepare sufficiently more MES than needed for the given QIP
task. From this larger population, a random subset of states is
checked to be MES, and if this inspection passes, the remaining
states are certified to also be MES with arbitrarily high
probability. The task of verifying channel security then reduces
to whether N parties can determine if some collection of
mutually shared states are all MES. In the bipartite case, Ekert
first proposed using Bell inequalities to ascertain whether two
parties hold EPR states [5]. While Bell inequalities involve the
expectation values of four different observables, Bennett et al.
later observed that only two local observables were necessary
to detect the possession of EPR pairs [14]. Specifically, the
state |�+〉 is the unique +1 eigenstate of the local spin
measurements σX ⊗ σX and σZ ⊗ σZ , where σX and σZ are
Pauli matrices. Consequently, repeating these measurements
on some sample of states can detect the presence of a potential
eavesdropper and ensure the protocol’s overall safety.

Using stabilizer formalism [15], this idea can be gen-
eralized to check the safety of multipartite MES. The set
of commuting product Pauli operators having |GHZN 〉 as
the unique common +1 eigenstate forms an Abelian group.
Letting {Pi}ki=1 denote a minimal set of generators for this
group and I the identity, the projector onto their common
+1 eigenspace is given by 1

2k �
k
i=1(I + Pi). The dimension

of this space is given by tr[ 1
2k �

k
i=1(I + Pi)] = 2N

2k , which
means that at least N commuting local spin measurements
are needed to determine whether the parties share |GHZN 〉.
In fact, the observables σ⊗N

X ,σZ ⊗ σZ ⊗ I⊗(N−2),σZ ⊗ I ⊗
σZ ⊗ I⊗(N−3), . . . ,σZ ⊗ I⊗(N−2) ⊗ σZ suffice. Nevertheless, a
natural question is whether fewer than N measurements are
sufficient to certify the possession of |GHZN 〉 if we do not
require the measurements to commute. In this article, we find
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that remarkably for any N , only two different observables are
needed.

II. MAIN RESULT AND PROOF

For a more precise statement of our results, let unit vectors
�vl and �wl describe two arbitrary directions in which party
l measures the “spin” of his or her system via observables
Al = �vl · �σ and Bl = �wl · �σ , respectively. Then we consider
the common +1 eigenspace of operators A := ⊗N

l=1 Al and
B =:

⊗N
l=1 Bl . It is found that for any N -GHZ state |ψ〉,

there exists vectors �vl and �wl such that |ψ〉 is the unique
+1 eigenstate of the two operators just given. We also
investigate the converse: for any two observables of the form⊗N

l=1 Al and
⊗N

l=1 Bl , under what conditions do they possess
a one-dimensional eigenspace. Note that since each Bl has
eigenvalues of ±1, local unitary operators can be applied, and
without loss of generality we can assume B = σ⊗N

Z . With
a perhaps slight abuse of language, we say that a state is
stabilized by some operator if it is a +1 eigenstate. Our results
are summarized as follows:

Theorem 1. For observables A = ⊗N
l=1 Al , B = σ⊗N

Z with
Al = (sin θl cos φl, sin θl sin φl, cos θl) · �σ ,

(i) if there exists no bit string �m with ml ∈ {0,1} such that
sin{[�N

l=1(−1)ml θl]/2} = 0, then A and B have no common
eigenstates,

(ii) if there exists exactly one bit string �m such that m1 = 0
and sin{[�N

l=1(−1)ml θl]/2} = 0, then some N -GHZ state is
the unique common +1 eigenstate of A and B; moreover, to
every N -GHZ state |ψ〉 there exists θl and φl such that |ψ〉 is
uniquely stabilized by A and B, and

(iii) if there exists more than one one bit string �m such that
m1 = 0 and sin{[�N

l=1(−1)ml θl]/2} = 0, then the common +1
eigenstates of A and B are given by the solution to Eq. (4).

In statements (ii) and (iii), the condition m1 = 0 is added
just to avoid trivial redundancies. Since − sin x = sin(−x), a
string �m will solve sin{[�N

l=1(−1)ml θl]/2} = 0 if its comple-
ment string having components 1 − ml is also a solution.

Proof. Let �A∩B be the projector onto the common +1
eigenspace of A and B, and choose |�〉SE to be any purification
of it in some larger Hilbert space. Here, S refers to the
N -qubit system, and E refers to the environment or perhaps
an eavesdropper. Thus, we assume (A ⊗ IE)|�〉SE = (B ⊗
IE)|�〉SE = |�〉SE . We seek the conditions for �A∩B being a
one-dimensional projector, which is equivalent to |�〉SE being
a product state: |ψ〉S |e0〉E . In this case, |�〉SE is perfectly
secure from leaking any information to an eavesdropper.

We begin by defining two setsS0 = {�j ∈ ZN
2 : ⊕N

l=1jl = 0}
and S1 = {�j ∈ ZN

2 : ⊕N
l=1jl = 1}. The bitwise inner prod-

uct between two N -bit strings will be denoted by �j · �k =∑N
l=1 jlkl .
Any state stabilized by σ⊗N

Z ⊗ IE is of the form,

|�〉 =
∑
�i∈S0

|�i〉|e �i〉, (1)

where |e �i〉 are states of the environment and |�i〉 = ⊗N
l=1 |il〉l

with il ∈ {0,1}. Since Al = ( cos θl e−iφl sin θl

eiφl sin θl −cos θl
), the action Al|il〉

can be conveniently expressed as (cos θl)il (e−iφl sin θl)il |0〉l +

(eiφl sin θl)il (− cos θl)il |1〉l where il = 1 − il . Then the
equality (

⊗N
l=1 Al ⊗ IE)|�〉 = |�〉 becomes

|�〉 =
∑
�i∈S0

N⊗
l=1

[(cos θl)
il (e−iφl sin θl)

il |0〉l

+ (eiφl sin θl)
il (− cos θl)

il |1〉l]|e �i〉
=

∑
�i∈S0

|�i〉|e �i〉. (2)

Contracting by 〈 �j gives

|e �j 〉 =
∑
�i∈S0

N∏
l=1

[(cos θl)
il (e−iφl sin θl)

il ]j l

× [(eiφl sin θl)
il (− cos θl)

il ]jl |e �i〉. (3)

Here we allow for �j to be any string with obviously |e �j 〉 = 0

for �j ∈ S1. The system’s state will be unentangled from the
environment if there exists complex scalars c�i and some state
|e0〉 such that |e �i〉 = c�i |e0〉 for all �i ∈ S0. Substituting this
into the previous equation gives the system of 2N−1 linear
equations,

c �j =
∑
�i∈S0

N∏
l=1

[(cos θl)
il (e−iφl sin θl)

il ]j l

× [(eiφl sin θl)
il (− cos θl)

il ]jl c �i , ∀�j ∈ S0. (4)

Thus, there exists a unique solution to this if the state |ψ〉 =∑
�i∈S0

c �i |�i〉 is uniquely stabilized by both A and B. On the
other hand, if there are multiple solutions, then dim(�A∩B) >

1, and if there is no solution, then �A∩B = ∅.
At this point, we have essentially answered the question of

whether two given observables uniquely stabilize a state since
(4) can be efficiently solved. However, by further analysis, we
can better understand its solution set and obtain the converse
result of part (ii) in Theorem 1.

Taking |e′
�i〉 = ∏N

l=1(−1)il/2e−iφl il |e �i〉, eiβ( �j ) =∏N
l=1(−1)jl/2eiφljl and using the identity il ⊕ jl = il + jl

− 2iljl , Eq. (3) simplifies to

|e �j 〉 = eiβ( �j )
∑
�i∈S0

N∏
l=1

cos θl[(−1)−1/2 tan θl]
il⊕jl |e′

�i〉 (5)

where we take the convention 00 = 1. Now for �j ∈ S1, the
LHS becomes zero and we are left with the system of 2N−1

vector equations,

∑
�i∈S0

N∏
l=1

cos θl[(−1)−1/2 tan θl]
il⊕jl |e′

�i〉 = 0. (6)

We can encode all this information in the following way.
For any �m ∈ ZN

2 , define the function f �m : S1 → {−1, + 1}
by f �m(�v) := (−1) �m·�v . Observe that if �m 
= �n, then f �m 
= f�n.
Indeed, there must exist some component k such that one
and only one mk or nk is zero, and hence (−1) �m·�ek 
= (−1)�n·�ek

with �ek being the kth unit vector. At the same time, for every
�m its complement �n is the only vector such that f �m = −f�n
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(nl = 1 − ml). Thus while there are 2N different bit vectors
�m, there are 2N−1 linearly independent functions (−1) �m·�v
generated by the �m ∈ ZN

2 . Consequently, all possible 2N−1

linearly independent combinations formed by adding or
subtracting the equations in (6) are contained in the equations,

∑
�i∈S0
�j∈S1

N∏
l=1

(−1)mljl cos θl[(−1)−1/2 tan θl]
il⊕jl |e′

�i〉 = 0, (7)

for any choice of ml ∈ {0,1}.
We next use the facts that (−1)mljl = (−1)mlil (−1)ml (il⊕jl ),

and that for a fixed �i, {il ⊕ jl : jl ∈ S1} = S1 since⊕N
l=1 il = 0. Hence,

∑
�j∈S1

N∏
l=1

cos((−1)ml θl)[(−1)−1/2 tan((−1)ml θl)]
jl

×
∑
�i∈S0

(−1) �m·�i |e′
�i〉 = 0. (8)

By mathematical induction, it is not difficult to prove that

∑
�j∈S1

N∏
l=1

cos θl[(−1)−1/2 tan θl]
jl = (−1)−1/2 sin �N

l=1θl,

(9)∑
�j∈S0

N∏
l=1

cos θl[(−1)−1/2 tan θl]
jl = cos �N

l=1θl.

Then from Eq. (8) we have

sin
(
�N

l=1(−1)ml θl

) ∑
�i∈S0

(−1) �m·�i |e′
�i〉 = 0 (10)

for every �m ∈ ZN
2 . Let M denote the set of all binary vec-

tors �m ∈ M such that sin(�N
l=1(−1)ml θl) = 0. Consequently,∑

�i∈S0
(−1) �m·�i |e′

�i〉 = 0 for every �m ∈ Mc := ZN
2 \ M. Multi-

plying both sides by (−1) �m·�h with �h ∈ S0 and summing over
Mc gives

0 =
∑
�m∈Mc

∑
�i∈S0

(−1) �m·(�h+�i)|e′
�i〉

=
∑
�i∈S0

⎡
⎣ ∑

�m∈ZN
2

(−1) �m·(�h+�i)|e′
�i〉 −

∑
�m∈M

(−1) �m·(�h+�i)|e′
�i〉

⎤
⎦

= 2N

(
|e′

�h〉 − 1

2

∑
�m∈M

(−1) �m·�h|E( �m)〉
)

, (11)

where |E( �m)〉 = 2−(N−1) ∑�i∈S0
(−1) �m·�i |e′

�i〉. Here, in passing
from the second to the third equation, we have used the general
fact that

∑
�m∈ZN

2
(−1) �m·�v = 0 unless vl is even for all l, in which

case it equals 2N . From (11) we immediately see that M 
= ∅
or else |e′

�h〉 = 0 for all �h ∈ S0. This proves statement (i) of the
theorem.

If M contains only one string �m and its complement, then
|e′

�h〉 = (−1) �m·�h|E( �m)〉 for all �h ∈ S0. Substituting this back

into (5) yields

|e �j 〉 = eiβ( �j )|E( �m)〉

×
∑
�i∈S0

N∏
l=1

(−1)mlil cos θl[(−1)−1/2 tan θl]
il⊕jl , (12)

with �j ∈ S0. We simplify this expression analogous to Eq. (8)
to obtain

|e �j 〉 = eiβ( �j )(−1) �m· �j |E( �m)〉

×
∑
�i∈S0

N∏
l=1

cos((−1)ml θl)[(−1)−1/2 tan((−1)ml θl)]
il .

(13)

The second identity in (9) then gives

|e �j 〉 = eiβ( �j )(−1) �m· �j cos
(
�N

l=1(−1)ml θl

)|E( �m)〉. (14)

At the same time, since �j ∈ S0, we must have |e′
�j 〉 =

e−iβ( �j )|e �j 〉 = (−1) �m· �j |E( �m)〉 which gives the additional con-
dition that cos(�N

l=1(−1)ml θl) = 1. Then using (14), we return
to |�〉SE by

|�〉SE =
∑
�j∈S0

eiβ( �j )(−1) �m· �j | �j〉|E( �m)〉

=
∑
�j∈S0

N⊗
l=1

|j̃l〉l|E( �m)〉 (15)

where |0̃〉 = |0〉, |1̃〉 = (−1)(1/2+ml )eiφl |1〉. From parity con-
siderations, it is straightforward to see that under the local
rotation of |0〉 → (|0〉 + |1〉) and |1〉 → (|0〉 − |1〉) by each
party, the state |GHZN 〉 transforms as

|00 · · · 0〉 + |11 · · · 1〉 → (|0〉 + |1〉)⊗N + (|0〉 − |1〉)⊗N

=
∑
�j∈S0

N⊗
l=1

|jl〉l . (16)

This proves |�〉SE to be of the form |ψ〉S |e0〉E where
|ψ〉S is an N -GHZ state; the two necessary and
sufficient conditions are sin(�N

l=1(−1)ml θl) = 0 and
cos(�N

l=1(−1)ml θl) = 1 which we can combine into the
single equation sin{[�N

l=1(−1)ml θl]/2} = 0.
Furthermore, starting from (15), we can reverse the con-

struction. For instance, if N is odd, then choosing θl = 2π/N

for all l generates a unique solution (up to its complement)
of �m = �0 for sin{[�N

l=1(−1)ml θl]/2} = 0. As a result, the state
|ψ〉 = ∑

�j∈S0

⊗N
l=1 |j̃l〉l is uniquely stabilized by A and B for

any choice of φl . Any other N -GHZ state can be written as⊗N
i=1 Ui |ψ〉 for local unitaries Ui , and we compute this state

to be uniquely stabilized by
⊗N

i=1 UiAiU
†
i and

⊗N
i=1 UiBiU

†
i .

For even N , the procedure is identical with θ1 = 4π
N+1 and

θl = 2π
N+1 for l > 1. Statement (ii) of the theorem is proven.

Now suppose that M contains more than one �m
such that m1 = 0 and sin{[�N

l=1(−1)ml θl]/2} = 0. Then

|e′
�h〉 = 1

2

∑
�m∈M(−1) �m·�h|E( �m)〉, and either (a) |e′

�h〉 
∝ |e′
�j 〉 for
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some �h, �j ∈ S0, or (b) |e′
�h〉 = c�h|e0〉 for all �h ∈ S0 and

c�h some complex scalar. In case (a), from Eq. (1) we
see that the system and the environment are entangled
which means dim(�A∩B) > 1. In case (b), the system is
separated from the environment, and A and B will have
a unique +1 eigenstate if Eq. (4) has a solution. In both
cases, the global state is |�〉SE = ∑

�m∈M
m1=0

|GHZN ( �m)〉|E( �m)〉
where each |GHZN ( �m)〉 is an N -GHZ state of the form

1√
2
(|k1k2 . . . kN 〉 + |k̄1k̄2 . . . k̄N 〉) kl ∈ {0̃,1̃}, with {|0̃〉l ,|1̃〉l} a

local basis of party l fixed for all �m. This completes the proof of
part (iii). �

In conclusion, we have considered the minimum number of
spin-direction measurements required to certify the possession
of maximally entangled states in N -qubit systems. Our results
are especially important to QKD where a central task is
verifying the purity of a quantum channel and the absence of
a possible eavesdropper. Specifically we have shown that for
every N -qubit maximally entangled state, only two different
local measurements are needed to accomplish this certification.

Note that in our analysis, we have mainly focused on the
mutual +1 eigenspaces of A and B. However, by considering
all combinations of ±A and ±B, we can learn whether the two
observables share any unique eigenstate. A natural question
for future research is the minimum number of measurements
needed to test for MES in higher dimensional N -party
systems.
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