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Multipartite entanglement of fermionic systems in noninertial frames
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The bipartite and tripartite entanglement of a 3-qubit fermionic system when one or two subsystems accelerate
are investigated. It is shown that all the one-tangles decrease as the acceleration increases. However, unlike the
scalar case, here one-tangles NCI (ABI ) and NCI (AB) never reduce to zero for any acceleration. It is found that
the system has only tripartite entanglement when either one or two subsystems accelerate, which means that
the acceleration does not generate bipartite entanglement and does not affect the entanglement structure of the
quantum states in this system. It is of interest to note that the π -tangle of the two-observer-accelerated case
decreases much quicker than that of the one-observer-accelerated case and it reduces to a nonzero minimum in
the infinite-acceleration limit. Thus we argue that the qutrit systems are better than qubit systems in performing
quantum information processing tasks in noninertial systems.
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I. INTRODUCTION

Quantum entanglement is both the central concept and the
most desirable resource for a variety of quantum informa-
tion processing tasks [1–3], such as quantum teleportation,
superdense coding, entanglement-based quantum cryptogra-
phy, error-correcting codes, and quantum computation. In
the last decade, although much effort has been made to
study the properties of entanglement, our understanding of
entanglement is limited to bipartite systems. There is no
doubt that multipartite entanglement is a valuable physical
resource in large-scale quantum information processing and
plays an important role in condensed-matter physics. But, in
fact, although the entanglement of multipartite systems can
be similarly investigated as a bipartite case, the properties and
quantification of entanglement for higher dimensional systems
and multipartite quantum systems are issues that must still be
resolved.

On the other hand, as a combination of general relativity,
quantum field theory, and quantum information theory, rel-
ativistic quantum information has been a focus of research
in quantum information science in recent years for both
conceptual and experimental reasons. Recently, much attention
has been given to the study of entanglement shared between
inertial and noninertial observers by discussing how the Unruh
or Hawking effect will influence the degree of entanglement
[4–19]. However, it is worth noting that most investigations of
noninertial systems focused on the study of quantum informa-
tion in bipartite systems when only one of the subsystems
accelerated. Fortunately, the tripartite entanglement of the
scalar field between noninertial frames was recently studied by
Hwang et al. [20]. They showed that the tripartite entanglement
decreases with increasing acceleration and is different from
bipartite entanglement when one observer moves with an
infinite acceleration.

In this paper we will discuss both the bipartite and tripartite
entanglement of Dirac fields in the noninertial frame when
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one or two observers are accelerated. We are interested in
how the accelerations of these observers will influence the
degree of bipartite and tripartite entanglement, and whether the
differences between Fermi-Dirac and Bose-Einstein statistics
will play a role in the decreasing entanglement. Our setting
consists of three observers: Alice, Bob, and Charlie. We first
assume Alice is in an inertial frame and Bob and Charlie
are observing the system from accelerated frames; we then
let Alice and Bob stay stationary while Charlie moves with
uniform acceleration. We consider the Dirac fields as shown
in Refs. [21–23], which, from an inertial perspective, describe
a superposition of the Minkowski monochromatic modes
|0〉M = ⊗

i |0ωi
〉M and |1〉M = ⊗

i |1ωi
〉M∀i, where

|0ωi
〉M = cos ri

∣∣0ωi

〉
I

∣∣0ωi

〉
II

+ sin ri

∣∣1ωi

〉
I

∣∣1ωi

〉
II

, (1)

and
∣∣1ωi

〉
M

= ∣∣1ωi

〉
I

∣∣0ωi

〉
II

. (2)

Here cos ri = (e−2πωic/ai + 1)−1/2, where ai is the acceleration
of the accelerated observer. The Minkowski |0〉M , which is
annihilated by operator aM , is also annihilated by operate aMi

(associated with the vacuum |0ωi
〉M ) and also by any combi-

nation of Minkowski annihilation operators. It is also worth
noting that a Minkowski mode that defines the Minkowski
vacuum is related to a highly nonmonochromatic Rindler
mode rather than a single mode with the same frequency
(see [22,23] for details). Consider that an accelerated observer
in the Rindler region I has no access to the field modes
in the causally disconnected region II. By tracing over the
inaccessible modes we will obtain a tripartite state and we then
calculate the tripartite entanglement of the three-qubit state
as well as the bipartite entanglement of all possible bipartite
divisions of the tripartite system.

The outline of this paper is as follows. In Sec. II we recall
some measurements of entanglement in quantum information
theory, in particular the negativity and π -tangle. In Sec. III the
bipartite and tripartite entanglement of Dirac fields when one
or two of the observers are accelerated will be discussed. The
conclusions are presented in the last section.
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II. MEASURES OF TRIPARTITE ENTANGLEMENT

It is well known that there are two remarkable entanglement
measures for a bipartite system ραβ , the concurrence [24] and
the negativity [25]. The former is defined as

Cαβ = max{0,λ1 − λ2 − λ3 − λ4}, λi � λi+1 � 0, (3)

where λi are the square roots of the eigenvalues of the
matrix ραβρ̃αβ with ρ̃αβ = (σy ⊗ σy) ρ∗

αβ (σy ⊗ σy) describing
the “spin-flip” matrix and σy the Pauli matrix. The latter is
defined as

Nαβ = ∥∥ρ
Tα

αβ

∥∥ − 1, (4)

where Tα denotes the partial transpose of ραβ and ‖.‖ is
the trace norm of a matrix. Correspondingly, there are two
entanglement measures that quantify the genuine tripartite
entanglement: three-tangle [24] and π -tangle [26]. The three-
tangle (or residual tangle), which has many nice properties but
is a highly difficult problem to compute analytically except in
a few rare cases, is defined as

τα,β,γ = τα(β,γ ) − τα,β − τα,γ , (5)

where τα(β,γ ) = C2
α(β,γ ) and τα,β = C2

α,β .
To simplify the calculation we merely adopt the π -tangle

as the quantification of the tripartite entanglement. For any
three-qubit state |
〉αβγ , the entanglement quantified by the
negativity between α and β, between α and γ , and between α

and the overall subsystem βγ satisfies the following Coffman-
Kundu-Wootters (CKW) monogamy inequality [24]

N 2
αβ + N 2

αγ � N 2
α(βγ ), (6)

where Nαβ is a “two-tangle,” which is the negativity of the
mixed state ραβ = Trγ (|
〉αβγ 〈
|) and N 2

α(βγ ) is a “one-

tangle,” defined as Nα(βγ ) = ‖ρTα

αβγ ‖ − 1. The difference
between the two sides of Eq. (6) can be interpreted as the
residual entanglement

πα = N 2
α(βγ ) − N 2

αβ − N 2
αγ . (7)

Likewise, we have

πβ = N 2
β(αγ ) − N 2

βα − N 2
βγ (8)

and

πγ = N 2
γ (αβ) − N 2

γα − N 2
γβ . (9)

The π -tangle παβγ is defined as the average of πα , πβ , and πγ ,
i.e.,

παβγ = 1
3 (πα + πβ + πγ ). (10)

III. BEHAVIORS OF TRIPARTITE ENTANGLEMENT
WHEN ONE OR TWO OBSERVERS ARE

ACCELERATED

We consider a tripartite system that consists of three
subsystems: Alice is the observer of the first part of the
system, and Bob and Charlie are the observers of the second
and third parts, respectively. They share a state where all
modes are in the vacuum state except that three of them

are entangled from the inertial perspective, for example, a
Greenberger-Horne-Zeilinger (GHZ) state

|
〉ABC = 1√
2

(|0ωa
〉A|0ωb

〉B |0ωc
〉C + |1ωa

〉A|1ωb
〉B |1ωc

〉C),

(11)

where |0ωa(b,c)〉A(B,C) and |1ωa(b,c)〉A(B,C) are vacuum states and
the first excited states from the perspective of an inertial
observer. Alice, Bob, and Charlie each carry a monochromatic
detector sensitive to frequencies ωa , ωb, and ωc, respectively.
Using Eqs. (4) and (10), we can easily get

NA(BC) = NB(AC) = NC(AB) = 1,

NAB = NBC = NCA = 0,

πABC = 1,

where NA(BC), NAB , and πABC are the “one-tangle,” “two-
tangle,” and “π -tangle” of state (11) from a inertial viewpoint.
Then we let Alice stay stationary while Bob and Charlie
move with uniform acceleration. Since Bob and Charlie are
accelerated, we should map the second and third partition of
this state into the Rindler-Fock space basis. Using Eqs. (1) and
(2) we can rewrite Eq. (11) in terms of Minkowski modes for
Alice and Rindler modes for Bob and Charlie,

|
〉ABI CI
= 1√

2
[cos rb cos rc|0〉A|0〉BI

|0〉BII
|0〉CI

|0〉CII

+ cos rb sin rc|0〉A|0〉BI
|0〉BII

|1〉CI
|1〉CII

+ cos rb sin rc|0〉A|1〉BI
|1〉BII

|0〉CI
|0〉CII

+ sin rb sin rc|0〉A|1〉BI
|1〉BII

|1〉CI
|1〉CII

+ |1〉A|1〉BI
|0〉BII

|1〉CI
|0〉CII

], (12)

where hereafter frequency subscripts are dropped.
Let us first calculate the one-tangle between subsystem A

and the overall subsystem BICI by using Eq. (4). Tracing over
the inaccessible modes BII and CII we obtain a density matrix

ρABI CI

= 1
2 [cos2 rb cos2 rc|000〉〈000| + cos2 rb sin2 rc|001〉〈001|
+ sin2 rb cos2 rc|010〉〈010| + sin2 rb sin2 rc|011〉〈011|
+ cos rb cos rc(|111〉〈000| + |000〉〈111| + |111〉〈111|],

(13)

where |lmn〉 = |l〉A|m〉BI
|n〉CI

. Then we can easily get the
partial transpose subsystem A of Eq. (13),

ρ
TA

ABI CI

= 1
2 [cos2 rb cos2 rc|000〉〈000| + cos2 rb sin2 rc|001〉〈001|
+ sin2 rb cos2 rc|010〉〈010| + sin2 rb sin2 rc|011〉〈011|
+ cos rb cos rc(|011〉〈100| + |100〉〈011| + |111〉〈111|],

(14)

from which we can get (ρTA

ABI CI
)† and the negativity NA(BI CI )

is found to be

NA(BI CI ) = 1
2 [cos rb cos rc + cos2 rc + cos2 rb sin2 rc

+
√

cos2 rb cos2 rc + sin4 rb sin4 rc − 1]. (15)
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Similarly, we can also get

NBI (ACI ) = 1
2 [cos rb cos rc + cos2 rb + sin2 rb sin2 rc

+ cos rc

√
cos2 rb + sin4 rb cos2 rc − 1] (16)

and

NCI (ABI ) = 1
2 [cos rb cos rc + sin2 rb + cos2 rb cos2 rc

+ cos rb

√
cos2 rc + sin4 rc cos2 rb − 1]. (17)

The properties of all the one-tangles of ρABI CI
are shown

in Fig. 1 with rb = rc = r . It is shown that all the one-tangles
are equal to one when r = 0, which is exactly the value of
the one-tangles in Eq. (11) obtained in the inertial frame.
All of the one-tangles decrease as the accelerations of Bob
and Charlie increase, which is similar to the behavior of the
bipartite entanglement of the Dirac field [6] and the tripartite
one-tangle of the scalar field when one of the observers is

accelerated [20]. Note thatNBI (ACI ) = NCI (ABI ) for all acceler-
ations, which indicates that Bob and Charlie’s subsystems are
symmetrical in this case. It is worthwhile to note that unlike the
scalar case the one-tangle NCI (AB) goes to zero when Charlie
moves with infinite acceleration; here NCI (ABI ) and NCI (AB)

never go to zero for any acceleration. We argue that this
difference is due to the differences between Fermi-Dirac and
Bose-Einstein statistics [10] rather than because the observers
cannot access the entanglement of the subsystems that moves
with infinite acceleration with respect to them, as the authors
stated in Ref. [20]. What is surprising is that in this case both
Bob and Charlie move with infinite acceleration (r = π/4),
NA(BI CI ) = NBI (ACI ) = NCI (ABI ) = 1−√

5
8 , which means that

there is no difference between the subsystems A, BI , and CI

in this limit.
Now, let us compute the two-tangle between subsys-

tems A and BI . Tracing the qubit of subsystem CI we
obtain

ρABI
= 1

2

⎛
⎜⎜⎜⎝

cos r2
b cos2 rc + cos r2

b sin2 rc 0 0 0

0 sin2 rb cos2 rc + sin r2
b sin2 rc 0 0

0 0 0 0

0 0 0 1

⎞
⎟⎟⎟⎠ .

Using this matrix and Eq. (4) we can obtain the negativity
NABI

= 0, which means there is no bipartite entanglement
between mode A and BI in spite of the acceleration of Bob
and Charlie. Similarly, it is found that NACI

= NBI CI
= 0.

Note that the CKW inequality [24], N 2
αβ + N 2

αγ � N 2
α(βγ ), is

saturated for any acceleration parameter r .
Then by use of Eqs. (7)–(10), the π -tangle of our system is

found to be

πABI CI
= 1

3 (πA + πBI
+ πCI

)

= 1
3

[
N 2

A(BI CI ) + N 2
BI (ACI ) + N 2

CI (ABI )

]
, (18)
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FIG. 1. (Color online) The negativity NA(BI CI )(solid line),
NBI (ACI ) (dashed line), and NCI (ABI ) (dotted line) of a two-
observer-accelerated case as a function of the acceleration parameter
r = rb = rc.

whereNA(BI CI ),NBI (ACI ), andNCI (ABI ) are given by Eqs. (15)–
(17), respectively.

In order to better understand the multipartite entanglement
in the noninertial frames, we also compute the entanglement
of a tripartite system that includes two inertial subsystems and
one noninertial subsystem; i.e., let Alice and Bob stay station-
ary and Charlie moves with uniform acceleration. They share
the same GHZ state Eq. (11) at the same point in Minkowski
spacetime. According to the preceding calculations, we can
obtain

NA(BCI ) = NB(ACI ) = cos rc,

NCI (AB) = 1
2 (cos rc + cos2 rc +

√
cos2 rc + sin4 rc − 1), (19)

NAB = NBCI
= NCI A = 0,

where NA(BCI ) and NAB are the one-tangle and two-tangle of
the one-observer-accelerated case. It is worth noticing that
the CKW inequality is also saturated for any acceleration
parameter r in this case. From these facts we arrive at the
conclusion that this inequality is valid in both inertial and
noninertial frames.

We plot the one-tangles of this case in Fig. 2 and find
that (i) all of them decrease as the acceleration of Charlie
increases; (ii) NA(BCI ) = NB(ACI ) for all accelerations; and
(iii) the one-tangle NCI (AB) never goes to zero for any
acceleration. However, it is interesting to note that in this
case NA(BCI ) = NB(ACI ) �= NCI (AB) when Charlie moves
with infinite acceleration, which is very different from the
two-observer-accelerated case. We are not sure whether this is
an individual case that only appears in the fermionic systems
because it is probably related to the incomplete definition of
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FIG. 2. (Color online) The one-tangles NA(BCI )(dashed line),
NB(ACI ) (dotted line), and NCI (AB) (solid line) of one-observer-
accelerated case as a function of the acceleration parameter r = rc.

the one-tangle in the noninertial frames. Thus, it seems to
be interesting to repeat the calculation of this paper for other
systems and make use of other entanglement measurements.
It is shown again that all the two-tangles equal zero in this
case, which is exactly the same as the two-tangles obtained in
the inertial frame. That is to say, either one or two subsystems
of the tripartite state are accelerated, and there is no bipartite
entanglement in this system. The acceleration does not
generate a bipartite entanglement and the entanglement
structure of the quantum state does not change. It is interesting
to note that, in Ref. [6], there was no tripartite entanglement
between observers Alice, Rob, and Anti-Rob; i.e, the entire
entanglement is bipartite when one of the observers is static
and the other accelerated. However, here we find that there
is no bipartite entanglement; all the entanglements of this
system are in the form of tripartite entanglements.

By use of Eq. (12) we get the π -tangle of the one-
observer-accelerated system πABCI

= [N 2
A(BCI ) + N 2

B(ACI ) +
N 2

CI (AB)]/3. For comparison, we plot πABCI
for this case and

πABI CI
of the two-observer-accelerated case in Fig. 3.

In Fig. 3 we plot the π -tangle πABCI
of the one-observer-

accelerated case and πABI CI
of the two-observer-accelerated
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FIG. 3. (Color online) The π -tangle πABCI
of the one-observer-

accelerated case (solid line) vs πABI CI
of the two-observer-accelerated

case (dashed line), as a function of the acceleration parameter r =
rb = rc.

case as a function of the acceleration parameter r = rb = rc,
which shows how the acceleration changes tripartite entangle-
ment. In the case of zero acceleration, πABCI

= πABI CI
= 1.

With increasing acceleration, the π -tangles decrease mono-
tonically for both of these two cases. It is shown that the
decrease in speed of the tripartite entanglement of the two-
observer-accelerated case is much quicker than that of the
one-observer-accelerated case as expected. Recall that the loss
of entanglement was explained as the information formed in
the inertial system was leaked into the causally disconnected
region [14,19,22] due to the Unruh effect. The quicker
decrease of entanglement in the two-observer-accelerated case
is attributed to the information that both Bob and Charlie’s
subsystems are redistributed into the unaccessible regions as
the acceleration grows. In the limit of infinite acceleration, the
tripartite entanglement of the two-observer-accelerated case
reduces to a lower minimum but never vanishes. It is interesting
to note that either the scalar system or the Dirac system and
either one or two observers are accelerated, and the tripartite
entanglement never vanishes for any acceleration. Thus we can
arrive at the striking conclusion that the quantum entanglement
in a tripartite system is a better resource for performing
quantum information processing such as teleportation. We can
also perform such quantum information tasks by use of the
tripartite entanglement when some observers are falling into a
black hole while others are hovering outside the event horizon.

IV. SUMMARY

The effect of acceleration on bipartite and tripartite
entanglements of a three-qubit Dirac system when one or
two subsystems are accelerated is investigated. It is shown
that all the one-tangles decrease as the accelerations of Bob
and Charlie increase. However, unlike the scalar case in
which the one-tangle NCI (AB) goes to zero when Charlie
moves with infinite acceleration, here NCI (ABI ) and NCI (AB)

never reduce to zero for any acceleration. It is also shown
that the CKW inequality is valid in noninertial systems. It
is interesting to note that NA(BI CI ) = NBI (ACI ) = NCI (ABI )

in the infinite-acceleration limit, which means that there is
no difference between the subsystems A, BI , and CI in
this limit. It is found that either one or two subsystems
of the tripartite state accelerated and there is no bipartite
entanglement in this system; i.e., all the entanglement of
this system is in the form of tripartite entanglement. The
acceleration does not generate a bipartite entanglement in this
system and does not change the entanglement structure of
the quantum state. It is also found that the π -tangle of the
two-observer-accelerated case decreases much quicker than
that of the one-observer-accelerated case and it reduces to
a nonzero minimum in the infinite-acceleration limit. It is
worth mentioning that for both scalar [20] and Dirac fields,
and when either one or two observers are accelerated, the
tripartite entanglement does not vanish for any acceleration.
That is to say, quantum entanglement in a tripartite system is
a better resource than bipartite entanglement for performing
quantum information processing such as teleportation. We
can also perform such quantum information tasks by using
a tripartite entanglement when one or two observers are
falling into a black hole while others hover outside the event
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horizon. The discussions of this paper can also be applied to
the investigations of multipartite entanglement and quantum
correlations in curved spacetime [17,18,22] as well as to the
properties of multipartite Gaussian entanglement in noninertial
frames [14]. Therefore, further investigation by using the
results in this paper will not only help us to understand genuine
multipartite entanglements but also help to give us a better
insight into the entanglement entropy and information paradox
of black holes.
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